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A B S T R A C T   

Alnus viridis is a shrub species that has been increasing in many European mountains over the past decades, 
leading to a loss of agricultural areas and several negative environmental impacts. Recently, targeted livestock 
management systems have been investigated to reduce its encroachment. This study aims to provide an 
exhaustive assessment of A. viridis leaf composition and its temporal variation across the grazing season. A. viridis 
leaves were collected throughout the summers of 2020 and 2021 in four encroached sites across the Swiss and 
Italian Alps, characterized by different pedo-climatic conditions. Based on the data collected by meteorological 
stations, the growing degree days (GDD) were calculated for each site and year. The leaf functional traits (i.e., 
Leaf Dry Matter Content – LDMC – and Specific Leaf Area – SLA), chemical composition (macro- and micro- 
elements and fibre content), phenolic content, in vitro organic matter digestibility (IVOMD), and related gas 
production (CO2 and CH4) were assessed. The LDMC significantly increased throughout the season, whereas the 
SLA decreased. All macro- and micro-elements significantly varied during the season, with leaf nitrogen (N) and 
phosphorus (P) decreasing. In contrast, leaf fibre contents significantly increased as the season advanced. There 
was a significant increase in condensed tannin content during the summer season. Finally, adding A. viridis leaves 
(20% of diet on a dry matter basis) to cattle diets significantly reduced IVOMD, methane produced per digested 
organic matter (CH4/dOM) and CO2/dOM, compared to a 100% hay diet. Moreover, CH4/dOM and CH4/CO2 
ratio increased during the summer season. These results highlight the potential of A. viridis leaves as a valuable 
forage resource, especially at the beginning of the summer. Such information could be used to optimize grazing 
of robust livestock in A. viridis-encroached alpine pastures in order to reduce its invasion and minimize green-
house gases production at the same time.   

1. Introduction 

Due to agricultural land abandonment in the most marginal areas, 
tree and shrub-encroachment has strongly increased in European 
mountains in the last century (MacDonald et al., 2000; Orlandi et al., 
2016). This trend has caused the loss of grassland areas in alpine regions, 

with a reduction in landscape diversity and aesthetic value (Strebel and 
Bühler, 2015; Schirpke et al., 2016). Alnus viridis (Chaix) DC is one of the 
most rapidly spreading shrub species in several European mountain 
chains (Boscutti et al., 2014; Caviezel et al., 2017; Skoczowski et al., 
2021), thanks to high reproduction and growth (Wiedmer and 
Senn-Irlet, 2006). Its expansion can create unfavourable 
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agro-environmental conditions and the reduction of key ecosystem 
services. Indeed, in addition to the reduction of forage yield due to 
grassland loss, it also prevents forest succession and does not provide 
protection from natural hazards such as avalanches (Caviezel et al., 
2014, Faccioni et al., 2019). Moreover, its ability to fix nitrogen (N) due 
to the symbiosis with the N2-fixing actinomycete Frankia alni can lead to 
N saturation in soils (Bühlmann et al., 2016). This increases risks of 
nitrate leaching and emissions of greenhouse gasses, such as nitrous 
oxide, and reduces animal and plant biodiversity (Bü2020). While 
A. viridis is mostly found on northern and west facing slopes, it is pre-
dicted to expand to a wider range of environmental conditions due to its 
observed occurrence in new habitats (Skoczowski et al., 2021). 

Since it is costly and difficult to control its spread through manual 
cuts, recent studies have investigated the potential of robust livestock to 
forage on A. viridis and reduce its encroachment. For example, Pauler 
et al. (2022) showed that Dexter cattle, Pfauen goats and Engadine sheep 
can cause significant damage to A. viridis shrubs. Indeed, cattle were able 
to break branches and trample on young shrubs, while goats and sheep 
foraged on and debarked the plants, with Engadine sheep being the most 
effective livestock in clearing encroached areas. Other robust breeds, 
such as Highland cattle, were also evaluated and shown to be efficient in 
opening dense A. viridis stands (Nota et al., 2023, Svensk et al., 2022). 
While it was observed that some species and breeds are thus able to feed 
on A. viridis shrubs, it is essential to assess the full potential of this plant 
species as a forage resource for livestock. Tree and shrub species can 
have high potential for ruminant nutrition (Luske and van Eekeren, 
2017), as they maintain higher nutrient content during the late summer 
season compared to herbaceous species (Papachristou and Papanastasis, 
1994, Ravetto Enri et al., 2020). Therefore, shrubs such as A. viridis 
could become an interesting forage supplement and help compensate for 
animal feeding during dry summers and periods with forage shortage. 
Bühlmann et al. (2016) measured the N concentration of A. viridis leaves 
at different elevations (1650 m and 1950 m) and found slightly higher N 
concentration at higher elevations. Another study assessed the biomass 
production of A. viridis (Wiedmer and Senn-Irlet, 2006), and Stević et al. 
(2010) measured the total tannin content of A. viridis leaves (4.4 ±
0.4%), which is an important factor in leaf digestibility assessment. 
However, to the best of our knowledge, no study has ever conducted an 
exhaustive analysis of A. viridis leaf functional traits, chemical compo-
sition, and nutritive value across the whole summer season. This aspect 
is crucial to fully understand the forage potential of A. viridis and to 
identify the ideal period for it to be grazed. Several studies have high-
lighted the importance of assessing leaf characteristics at different 
development stages to better estimate the nutritive value for livestock. 
For example, Pauler et al. (2020) pointed out the significant impact of 
leaf functional traits, such as specific leaf area (SLA) and leaf dry matter 
content (LDMC), on cattle foraging behaviour, where larger leaves (i.e., 
with higher SLA) were preferred for grazing, while leaves with higher 
LDMC were avoided. Other studies found that these plant traits 
impacted digestibility, as smaller and denser leaves may have reduced 
ruminal degradation (Pontes et al., 2007). Pauler et al. (2020) also found 
that leaves with higher N and phosphorus (P) contents were more often 
selected by cattle, and other research highlighted a significant impact of 
primary and secondary leaf compounds on forage selection, di-
gestibility, and animal health (Collins et al., 2017; Leng, 1997; Mahieu 
et al., 2021; Ravetto Enri et al., 2020). The impact of phenolic com-
pounds on forage quality is also well known, as high tannin and 
non-tannin phenolic concentrations tend to reduce palatability and di-
gestibility (Kumar and Vaithiyanathan, 1990; Sunnerheim et al., 1988). 
Finally, leaf neutral detergent fibre (NDF) content is an essential factor 
influencing digestibility in ruminants as well, and has previously been 
found to increase throughout the growing season for woody fodder 
species (Papachristou and Papanastasis, 1994). Moreover, since live-
stock production is one of the most important contributors to direct 
greenhouse gas emissions, especially methane (CH4) production from 
ruminants (Slade et al., 2016), it is relevant to investigate the potential 

mitigating effect of A. viridis on CH4 emissions. Previous studies inves-
tigated the impact of the inclusion of woody plants on forage intake, 
nutrient digestibility, and gas production (Terranova et al., 2018, 2019), 
but the impact of A. viridis leaves in ruminant diet has not been assessed 
yet, hampering the implementation of livestock management systems to 
control A. viridis expansion. 

To fill these knowledge gaps, this study aimed to assess the temporal 
variation in A. viridis leaf functional traits, chemical composition and in 
vitro digestibility and the impact on gas production when they are added 
to cattle diet in different sites across the Swiss and Italian Alps charac-
terized by varying pedo-climatic conditions. Specifically, the objectives 
of this study were to assess: (1) the functional traits (LDMC and SLA), (2) 
the chemical composition (macro/micro- elements and fibre fractions), 
(3) the phenol composition, (4) the in vitro organic matter digestibility 
(IVOMD) and gas production of A. viridis leaves, as well as (5) the re-
lationships among all measured leaf characteristics. We expected that 
A. viridis leaf functional traits, chemical composition, IVOMD, and gas 
production varied across sites and throughout the season, with a loss of 
leaf forage quality as the season advanced. We also expected the IVOMD 
and related gas production of a ruminant diet partially composed by 
A. viridis leaves to be lower than that of a control diet purely composed 
of hay. 

2. Methodology 

2.1. Study sites 

The study was carried out in 2020 and 2021 in four sites in the Italian 
and Swiss Alps, characterised by different pedo-climatic conditions 
(Fig. 1, Table 1). The first site was located in Val Vogna, in Northern 
Italy (province of Vercelli), the second and third sites in Western 
Switzerland, namely in Bovonne (canton of Vaud) and Champlong 
(canton of Valais), and the fourth one in Bergün (Alp Weissenstein), in 
Eastern Switzerland (canton of Grisons). In all the sites, areas highly 
encroached by A. viridis were present at comparable elevations 
(1800–2000 m). At each site, a meteorological station (DWS Decagon 
weather station from Decagon devices Inc and HOBO Pro v2 U23–00x 
from Onset Corp., Pocasset, MA) was placed throughout the two years at 
two meters from ground level to record air temperature every hour. 

2.2. Alnus viridis leaf sampling 

During the summers of 2020 and 2021, 1.75 kg of A. viridis fresh 
leaves were collected three times (i.e. in June, July and August) at each 
site to assess the seasonal changes in leaf functional traits, chemical 

Fig. 1. Location of the four sites of the study in the Swiss and Italian Alps. 
Basemap: ESRI Terrain. 
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composition, phenolic contents, and IVOMD. For each sample, A. viridis 
leaves and petioles were hand-harvested from different points in the 
canopy of five different shrubs, at a maximum height of 1.80 m to 
simulate the potential browsing of cattle (Svensk et al., 2022). New 
shrubs were selected for each harvest at all four sites to analyze seasonal 
changes without repeated harvesting, which would imply feeding 
pressure. Moreover, sampled A. viridis shrubs were chosen outside of 
grazed areas and they were comparable in terms of height (three to five 
meters high). 

2.3. Leaf functional traits 

The LDMC was measured according to the protocol of Cornelissen 
et al. (2003). For each of the five shrubs and for each sampling time, 10 
leaves were randomly selected and then weighed to record their fresh 
weight (FW). Afterwards the samples were dried at 60◦C for 72 hours 
and their dry weight (DW) was recorded. The LDMC was then calculated 
as followed:  

LDMC (mg g− 1) = DW(mg) / FW(g)                                                       

. 
The SLA was measured according to Cornelissen et al. (2003) using 

the leaves collected for LDMC described above. Before drying the leaves, 
we measured the surface of all 10 leaves of each sample by photocopying 
them and calculating their area with an image analysis software 
(ImageJ, Schneider et al., 2012). This allowed us to calculate SLA as 
followed:  

SLA (cm2 g− 1) = leaf surface (cm2) / DW (g)                                            

. 

2.4. Leaf chemical composition 

A total of 350 g of fresh leaves were taken from each collection batch 
and dried at 60◦C for 72 h. After being ground to pass a 1-mm screen 
(Brabender rotary mill; Brabender GmbH & Co. KG, Duisburg, Ger-
many), leaf samples were analysed to determine residual dry matter 
(DM) content by heating at 105̊C for 3 h, followed by incineration at 
550◦C until a stable mass was reached, to determine the ash content 
according to ISO 5984_2002 (prepASH, Precisa Gravimetrics AG, Die-
tikon, Switzerland). Mineral content (i.e. calcium, phosphorus, potas-
sium, magnesium, copper, iron, manganese and zinc) was analysed 
according to the EN 15510:2008 by ICP-OES (ICP-OES 5800, Agilent 
Technologies, Switzerland) after microwave digestion. The samples 
were dissolved in a glass tube (5 ml HNO3 65% + 3 ml H2O ASTM Class 
I) using a microwave digester (UltraClave MLS, Leutkirch, Germany) at 

235◦C for 60 min (1000 W). If necessary, samples were diluted with 
HNO3 2% prior to analysis. The N concentration was determined by the 
Dumas method (ISO 16634–1:2008) and crude protein (CP) was calcu-
lated as N × 6.25. 

Fibre fractions were analysed according to Van Soest et al. (1991). 
The neutral detergent fibre (aNDFOM) and acid detergent fibre (ADFOM) 
contents (ISO 16472:2006 for NDF and ISO 13906:2008 for ADF) were 
determined gravimetrically (ISO 6865:2000) after acid and alkaline 
digestions using a fibre analyser (Fibretherm Gerhardt FT-12, C. Ger-
hardt GmbH & Co. KG, Königswinter, Germany) and were expressed 
without residual ash after incineration at 600◦C for 3 h. The aNDFOM 
was evaluated with heat stable α-amylase and sodium sulfite. Acid 
detergent lignin (ADL) was analysed according to ISO 13906:2008. 
Hemicellulose and cellulose concentrations were estimated as aNDFOM 
minus ADFOM and ADFOM minus ADL, respectively. 

2.5. Leaf phenolic compounds 

Concentrations of total extractable phenols (TEP) and non-tannin 
phenols (NTP) were determined using a modified Folin-Ciocalteu 
method according to Makkar (2003). For a detailed description of the 
method see Terranova et al. (2018). The determination of the condensed 
tannins (CT) was performed with the butanol-HCl-iron method (Makkar, 
2003) and the contents were given as leucocyanidin equivalents. Total 
tannins (TT) and hydrolysable tannins (HT) were calculated as TEP 
minus NTP and TT minus CT, respectively. 

2.6. Leaf in vitro organic matter digestibility and gas production 
measurements 

The assessment of IVOMD and gas production was made using the in 
vitro incubation with the Hohenheim gas test (HGT) method, which was 
performed as outlined by Menke and Steingass (1988). For each sam-
pling date, the remaining leaves from the five shrubs were pooled in one 
sample, ending up in 12 samples per year. A. viridis leaves were freeze 
dried and ground with a centrifugal mill (Model ZM1, Retsch GmbH, 
Haan, Germany) to pass through a 1 mm sieve. The incubation of 
A. viridis leaves was performed by combining the leaves with hay 
(ryegrass dominated sward, CP = 11.6%; NDF = 48.4 g.kg− 1 DM), in a 
ratio of 1:4 on a DM basis. This proportion was chosen to simulate the 
diet of Highland cattle in A. viridis-encroached pastures, as described in 
Svensk et al. (2023). A diet of hay (100%) served as the control. For each 
year, rumen fluid was collected from three ruminally-cannulated 
multiparous late lactating Original Braunvieh cows, three times before 
morning feeding, across three weeks in both 2020 and 2021. It was then 
transported in a pre-heated thermos flask to the laboratory. Within one 
hour after collection, rumen fluid was strained through four layers of 

Table 1 
Characteristics of the four experimental sites. Soil data refer to the laboratory analyses of the first 10 cm of soil below four different A. viridis encroached areas at each 
site.   

Val Vogna Bovonne Champlong Alp Weissenstein 

Coordinates N45◦46’18.815’’ 
E7◦54’9.198’’ 

N46◦16’20.109’’ 
E7◦6’47.327’’ 

N45◦56’2.306’’ 
E7◦12’14.333’’ 

N46◦34’50.711’’ 
E9◦47’58.761’’ 

Elevation (m) 1897 ± 67 1820 ± 66 2012 ± 36 2033 ± 26 
Aspect (◦N) 102.15 105.38 111.43 190.00 
Mean annual precipitation (mm) 881a 1674b 1023b 1200b 

Mean annual temperature (◦C) 7.46c 4.51b 4.21b 1.79b 

Soil total organic carbon (TOC mg kg− 1) 548.53 ± 37.48 282.04 ± 42.45 483.89 ± 70.93 370 ± 33.37 
Soil total nitrogen (TN mg kg− 1) 56.33 ± 4.61 19.48 ± 1.21 49.02 ± 9.41 29.22 ± 3.04 
Soil dissolved inorganic nitrogen (DIN mg 

kg− 1) 
16.74 ± 5.1 12.36 ± 1.1 19.35 ± 4.49 10.44 ± 1.86 

Soil available phosphorus (mg kg− 1) 11.27 ± 5.32 0.56 ± 0.13 9.36 ± 4.47 5.23 ± 1.77 
pH (H2O) 3.84 ± 0.03 6.27 ± 0.28 5.44 ± 0.18 4.71 ± 0.22  

a Mean annual precipitation (mm) for the period from 1977 to 2007. 
b Mean annual precipitation (mm) or mean annual temperature (◦C) for the period from 1991 to 2021. 
c Mean annual temperature (◦C) for the period from 1977 to 2007, calculated on a 10 km2 grid. 
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gauze and added to a buffer solution in a 1:2 ratio according to the 
protocol of Menke and Steingass (1988). For incubation, modified 
100-ml glass syringes with two outlets, one for fluid and one for gas 
sampling, were used as described in Soliva and Hess (2007). The incu-
bation lasted for 24 h at 39 ◦C in an incubator with an integrated rotor. 
After 24 h, the fermentation gas volume was recorded from the cali-
brated scale printed onto the syringes, and the fermentation was 
terminated by removing the incubation fluid from the syringes while the 
gas phase remained inside. Fermentation gas samples of 150 μl were 
taken from the incubation syringes and injected using a gas-tight 
Hamilton syringe (Hamilton AG, Bonaduz, Switzerland) into a gas 
chromatograph (6890 N, Agilent Technologies, Wilmington, DE, USA) 
equipped with a thermal conductivity detector. Concentrations of CH4 
and CO2 were analysed with this detector, and expressed per digested 
organic matter (dOM). Each pooled sample and the control were incu-
bated in duplicates per run resulting in a total number of n = 6 per each 
year. Two syringes filled with only rumen fluid buffer mixture were 
incubated as blank. 

3. Statistical analyses 

All statistical analyses were performed using R version 4.2.2 (R Core 
Team, 2022). The cumulative growing degree-days (GDD) of each site 
was calculated from the meteorological stations as described in Gri-
gorieva et al. (2010): 

GDD =
∑n

i=1

[(
Tmax + Tmin

2

)

− Tbase
]

where i = n are the days with a temperature above 0◦C, Tmax and Tmin 
are the daily maximum and minimum temperature respectively, and 
Tbase is a threshold temperature defined here at 5◦C following the 
description for pasture grasses from Grigorieva et al. (2010). The GDD 
was then used as a proxy to represent the seasonal temperature changes, 
as it allows comparison between sample dates of both years and is 
commonly used in agro-ecosystems as an indicator of season advance-
ment (Grigorieva et al., 2010; McMaster and Wilhelm, 1997). We tested 
the effect of GDD, site and their interaction on plant functional traits, 
leaf chemical composition, and phenolic contents using a Linear 
Mixed-effect Model (lme, package “nlme”), with GDD, site and their 
interaction as a fixed effects and “year” as a random factor. The same 
model was used to test the effect of GDD on IVOMD and fermentation 
gas with the “cow” used for the experiment as an additional random 
factor. When residuals were not normally distributed, a log trans-
formation was applied to the data. Some outliers were also deleted 
(0.83% of the data was deleted for Fe and Zn and 3.33% for Cu). The 
marginal and conditional R-squared values were obtained using the 
“performance” package (function “model_performance”) to quantify the 
variance explained by fixed and fixed plus random factors, respectively. 
From the difference between conditional and marginal R-squared, it was 
possible to obtain the variance explained by the random factors. For 
IVOMD and gas production measurements, a comparison between the 
A. viridis treatment (20% DM A. viridis leaves, 80% DM hay) and the 
control (only hay) was made using a Student’s test (t-test) for inde-
pendent samples. Finally, a principal component analysis (PCA, Facto-
MineR package) was performed to assess the relationships among all 
variables. For this analysis, the leaves of the five shrubs of each sampling 
date were pooled in one sample, ending up in 12 samples per year. A 
95% normal confidence ellipses enclosing the samples collected from the 
different sites were displayed around each site on the PCA biplot 
(fviz_pca_ind, factoextra package). 

4. Results 

A table summarizing model results for all the variables is provided as 
Supplementary Table S1. 

4.1. Leaf functional traits 

The GDD were not significantly different between 2020 and 2021 (P 
= 0.41) and ranged from 151.31 to 721.68 in 2020 and from 221.02 to 
799.49 in 2021. The LDMC of A. viridis leaves significantly increased 
with GDD for all sites, from 258.70 to 483.41 mg g− 1 (Fig. 2A, P <
0.001, R2 marginal = 0.62). In contrast, the SLA of A. viridis leaves 
significantly decreased with GDD (Fig. 2B, P < 0.001, R2 marginal =
0.21) from 348.72 to 104.16 cm2 g− 1. 

4.2. Leaf chemical composition 

All macro- and micro-elements of A. viridis leaves were significantly 
affected by seasonal temperature changes, except Fe (P = 0.052). 
Indeed, N, P, K, Cu and Zn all significantly decreased with increasing 
GDD (Fig. 3A, B, D, F, I, P < 0.001). In contrast, Ca, Mn, Fe and Mg 
significantly increased with GDD (Fig. 3C, E, G, H). Depending on the 
element considered, some significant interactions GDD*site were 
detected (Supplementary Table S1). However, the direction of the sig-
nificant relationships between GDD and each element was always 
consistent across sites (Fig. 3). Therefore, the significant interactions 
GDD*site detected were mainly due to different site-specific amplitudes 
of these relationships or to the not significant relationship for specific 
elements within specific sites. The N and P contents ranged from 
22.62 g kg− 1 to 46.98 DM and from 0.92 to 5.84 g kg− 1 DM, respec-
tively. Therefore, leaf CP content had minimum and maximum values of 
141.37 g kg− 1 DM and 293.63 g kg− 1 DM, respectively. Residual ash 
ranged from 32.07 g kg− 1 DM to 62.79 g kg− 1 DM, and increased 
significantly with GDD (P < 0.001). 

The fibre content of A. viridis leaves, i.e.- aNDFOM, ADFOM, and ADL 
concentrations significantly increased with increasing GDD (Fig. 4, P <
0.01), ranging from 202.77 to 454.59 g kg− 1 DM, from 116.14 to 
353.46 g kg− 1 DM and from 41.61 to 257.28 g kg− 1 DM, respectively. 
Significant interactions GDD*site were detected and they were mainly 
related to different site-specific amplitudes of the relationships between 
fibre fractions and GDD (Supplementary Table S1 and Fig. 4). However, 
the direction of the significant relationships between GDD and fibre 
fractions was always consistent across sites. A. viridis leaves had a 
hemicellulose content of 124.8 g kg− 1 DM, and a cellulose content of 
97.4 g kg− 1 DM on average over all sites and samplings. Nutrient and 
fibre concentrations in A. viridis leaves for each site and period are 
summarized in Supplementary Table S2. 

4.3. Leaf phenolic compounds 

In contrast to macro- and micro-nutrients and fibre fractions, total 
phenolic compounds and phenolic fractions did not vary over the sea-
son, except for CT, which slightly increased with GDD at all sites 
(Fig. 5C), and ranged from 0.34% DM to 4.09% DM. Significant in-
teractions GDD*site were found for TEP (Supplementary Table S1 and 
Fig. 5A) TT (Fig. 5E) and HT (Fig. 5D), which ranged from 7.26% DM to 
19.08% DM, 4.32% DM to 15.03% DM, and from 2.36% DM to 13.90% 
DM, respectively. Indeed, TEP, TT and HT concentrations were signifi-
cantly related with GDD only at two sites out of four. Finally, the NTP 
concentrations in the leaves ranged from 1.82% DM to 4.25% DM, with 
no significant effects of GDD, site and their interaction., (Fig. 5B). 

4.4. Leaf in vitro organic matter digestibility and gas production 

Including 20% of A. viridis leaves in the hay diet for in vitro incu-
bation, reduced the IVOMD by 5.80% on average (Fig. 6A), with an 
average digestibility of 63.30 ± 0.19% compared to 69.10 ± 0.46% for 
the control. The IVOMD of the A. viridis-composed diet also significantly 
decreased over the season (Fig. 6A), from a maximum value of 66.80% 
to a minimum value of 60.11%. 

The amount of CH4 produced per unit of digestible OM (CH4/dOM) 
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was reduced on average by 17.73% when adding A. viridis leaves 
(Fig. 6B, Student’s t-test P < 0.01), with a mean value of 43.83 ±
0.48 ml g− 1, compared to 53.27 ± 0.46 ml g− 1 of the control. It signif-
icantly increased with GDD (Fig. 6B), ranging from 34.54 ml g− 1 to 
49.86 ml g− 1. 

The amount of CO2 produced per unit of digestible OM (CO2/dOM) 
followed an opposite trend, with a significant reduction with the sea-
sonal increase in GDD (Fig. 6C). It ranged from 305.03 to 259.84 ml g 
− 1, and was also significantly reduced (by 5.84%) compared to the 
control (Fig. 6C, Student’s t-test P < 0.01), with average values of 
278.74 ± 0.22 ml g− 1 and 297.03 ± 2.09 ml g− 1, respectively. 

Therefore, the CH4/CO2 ratio obtained from the A. viridis diet was 
also significantly reduced compared to the control (Fig. 6D, Student’s t- 
test P < 0.01), and increased significantly with GDD, ranging from 
121.28 to 181.62 ml l− 1 (Fig. 6D), with a significant interaction 
GDD*site (Supplementary Table S1). 

4.5. Principal component analysis 

The results of the PCA are presented in Fig. 7. The first PCA axis (PC1, 
accounting for 33.7% of the variance, Fig. 7A) reflected the seasonal 
changes in A. viridis leaves, with increasing GDD, NDF, LDMC, and Ca, 
and decreasing P, HT, Zn, Cu and N. The second axis (PC2, accounting 
for 16.5% of the variance) reflected a gradient of increasing CT, ADL, 
TEP and TT, and decreasing CH4/dOM, IVOMD, CH4/CO2 and Fe. The 
PCA grouped the different phenolic compounds together, as well as the 
fibre fractions. The 95% normal confidence ellipses enclosing the sam-
ples collected from the different sites largely overlapped, thus suggest-
ing an absence of a site effect (Fig. 7B). 

5. Discussion 

Significant seasonal variations were found in all A. viridis leaf 
nutrient and fibre components, as almost all measured variables were 
significantly affected by GDD. In contrast, the phenolic components 
were much stable, with only the concentration of CT displaying a slight 
increase over time. The PCA results provided a summary of seasonal 
changes of leaves, as the first axis represented the season progress. 

5.1. Leaf functional traits 

Throughout the season, we found similar SLA and LDMC values for 
A. viridis compared to previous studies (Skoczowski et al., 2021) and 

compared to other alder species (Pierce et al., 1994). As we expected, 
A. viridis leaf functional traits varied during the season, and leaf SLA and 
LDMC changed in opposite directions, leading to denser leaves with 
higher DM content as the season advanced. This trend was supported by 
the PCA that showed these two functional traits following opposite 
patterns, with LDMC positively correlated to GDD. A study on 
A. glutinosa made by De Kort et al. in, (2014) showed similar trends, as 
the alder had smaller leaves with increasing temperature. Skoczowski 
et al. (2021) also found variation in A. viridis leaf morphology according 
to elevation, linked to the different climatic conditions and stressful 
environments. However, even if in our study some differences among 
sites were detected for LDMC, the relationship between GDD and LDMC 
was consistent among all the studied sites. Previous studies on other 
woody shrubs and trees have also provided similar results (Qin et al., 
2018, Wilson et al., 1999). This pattern is explained by tree strategies to 
acquire or retain resources depending on the environment. The SLA and 
LDMC are directly linked with leaf biomass and nutrient assimilation, 
and lower SLA and higher LDMC values at the end of the season occur 
because the plant focuses on conservation of acquired resources (Rav-
etto Enri et al., 2020, Qin et al., 2018). Consequently, as for other forage 
plants, A. viridis leaves may be less selected by cows at the end of the 
summer season (Pauler et al., 2020). 

5.2. Leaf chemical composition 

The chemical composition of A. viridis leaves varied significantly as 
the season advanced. Indeed, we found similar decreasing patterns for 
many important leaf nutrients (N, P, K, Cu, and Zn) during the summer 
season at all sites, except for site-specific constant concentrations of K 
and Zn at the Champlong site, and unaltered concentrations of Zn at the 
Vogna site. This general decrease is in line with the findings on 
A. glutinosa by Rodríguez-Barrueco et al. (1984), who showed that leaf 
N, P, and K decreased during the vegetative season as well. Other studies 
on alder species (Dawson and Funk, 1981; Luske and van Eekeren, 2017) 
or on other woody plants (Gowda et al., 2019; James and Smith, 1978; 
Niinemets and Tamm, 2005) detected similar trends, with the lowest 
values for these leaf nutrients in autumn. Our results from the PCA also 
highlighted tight correlations between some of these elements (i.e., 
positive correlations between N-P and N-K), as also shown by Rodrí-
guez-Barrueco et al. (1984) for A. glutinosa leaves. The relationship be-
tween leaf N, P and K is well documented, and plays an essential role in 
the eco-physiological processes of the plant, contributing to photosyn-
thesis, growth and reproduction (Tian et al., 2019). Moreover, in the 

Fig. 2. Variation of (A) Leaf Dry Matter Content (LDMC) and (B) Specific Leaf Area (SLA) in relation to growing degree days (GDD) in Val Vogna, Bovonne, 
Champlong and Weissenstein. Sampling periods are represented with different shapes as circles (June), squares (July) and triangles (August). 
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case of N-fixing shrubs such as A. viridis, the N fixation leads to a higher P 
demand compared to non-N-fixing plants, thus creating a positive rela-
tionship between N and P (Dawson, 2008). On the other hand, other 
A. viridis leaf nutrients displayed an increase with leaf senescence, such 
as leaf Ca and Mn, which were also shown to increase in A. glutinosa 
leaves (Rodríguez-Barrueco et al., 1984: Luske and van Eekeren, 2017). 
However, the increase in A. viridis leaf Mg measured in Champlong and 
Bovonne was not found in A. glutinosa but was found in other woody 
plants (James and Smith, 1978). The increase in A. viridis leaf Ca 

contrasts with herbaceous species, where Ca is generally reported to be 
stable during the growing season by Schlegel et al. (2016). This increase, 
as well as the increase in leaf Mn, could be explained by their low 
mobility in the phloem and the lack of remobilization of these elements 
from leaves with senescence (Maillard et al., 2015; White, 2012). 

Despite this significant variation throughout the season, A. viridis N 
leaf concentrations (22.62–46.98 g kg− 1 DM) were similar to previous 
measurements made on this species, e.g. Bühlmann et al. (2016) 
measured in late July and early August 28.2 ± 0.2 g kg− 1 DM and 29.4 

Fig. 3. Variation of (A) nitrogen, (B) phosphorus, (C) calcium, (D) potassium, (E) magnesium, (F) copper, (G) iron, (H) manganese and (I) zinc, in relation to growing 
degree days (GDD) in Val Vogna, Bovonne, Champlong and Weissenstein. Sampling periods are represented with different shapes as circles (June), squares (July) and 
triangles (August). 
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± 0.4 g kg− 1 DM at low (1650 m) and high (1950 m) elevations, 
respectively. These results are relatively high in comparison to other 
woody species, as Tian et al. (2018) found a global mean of 21.13 g kg− 1 

DM when analysing a compiled dataset of several deciduous woody 
species across continents. This high N concentration in A. viridis leaves 

was expected due to its symbiosis with F. alni, which leads to an accu-
mulation of N in the roots and therefore higher N uptake by the plant 
(Dawson, 2008; Luske and van Eekeren, 2017). In addition, as they are 
not N limited, Alnus species do not need to resorb leaf N before winter, 
leading to potentially higher leaf N concentrations at the end of the 

Fig. 4. Variation of aNDFOM (A), ADFOM (B) and ADL (C) in relation to growing degree days (GDD) in Val Vogna, Bovonne, Champlong and Weissenstein. Sampling 
periods are represented with different shapes as circles (June), squares (July) and triangles (August). 

Fig. 5. Variation of (A) total extractable phenols, (B) non-tannin phenolics, (C) condensed tannins, (D) hydrolizable tannins and (E) total tannins in relation to 
growing degree days (GDD) in Val Vogna, Bovonne, Champlong and Weissenstein. Sampling periods are represented with different shapes as circles (June), squares 
(July) and triangles (August). 
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Fig. 6. Variation of (A) in vitro organic matter digestibility (IVOMD), (B) methane per digested organic matter (CH4/dOM), (C) carbon dioxide per digested organic 
matter (CO2/dOM) and (D) the ratio between methane and carbon dioxide (CH4/CO2) in relation to growing degree days (GDD) in Val Vogna, Bovonne, Champlong 
and Weissenstein. Sampling periods are represented with different shapes as circles (June), squares (July) and triangles (August). The solid grey line represents the 
control for comparison, i.e. the diet composed by 100% hay. 

Fig. 7. Principal component analysis (PCA) for A. viridis leaf functional traits, macro- and micro-elements, fibre fractions, phenolic compounds, gases per digested 
organic matter, in vitro organic matter digestibility, and the GDD. The samples are represented in black dots (June), dark grey triangles (July) or light grey 
squares (August). 
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season (Dawson et al., 1981; Rodríguez-Barrueco et al., 1984; Han et al., 
2013, Maillard et al., 2015). Consequently, as previously found for other 
alder species (Mahieu et al., 2021; Luske and van Eekeren, 2017), 
A. viridis leaf CP concentrations, which always exceeded 140 g kg− 1 DM, 
were higher than those usually found in temperate green fodder or in 
permanent grassland at the beginning of the season (Agabriel, 2010; 
Schlegel, 2021). Indeed, if compared to typical leguminous forage spe-
cies found in nutrient-rich grasslands, such as Trifolium pratense L. or 
Trifolium repens L., the CP content is similar and sometimes higher for 
A. viridis leaves, with values ranging from 141.37 to 293.63 g kg− 1 DM 
compared to 161–261 g kg− 1 DM for the two Trifolium species (Daccord 
and Arrigo, 2001). Additionally, A. viridis leaf N content also mostly 
exceeded some nutrient optimum requirements for sheep and cattle, as 
described by Hejcman et al. (2016), above all at the beginning of sum-
mer. Since leaf CP concentrations lower than 7% have been shown to 
decrease forage intake by ruminants (Minson and Milford, 1967), 
A. viridis could remain a good source of CP for ruminants throughout the 
season, despite its seasonal decrease (Gonzalez-Hernandez et al., 2000). 

Similarly, high concentrations were found for other nutrients 
measured in A. viridis leaves. For instance, leaf Ca, Mg and P concen-
trations were similar or higher than that found in typical leguminous 
forage species. Indeed, A. viridis leaf P content ranged between 0.92 and 
5.84 g kg− 1 DM compared to 4.0–4.1 g kg− 1 DM usually found in 
T. pratense and T. repens (Daccord and Arrigo, 2001). A. viridis leaf P was 
similar to that of A. glutinosa measured by Luske and van Eekeren 
(2017), and to other deciduous woody plants (Tian et al., 2018). On the 
other hand, A. viridis leaf K was lower than that of leguminous species 
but within the range defined by Hejcman et al. (2016). A few 
out-of-range values for P were found in the samples from Weissenstein at 
the beginning of the 2020 season, for which the highest N, Cu and Zn 
concentrations were also recorded. Because macro- and micro- elements 
are essential for animal health, in terms of growth and reproduction 
(Mahieu et al., 2021), A. viridis leaves could represent a significant 
resource for ruminants. 

The range of fibre and lignin concentrations of A. viridis leaves were 
very similar to those found for other alder species in France by Mahieu 
et al. (2021), and were higher than contents found for herbaceous 
vegetation used as a comparison in the same study. As the season 
advanced, leaves became more fibrous, as all fibre fractions showed an 
increase from June to August. This is in line with previous studies on 
other alder species such as A. rubra (Gonzalez-Hernandez et al., 2000) 
and other deciduous shrubs and trees (Papachristou and Papanastasis, 
1994; Happe et al., 1990), which showed that NDF, ADF, and lignin leaf 
content increased from spring to autumn, leading to a lower forage 
quality at the end of the summer season. Indeed, forage with high fibre 
contents leads to lower nutrient digestibility and assimilation with plant 
senescence, as lignin has been described as one of the most important 
factors limiting the degradation of cell walls in the rumen (Mahieu et al., 
2021; Van Soest et al., 1991; Cherney et al., 1993). Moreover, high fibre 
content tends to reduce voluntary intake from livestock (Allison et al., 
1985), which would lead to less selection of the shrub at the end of the 
summer. 

These results show that A. viridis leaves decrease in overall nutritive 
value across the grazing season, which is similar to previous studies on 
fodder shrubs and trees. Indeed, in 2022, Navale et al. studied the 
variation in the leaf composition of several fodder trees throughout the 
season and found that most of the nutritive and mineral content 
decreased as leaves matured. 

5.3. Leaf phenolic compounds 

Leaf total tannin concentrations from our study were higher than 
what has been previously found for A. viridis (as well as for A. incana), 
with values up to 3.5 times higher than the values measured by Stević 
et al. (2010). Because their results focused on lower elevations, we could 
hypothesize that A. viridis could display higher total phenol 

concentrations at higher elevations, which has been described for other 
plant species due to their tendency to synthesise phenols to protect 
against UV radiations that increase with altitude (Alonso-Amelot, 2007; 
Bernal et al., 2013; Zargoosh et al., 2019). Except for leaf CT, the 
phenolic compound contents of A. viridis leaves did not significantly 
change as the season advanced. In contrast, previous studies on alder 
species and on other woody plants have shown a general phenol 
decrease during the season, with a higher phenolic allocation to young 
leaves, while the variation in leaf CT seems to be highly 
species-dependent (Gonzalez-Hernandez et al., 2000; Gowda et al., 
2019). While leaf phenol content has been primarily linked to leaf 
ontogeny and air temperature, the high phenol content of A. viridis 
leaves in June could also be linked to the seasonal variations of UV ra-
diations that tend to peak in June in Europe (Bernal et al., 2013). 
However, in our study TEP, NTP, TT and HT concentrations decreased 
along the summer season only at Vogna and Weissenstein sites. The 
variation in phenols in A. viridis leaves during the season may have a 
significant impact on livestock feeding behaviour, as they are respon-
sible for astringency and affect digestibility. For instance, if consumed in 
large quantities, HT can be toxic, while CT can lead to lower voluntary 
feed intake and negatively impact ruminant digestion rate (Waghorn, 
2008; Piñeiro-Vazquez et al., 2015; Gowda et al., 2019). Indeed, CT 
create binding complexes with protein that protect them from ruminal 
degradation and intestinal absorption, leading to a reduced apparent 
total tract N digestibility (Waghorn, 2008; Woodfield et al., 2019). This 
is supported by the results of our PCA, which showed a negative rela-
tionship between CT and IVOMD. On the other hand, this phenomenon 
may lead to a higher proportion of N excreted through dung instead of 
urine, which is less subjected to ammonia volatilization and nitrate 
leaching (Woodmansee et al., 1981; Tamminga, 2006; Angelidis et al., 
2019). Woodfield et al. (2019) recommended a CT concentration to 
range between 2% and 4% DM. Including phenols in that proportion in 
the diet of grazing ruminants might increase energy and N utilisation 
(Gowda et al., 2019). 

5.4. Leaf in vitro OM digestibility and gas production 

The mean IVOMD of A. viridis leaves was very similar to the OM 
digestibility found for A. glutinosa leaves by Luske and van Eekeren 
(2017). As expected, including 20% A. viridis leaves in a hay-based diet 
led to a lower IVOMD when compared to the hay alone. This is most 
probably due to the higher concentrations of phenols in A. viridis leaves 
compared to hay, which can highly affect digestibility. On the other 
hand, the IVOMD of the mixed diet, including A. viridis leaves, seemed to 
be at its maximum at the beginning of the season, which is in line with 
our results on CT. Moreover, this is consistent with previous studies on 
fodder tree species (Papachristou and Papanastasis, 1994) and with our 
results on functional traits and nutrient variation during the season. 
Indeed, SLA and LDMC have a positive and negative effect on di-
gestibility respectively (Pontes et al., 2007), while leaf N content may 
have a positive effect on digestibility (Bumb et al., 2018), and the 
highest values of N in A. viridis leaves at the beginning of the season 
might thus be one factor for the highest measured digestibility. In 
addition, the lower concentrations of fibre fractions found at the 
beginning of the summer might also explain the highest IVOMD in the 
early season. 

Interestingly, a diet including 20% of A. viridis leaves in the DM 
significantly decreased in vitro total gas production when compared to 
the control diet consisting of hay only. This is in line with the findings of 
Terranova et al. (2018), where most of the woody plant leaves tested led 
to a decrease in CH4 production in comparison to the control diet. 
However, CH4/dOM production from A. viridis leaves diet significantly 
increased as the season advanced, highlighting that leaves have a better 
CH4/dOM mitigation effect in the early season. These CH4/dOM emis-
sion values are partly in line with our results on leaf CT concentrations, 
which were significantly influenced by GDD but slightly increased along 
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the season only at two of the four study sites. Indeed, CT were repeatedly 
reported to reduce methanogenesis in ruminants (Patra and Saxena, 
2010; Jayanegara et al., 2011; Piñeiro-Vázquez et al., 2015). Therefore, 
the general CH4/dOM increase during the season may be related to the 
strong increase of ADL common to all sites, and partly to the decrease of 
TEP observed at two of the four study sites, which is confirmed by the 
PCA results displaying ADL and phenolic fractions in opposite positions 
with respect to CH4/dOM. Similarly to CH4 production, CO2 production 
from A.viridis leaves diet significantly decreased in comparison to the 
control, showing that the fermentation was generally diminished with 
increasing GDD. However, contrary to CH4, the CO2/dOM ratio 
decreased with increasing GDD, which is the consequence of the reduced 
IVOMD that is in line with the greatly increasing ADL concentrations in 
leaves across the season. Consequently, the CH4/CO2 ratio increased 
with increasing GDD. 

Therefore, A. viridis leaves tend to have a better mitigation effect on 
gas emissions at the beginning of the season. According to Tavendale 
et al. (2005) and Terranova et al. (2018), a CT concentration below 8% 
in the DM as found in our study could reduce CH4/dOM production 
without restraining fermentation rate. Because CH4 is the most impor-
tant greenhouse gas emitted in animal production (Slade et al., 2016), 
making robust livestock graze in A. viridis-encroached pastures at the 
beginning of the season could thus help mitigate greenhouse gas emis-
sions in these mountain livestock production systems, while keeping an 
appropriate ruminal fermentation and therefore a high animal perfor-
mance. Finally, future trials will need to investigate A. viridis response to 
robust livestock grazing, in terms of leaf biomass resprout and chemical 
composition in relation to different defoliation periods, frequencies and 
intensities, in order to find the most suitable grazing regimes to control 
its encroachment. 

6. Conclusion 

This study described the composition of A. viridis leaves and their OM 
digestiblity and related gas production throughout two summer seasons 
at four different subalpine sites. The high amounts of CP and macro- and 
micro-elements found in A. viridis leaves highlighted its value as fodder 
for robust livestock, offering a complementary forage resource to grass 
that could be well integrated in an adapted management of encroached 
mountain pastures. High seasonal variation in leaf chemical composition 
was found, and because fibre, lignin, CP and other nutrients can impact 
voluntary intake in foraging behaviour, these results could help defining 
targeted management strategies for alpine pastures to optimize robust 
livestock grazing in A. viridis encroached areas while increasing beef 
cattle productivity and reducing the CH4 emissions. In particular, the 
beginning of the summer (June and July) seems to be the best period to 
graze A. viridis leaves, as in this period of the year they have the highest 
nutritional value and potential to reduce greenhouse gas emissions. 
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We are grateful to the Société d’économie alpestre de Bex, as well as 
to the Millasson and Reggiani families for the provision of pastures and 
their precious help and collaboration. We also thank the Feed Chemistry 
Research Group (Agroscope, Posieux, Switzerland) and the AgroVet- 
Strickhof team (ETH Zurich, Lindau, Switzerland), especially Sergej 
Amelchanka, Raphael Jendly and Carmen Kunz for the laboratory ana-
lyses, their technical support and for helping on the sample collection. 
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González-Hernández, M.P., Starkey, E.E., Karchesy, J., 2000. Seasonal variation in 
concentrations of fiber, crude protein, and phenolic compounds in leaves of red alder 
(Alnus rubra): Nutritional implications for cervids. J. Chem. Ecol. 26, 293–301. 
https://doi.org/10.1023/A:1005462100010. 

M. Svensk et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.agee.2024.108884
http://refhub.elsevier.com/S0167-8809(24)00002-1/sbref1
http://refhub.elsevier.com/S0167-8809(24)00002-1/sbref1
https://doi.org/10.2307/3899409
https://doi.org/10.1016/j.bse.2006.04.013
https://doi.org/10.1016/j.bse.2006.04.013
https://doi.org/10.1016/j.agee.2019.04.013
https://doi.org/10.1016/j.plaphy.2013.06.012
https://doi.org/10.1080/11263504.2013.809813
https://doi.org/10.1111/ejss.12457
https://doi.org/10.1111/ejss.12457
https://doi.org/10.1007/s10021-016-9979-9
https://doi.org/10.1093/aob/mcx175
https://doi.org/10.1002/esp.3513
https://doi.org/10.1016/j.catena.2017.08.006
https://doi.org/10.3168/jds.S0022-0302(93)77402-0
http://refhub.elsevier.com/S0167-8809(24)00002-1/sbref13
http://refhub.elsevier.com/S0167-8809(24)00002-1/sbref13
https://doi.org/10.1071/BT02124
http://refhub.elsevier.com/S0167-8809(24)00002-1/sbref15
http://refhub.elsevier.com/S0167-8809(24)00002-1/sbref15
https://doi.org/10.1093/forestscience/27.2.239
https://doi.org/10.1007/978-1-4020-3547-0_8
https://doi.org/10.1111/mec.12813
https://doi.org/10.1111/mec.12813
https://doi.org/10.1016/j.landusepol.2018.10.044
https://doi.org/10.1016/j.landusepol.2018.10.044
https://doi.org/10.1023/A:1005462100010


Agriculture, Ecosystems and Environment 364 (2024) 108884

11

Gowda, J.H., Palo, R.T., Udén, P., 2019. Seasonal variation in the nutritional value of 
woody plants along a natural gradient in Eastern Africa. Afr. J. Ecol. 57, 226–237. 
https://doi.org/10.1111/aje.12583. 

Grigorieva, E.A., Matzarakis, A., de Freitas, C.R., 2010. Analysis of growing degree-days 
as a climate impact indicator in a region with extreme annual air temperature 
amplitude. Clim. Res 42, 143–154. https://doi.org/10.3354/cr00888. 

Han, W., Tang, L., Chen, Y., Fang, J., 2013. Relationship between the relative limitation 
and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS One 8, 
1–11. https://doi.org/10.1371/journal.pone.0083366. 

Happe, P.J., Jenkins, K.J., Starkey, E.E., Sharrow, S.H., 1990. Nutritional quality and 
tannin astringency of browse in clear-cuts and old-growth forests. J. Wildl. Manag. 
54, 557–566. https://doi.org/10.2307/3809349. 
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