

September 1997 / 343 W

Eidg. Forschungsanstalt für Milchwirtschaft, Liebefeld CH-3003 Bern

Reifungsverlauf von in Folien verpacktem
Emmentaler Käse, mit und ohne Zusatz von
Lactobacillus casei (subsp. casei).
II. Untersuchung einiger flüchtiger, neutraler
Verbindungen mit Hilfe einer GC-dynamischen
Dampfraumanalyse

J.O. Bosset, U. Bütikofer, R. Gauch und R. Sieber

Retentionszeit (min)

Abb. 1 (a) GC-FID- und (b) GC-MS-Chromatogramme desselben in Folien verpackten Emmentaler Käses im Alter von 12 Monaten

Lebensm.-Wiss. u.-Technol. 30, 464-470 (1997)

Reifungsverlauf von in Folien verpacktem Emmentaler Käse mit und ohne Zusatz von Lactobacillus casei subsp. casei. II. Gaschromatographische Untersuchung einiger flüchtiger, neutraler Verbindungen mit Hilfe einer dynamischen Dampfraumanalyse

J.O. Bosset*, U. Bütikofer, R. Gauch und R. Sieber

Eidgenössische Forschungsanstalt für Milchwirtschaft, Liebefeld CH-3003 Bern (Schweiz) (Received August 30, 1996; accepted September 28, 1996)

Ripening of Emmental Cheese Wrapped in Foil with and without Addition of Lactobacillus casei subsp. casei. II. Gas Chromatographic Investigation of some Volatile Neutral Compounds using Dynamic Headspace Analysis

The present work describes the ripening of eight raw milk Swiss Emmental cheese loaves, quarters of which were packaged at 3 months in a plastic sheet. The loaves were manufactured with and without addition of L. casei subsp. casei to the usual starter cultures. Samples were taken at 3, 6, 9 and 12 months of ripening. The changes in content of 38 volatile neutral components (primary and secondary alcohols, mono- and diketones, aldehydes, esters, aliphatic and aromatic hydrocarbons and sulfur compounds) were measured using dynamic GC-headspace analysis. Except for all aldehydes produced from a β-oxidation of unsaturated fatty acids and hydrocarbons whose concentration significantly decreased, most volatile components showed an increase in content during ripening. Addition of L. casei subsp. casei to the usual starter culture used for Swiss Emmental cheese showed statistically significant differences for production of ethanol, propanol-1, 2- and 3-methylbutanol-1, 2,3-pentandione, 2- and 3-methylbutanal, as well as propionic acid propylester. Of the volatiles established as flavour compounds of Swiss Emmental cheese the analytical procedure used here was sufficient to detect heptanone-2, 2,3-butandione, 2- and 3-methylbutanal, ethyl butyrate and ethyl caproate.

Die vorliegende Arbeit untersucht die Reifung von 8 Schweizer Emmentaler Käsen aus Rohmilch, die nach 3 Monaten in Folien und unter Vakuum verpackt wurden. Vier Käse wurden mit und vier ohne einen Zusatz von Lactobacillus casei subsp. casei hergestellt und nach 3, 6, 9 und 12 Monaten untersucht. Die Gehaltsänderungen von 38 neutralen, flüchtigen Komponenten (primäre und sekundäre Alkohole, Mono- und Diketone, Aldehyde, Ester, aliphatische und aromatische Kohlenwasserstoffe sowie schwefelhaltige Verbindungen) wurden mit Hilfe einer dynamischen Dampfraumanalyse mittels GC-FID/MS bestimmt. Ausser den Aldehyden, die aus der β -Oxidation der ungesättigten Fettsäuren stammen, und den Kohlenwasserstoffen, die signifikant abnahmen, erhöhte sich die Konzentration der meisten Komponenten während der Reifung. Der Zusatz von L. casei subsp. casei verursachte signifikante Unterschiede bei der Bildung von Ethanol, Propanol-1, 2- und 3-Methylbutanol-1, 2,3-Pentandion, 2- und 3- Methylbutanal sowie Propionsäurepropylester. Von den flüchtigen geschmacksaktiven Komponenten in Schweizer Emmentaler Käse konnten Heptanon-2, 2,3-Butandion, 2- und 3-Methylbutanal, Buttersäure- und Capronsäureethylester mit dieser Methode erfasst werden.

©1997 Academic Press Limited

Keywords: volatile compound; Swiss cheese; Emmental; Lactobacillus casei subsp. casei; ripening; dynamic headspace analysis; flavour

Einleitung

Der Zusatz von Lactobacillus (L.) casei subsp. casei führt beim Emmentaler Käse aus Rohmilch zu zahlreichen Auswirkungen in bezug auf mikrobiologische, chemische, biochemische, rheologische und sensorische Parameter. Dies hat sich im ersten Teil dieser Arbeiten

gezeigt, in dem über die Resultate einer Untersuchung von 4 Käsen ohne und 4 mit einem Zusatz von solchen Laktobazillen berichtet wurde. Dabei wurden diese Käse nach 3 Monaten in Folien verpackt und bis zum Alter von einem Jahr gereift (1). Lactobacillus casei subsp. casei wird den schweizerischen Rohmischkulturen immer häufiger als Zusatzkultur zugesetzt, da er sich als Hemmfaktor der Nachgärung erwiesen hat (2). So ist zu erwarten, dass L. casei subsp. casei über die

^{*}Korrespondenzautor.

Bildung verschiedener flüchtiger (Aroma)Komponenten einen Beitrag zum Käsearoma leisten kann.

Im folgenden werden die Ergebnisse einiger flüchtiger. neutraler Komponenten derselben Käse und in einer weiteren Arbeit diejenigen von geruchs- und geschmacksaktiven Substanzen mitgeteilt (3). In der vorliegenden Arbeit wurden die Veränderungen der relativen Konzentrationen der flüchtigen neutralen Komponenten im Laufe derselben Zeitspanne verfolgt, und die Resultate der mit unterschiedlichen Kulturen (d.h. mit und ohne L. casei subsp. casei) hergestellten Käse miteinander verglichen. Dabei waren die Herstellungsverfahren für sämtliche Käse ähnlich oder gleich. Die Ergebnisse dieser Studie werden mit denjenigen von früheren Arbeiten (4-7) verglichen, und es gezeigt, welche Schlüsselaromastoffe Emmentaler Käses (3, 7-11) mit Hilfe einer schnell und einfach durchzuführenden dynamischen Dampfraumanalyse erfasst werden können.

Experimenteller Teil

Käseproben

Die Auswahl und Behandlung der Käseproben wurden ausführlich in Teil I beschrieben (1).

Chemikalien

Frisches Milli-Q-Wasser (Millipore, Cork, Ireland) wurde 30 min gekocht und unter Stickstoffspülung im Eisbad bis auf 10 °C gekühlt, um sämtliche flüchtige Komponenten zu eliminieren.

Vorbereitung der Käseproben

Zwanzig g geriebener Käse wurde in 80 g Wasser mit einem Homogenisator (Polytron PT 2000 auf Stufe 3) während 1 min fein suspendiert.

Untersuchungsmethoden

Die flüchtigen Verbindungen wurden mit Hilfe einer dynamischen Dampfraumanalyse unter den folgenden Bedingungen bestimmt: 20 g der oben erwähnten Käsesuspension wurde in ein 25-mL 'Sparger' ohne Fritte (Art. Nr. 14-2333-4SL, Schmidlin und Co, CH-6345 Neuheim) eingeführt. Das Purge & Trap System LSC 2000 (Tekmar, Cincinnati, OH, USA) wurde mit einer Adsorptionspatrone (Nr. 8) aus einem Gemisch von Carbosieve SIII (0.05 g) und Carbopack B60/80 (0.2 g) sowie einer 'cryofocusing' Einheit ausgerüstet. Das 'moisture control modul' (MCM) wurde überbrückt. Die Arbeitsbedingungen waren die folgenden: 'purge gas' Stickstoff; 'purge flow' (vent): 30 mL/min; 'prepurge': 1 min; Wasserbad (statt Sparger-Heizmantel): 45 °C; 'purge': 10 min; 'drypurge': 10 min; 'cap cool-down': -125 °C; 'desorb preheat': 210 °C; 'desorb': 4 min bei 220 °C; 'inject': innerhalb 1,5 min von -125 bis +200 °C; 'bake': 5 min bei 260 °C; '6-port valve': 150 °C; 'line': 150 °C; 'capillary union heater' (= Transfer-Linie vom Purge & Trap'-Gerät bis zum Gaschromatographen): 150 °C.

Beim Gaschromatographen (GC) handelte es sich um das Gerät 5890, Series II der Firma Hewlett-Packard (HP Company, Avondale, PA, USA). Die Arbeitsbedingungen waren die folgenden: Trägergas: Helium; Einlassdruck 40 kPa; Fluss: ca. 1.6 mL/min bei 45 °C; Temperatur der Transferlinie (vom GC zum MS): 280 °C; Temperaturprogramm: 13 min bei 45 °C, dann 5 °C/min bis 240 °C und 5 min bei 240 °C; kapillare Trennsäule: SPB1 (Supelco Inc. Bellefonte, PA, USA), 30 m \times 0.32 mm i.d., Filmdicke: 4 µm.

Zwei Detektoren wurden nach der Trennsäule parallel mit einem T-Stück und den notwendigen Kapillarrestriktoren montiert: ein Hewlett-Packard Flammenionisationsdetektor (FID) und ein massenspezifischer Detektor (MSD Modell HP 5972) mit Direkteinlass in 'scan mode' (TIC) von 19 bis 250 amu bei 2.9 scan/s, mit einer elektronischen Ionisation von 70 eV und 'autotuning'; MS-Scan nach 3.5 min. Die Peaks wurden mit dem MSD und der Wiley-Datenbank identifiziert (12) und mit FID anhand der Peakhöhe quantifiziert. Es wurde keine absolute Quantifizierung vorgenommen.

Statistische Auswertung

Die arithmetischen Mittelwerte und Standardabweichungen wurden für alle Messgrössen berechnet. Die Unterschiedsprüfungen der Mittelwerte wurden im Programm SYSTAT (13) mit einer einfachen Varianzanalyse durchgeführt. In den Tabellen wurden die Werte, die keine signifikanten Unterschiede zwischen den Käsen mit und ohne *L. casei* subsp. *casei* aufwiesen, für alle 8 Proben zusammengenommen.

Resultate und Diskussion

Aus den zahlreichen flüchtigen Komponenten, die in diesen Käseproben vorhanden waren, wurden insgesamt 38 nach folgenden Kriterien ausgewählt: (i) diejenigen, deren Konzentration während der Reifung signifikant zu- oder abnahm; (ii) diejenigen, die vom L. casei subsp. casei-Zusatz abhängig waren; (iii) diejenigen, die als Schlüsselaromastoffe (3–6) betrachtet wurden können sowie (iv) diejenigen, die in einem reifen Emmentaler Käse, der mit verschiedenen Extraktionsmethoden untersucht wurde (4), nachgewiesen wurden. Diese Komponenten wurden identifiziert und anhand von reinen Referenzsubstanzen sowie aufgrund ihrer Retentionszeiten und Massenspektren bestätigt.

Die erhaltenen Resultate werden in den Tabellen 1 bis 5 nach den chemischen Stoffklassen eingeordnet. Abbildung 1 zeigt als Beispiel die GC-FID- und MS-Chromatogramme einer 12-monatigen Käseprobe.

Alkohole

Tabelle 1 zeigt die relativen Gehalte einiger primärer und sekundärer Alkohole und deren Veränderungen im

Tabelle 1 Flüchtige primäre und sekundäre Alkohole im Laufe der Reifung von in Folien verpacktem Emmentaler Käse (Peakhöhe gemessen nach einer GC-FID-Analyse)

	-			Alter in Monaten														
Peal	k							3			6		9			12		Ref.
No.			ohne Lc		mit Lc	ohne Lc		mit Lc	ohne Lc	mit Lo	ohne Lo	:	mit L					
3	Ethanol	x	62833		116958	75652		110619	783	71	64006		107452	(4)				
		S _x	16919		16190			11367	2509)5	12482		9506	` ′				
6	Propanol-1	\bar{x}	12101		5114	13208		6419	1018	35		10897		(4, 7)				
		S_{χ}	4555		2119	3272		1784				3236		, ,				
11	2-Methylpropanol-1	\bar{x}		2231			2155		242	27		2231		(4)				
		S _x X		459			292		4()5		497						
14	Butanol-1	x		1518			1237		116	i9		1089		(4,7)				
		S _X X		2423			2025		156	5		1260						
22	3-Methylbutanol-1	x	3513		14456	4615		14556	5557	14294	5697		16480	(4)				
		S_{χ}	1220		2702	1710		1553	2424	2191	3009		5081					
23	2-Methylbutanol-1	x	12939		10535	13155		10424	1225	7		13474		(4)				
		S_{χ}	1570		658	679		1389	170	19		2504						
30	Hexanol-1	\bar{x}		nn			nn		nn			451		(4)				
		S _X X										2						
5	Propanol-2	x		2607			5745		927			10038		(4)				
_		S _X X		1178			1737		495			2858						
9	Butanol-2			591			717		114			1271		(4)				
		S _x X		398			714		140			1610						
19	Pentanol-2			974			2282		553			6825		(4,7)				
		$\frac{S_x}{\bar{x}}$		419			931		264	.9		2514						
34	Heptanol-2	x		nn			nn		nn			483		(4)				
		S_{χ}										94						

Anzahl Messung 8 (4 mit Lc und 4 ohne Lc). Lc=Lactobacillus casei subsp. casei. =Mittelwert; sx=Standardabweichung; nn=nicht nachweisbar.

Peakhöhe in willkürlidien Einheiten

Tabelle 2 Flüchtige Mono- und Diketone im Laufe der Reifung von in Folien verpacktem Emmentaler Käse (Peakhöhe gemessen nach einer GC-FID-Analyse)

						Alter in	Monaten	•			
Peal	c		3	·	6		9		12		Ref.
No.	Komponente		ohne Lc	mit Lc	ohne Lc	mit Lc	ohne Lc	mit Lc ohne L	c	mit Lo	
4	Propanon-2	x	17652	?	32074	,	59790		74591		(4, 7)
		S	5477	7	10476	•	16368		32025		` ' '
8	Butanon-2	S _X X	1970)	2497		3514		3979		(4, 7)
		S _r	327	7	841		956		1319		(/ /
16	Pentanon-2	S _x X	13659)	32889		97911		108303		(4, 7)
		S	4961		11886		30382		45733		` , ' /
24	3-Methylpentanon-2	$\hat{\bar{x}}$	nn		492		1143	nn	941		(4)
	• •				119)	494	833			()
26	Hexanon-2	S _x X	476	j	556	ì	1236		1347		(4, 7)
		S,	73	;	157		503		642		(', ',
32	Heptanon-2*	S _x X	8418	3	9580		19390		22024		(4, 7)
	•	S,	1799)	2082		6482		10135		(', ',
38	Nonanon-2*	$\frac{s_x}{\bar{x}}$	529)	561		772		837		(4, 7)
			88	}	89		163		245		(,,,,
7	2,3-Butandion*	S _x X̄	1503	;	1032		793		765		(4, 7)
	(=Diacetyl)	Sx	870	1	531		349		331		(1)
17	2,3-Pentandion	$\hat{\bar{x}}$	1262	562	1148	564		1237		632	(4)
	•	S _x	338	123	181	170	295	396		230	(7)

Legende: siehe Tabelle 1.

Laufe der Reifung von 3-12 Monaten. Mit Ausnahme des Butanol-1, dessen Gehalt signifikant sank, nahmen fast sämtliche Alkohole zu. Bei den primären Alkoholen konnte in mehreren Fällen signifikant nach der Zusatzkultur unterschieden werden. Besonders ausgeprägt ist diese Diskriminierung bei Ethanol sowie bei 2-und 3-Methylbutanol-1. Als Ausnahmen sind jedoch folgende Verbindungen zu erwähnen: 2-Methylpropa-

nol-1, Butanol-1 und Hexanol-1, wobei letztere Verbindung in Spuren vorhanden war. Bei den sekundären Alkoholen zeigte der *L. casei-Zusatz* keine Unterschiede auf.

Ketone

Die Methyl(mono)ketone nahmen während der Käse-

^{*}Aromastoff (3, 8–11).

Tabelle 3 Flüchtige Aldehyde im Laufe der Reifung von in Folien verpacktem Emmentaler Käse (Peakhöhe gemessen nach einer GC-FID-Analyse)

	-		Alter in Monaten											
Peal	•			3			6		9			12		Ref.
No.	Komponente		ohne Lc		mit Lc	ohne Lc		mit Lc	ohne Lc	1	mit Lcohne Lc		mit Lc	
1	Acetaldehyd	x		968			950		134	43		4751		(4, 7)
	-	S_{χ}		340			241		124	44		9944		` ' '
12	3-Methylbutanal*	$\hat{\bar{x}}$	1342		2050	1737		2174	182	24		1731		(4,7)
	•	S_{χ}	277		470	143		195	36	53		527		. ,
13	2-Methylbutanal*	$\tilde{\bar{x}}$	2438		4500		6231		789	95		8425		(4,7)
	·	Sr	473		746		1253		147	76		1299		,
18	Pentana!	$\frac{s_{\chi}}{\bar{x}}$		943			889		66	57	620		435	(4)
		S		367			354		19	93	121		70	` '
27	Hexanal	S _x X		3219			2260		93	37		626		(4)
		S		1964			1400		29	92		260		` ′

Legende: siehe Tabelle 1.

Tabelle 4 Flüchtige Ester im Laufe der Reifung von in Folien verpacktem Emmentaler Käse (Peakhöhe gemessen nach einer GC-FID-Analyse)

		Alter in Monaten													
Pea	b	3			6				9			12		Ref.	
No.		oh	ne Lc	mit	Lc	ohne L	С	mit Lc	ohne L	С	mit Lc	ohne L	С	mit L	
2	Ameisensäure-	x		2615			2322			2243	ı		2011		(4)
	methylester	S,		374			318			455			435		• /
10	Essigsäureethylester	S _x Ī		8710			7527			11227			11031		(4)
		S,		1887			1524			3162			2948		` '
20	Summe von	S _x Ž		19820			41691			114544			117024		(4,7)
	2 Estern†	S_{χ}		9998			18600	•		39425			49100		` ' ' '
	Buttersäureethylester*	ŝ		1822			2760	+	2913		5343		4579		(4, 7)
	•	S_{χ}		1111			1368		629		1258		2041		(-, -,
29	Propionsäure-	ŝ	4459		86	835	9	2142	11024		3559	12567		3946	(4)
	propylester	S _r .	1056		37	0 155	5	830	2459		846	2871		1254	(.)
33	Buttersäurepropylester	ŝ		nn			493			575			688		(4)
	1 17	S.					123			217			289		('/
36	Capronsäure-	$\frac{s_x}{\bar{x}}$		632			1001		918		1550		1431		(4,7)
	ethylester*	Sx		280			581		229		317		559		(37)

Legende: siehe Tabelle 1.

Tabelle 5 Flüchtige aliphatische und aromatische Kohlenwasserstoffe im Laufe der Reifung von in Folien verpacktem Emmentaler Käse (Peakhöhe gemessen nach einer GC-FID-Analyse)

			Alter in Monaten										
Peal	k	3		6	9	12	Ref.						
No.		oh	ne Lc mit l	Lc ohne Lc	mit Lc ohne Lc	mit Lcohne Lc	mit Le Nr.						
21	Heptan	Ā	51735	2106	1303	1034	(4)						
	-	S_x	18539	529	282	214	()						
15	Benzol	$\hat{\bar{x}}$	502	469	473	456	(4)						
		S_{χ}	147	99	62	11	()						
25	Toluol	x	34715	26186	23643	17456	(4, 7)						
		S_{χ}	7 981	5883	6673	5721							
31	1,3 (und/oder 1,4)-Di-	$\hat{\bar{x}}$	33907	21355	13603	10790	(4)						
	methylbenzol	S_{χ}	14744	6254	7284	6977	()						
35	1,2-Dimethylbenzol	$\hat{\bar{x}}$	50112	32076	20205	16396	(4, 7)						
	•	S_{χ}	21866	9842	10887	10993	` ' /						
37	1,2,4-Trimethylbenzol	$\hat{ar{x}}$	16677	9915	4516	4551	(4)						
	· · · •	$\mathbf{S}_{\mathbf{X}}$	10224	4619	2415	4490	()						

Legende: siehe Tabelle 1.

^{*}Aromastoffe (3, 8-11).

^{*}Aromastoffe (3, 8–11).

[†]Summe von Propionsäureethylester und Essigsäurepropylester.

reifung gleichmässig zu, die verwendete Zusatzkultur hatte darauf keinen Einfluss (Tabelle 2). Sie entstehen ausschliesslich durch die β-Oxidation der ungesättigten Fettsäuren (14). Das 2,3-Butandion nahm hingegen während der untersuchten Zeitspanne ab, was schon bei der Reifung von Gruyère Käse beobachtet wurde (5). Zu den Ketonen, deren Konzentrationsveränderungen gemessen werden konnten, gehören die aromarelevanten Verbindungen 2,3-Butandion (3, 7, 8) und Heptanon-2 (3, 8).

Aldehyde

Im Käseteig wurden Acetaldehyd* sowie 2-Methylbutanal deutlich angereichert, während die Gehalte von Pentanal und Hexanal abnahmen (Tabelle 3). Wie bei der Reifung von Gruyère Käse (5) scheinen diese zwei letzeren Substanzen, die wahrscheinlich ebenfalls aus einer β-Oxidation der ungesättigten Fettsäuren entstanden sind, in weitere Produkte umgewandelt zu werden. Sehr interessant ist die klare Diskriminierung nach den Kulturen (mit und ohne L. casei subsp. casei) bei der Bildung des aromarelevanten 3-Methylbutanals (6–9), das sich ähnlich wie das obenerwähnte 3-Methyl-

butanol mindestens bis zum Alter von 6 Monaten verhielt (Tabelle 1).

Lees und Jago (15) erörterten in ihrem Übersichtsartikel die Rolle des Acetaldehyds im Stoffwechsel der Milchsäurebakterien. Mögliche Metaboliten aus diesem Produkt sind Essigsäure, Acetyl-CoA, Diacetyl, Acetoin, Butanon und vor allem Ethanol. Am Stoffwechselweg von Acetaldehyd zu Ethanol ist die Alkoholdehydrogenase beteiligt. Keenan und Lindsay (16) untersuchten die Alkoholdehydrogenaseaktivität verschiedener Lactobacillus-Species. L. casei wie auch andere Laktobazillen konnten Acetaldehyd und Propionaldehyd zu den entprechenden Alkoholen reduzieren. Raya et al. (17) zeigten auch, dass bei den Milchsäurebakterien L. bulgaricus und Streptococcus thermophilus Acetaldehyd nicht unbedingt aus dem Hexosemonophosphat-Weg stammen muss. Diese Verbindung könnte auch beim Abbau von Threonin zu Glycin durch die Threoninaldolase gebildet werden. Keine signifikante Korrelation konnte jedoch mit diesen freien Aminosäuren gefunden werden (1).

Ester

Mit Ausnahme des Ameisensäuremethylesters, der geringfügig abnahm, stieg der Gehalt sämtlicher anderer Esterverbindungen im Laufe der Emmentaler

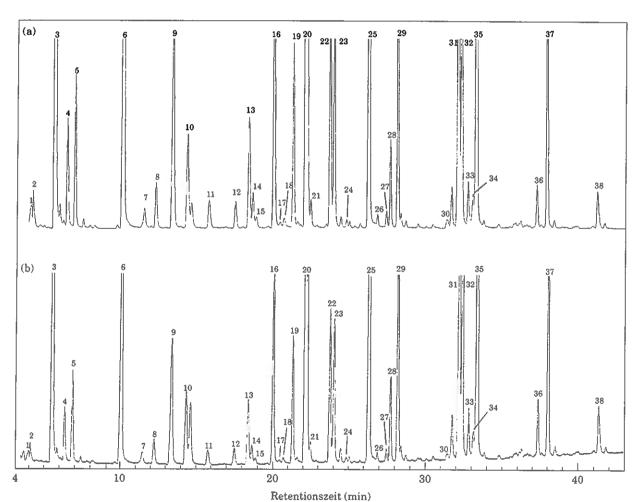


Abb. 1 (a) GC-FID- und (b) GC-MS-Chromatogramme desselben in Folien verpackten Emmentaler Käses im Alter von 12 Monaten

^{*}Für Acetaldehyd ist die Temperatur des Cryofocus (-125 °C) nicht tief genug, um diese Verbindung quantitativ zurückzuhalten.

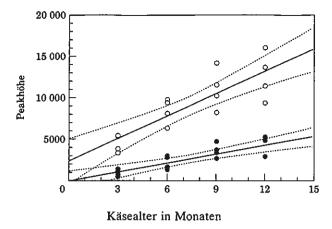


Abb. 2 Zunahme von Propionsäurepropylester während der Käsereifung mit (●) und ohne (○) L. casei subsp. casei

Käsereifung an (Tabelle 4; Abb. 2). Dasselbe wurde

auch bei der Reifung von Gruyère Käse beobachtet (5). Infolge einer ungenügenden chromatographischen Auflösung von Essigsäurepropyl- und Propionsäureethylester wurden diese beiden verwandten Ester summiert. Ihre ausgeprägte Bildung ist selbstverständlich auf die ebenfalls massive Bildung von Essig- und Propionsäure sowie von Ethanol und Propanol zurückzuführen (siehe Teil I [1]), unabhängig jedoch von den Kulturen. Obschon die Konzentration der entsprechenden ursprünglichen Ameisensäure signifikant unterschiedlich war (siehe Tiel I [1]), konnte beim Gehalt des Ameisensäuremethylesters kein Unterschied durch den L. casei-Zusatz beobachtet werden. Die Konzentrationsabnahme der Ameisensäure könnte teilweise mit der fortlaufenden Bildung weiterer Esterverbindungen während der Reifung erklärt werden. In Cheddarkäse begünstigen hohe Ethanolgehalte die Bildung von Carbonsäureestern (15). Dumont und Adda (14) wiesen daraufhin, dass in Milchprodukten oftmals grössere Mengen an freien Fettsäuren und kurzkettigen primären Alkoholen vorhanden sind (siehe auch Teil I [1]), welche die Grundsubstanzen zur Esterbildung darstellen. Ob die Ester jedoch chemisch

Kohlenwasserstoffe

abgeklärt.

Wie bei der Reifung von Gruyère Käsen (5) zeigte sich auch im Laufe der Reifung von in Folien verpackten Emmentaler Käsen eine generelle Abnahme von Heptan und der aromatischen Kohlenwasserstoffe (Tabelle 5). Heptan könnte aus der Decarboxylierung der Fettsäuren stammen.

oder enzymatisch gebildet werden, ist noch nicht

Weitere Verbindungen

Die in Spuren vorhandenen schwefelhaltigen Verbindungen Dimethylsulfid und Dimethyldisulfid wiesen keine signifikanten Konzentrationsänderungen auf. Der aromarelevante Methionalgehalt (6-10) lag unter der Nachweisgrenze der angewandten Analysenmethode (dreimal kleiner als der Rauschpegel). Bei der Reifung

von Cheddarkäsen konnte hingegen Manning (18) eine deutliche Bildung von schwefelhaltigen Komponenten feststellen. Die schwerflüchtigen Aromastoffe δ-Decalacton, 4-Hydroxy-2,5-dimethyl-3 (2H)-furanon (HMF) und 2-Ethyl-4-hydroxy-5-methyl-3 (2H)-furanon (EHMF) konnten trotz Einspritzen von Referenzsubstanzen mit der angewandten Methode nicht nachgewiesen werden. Die Konzentrationen dieser und anderer Schlüsselaromastoffe wurden deshalb mit Isotopenverdünnungsanalysen in vier Käseproben gemessen. Die Ergebnisse werden gesondert berichtet (3).

Korrelationen zwischen einigen flüchtigen Verbindungen

Obschon es keine gemeinsamen Stoffwechselwege zwischen den folgenden Verbindungen gibt, sind die positive Korrelation zwischen 3-Methylbutanol-1 und Ameisensäure sowie die negativen Korrelationen zwischen 3-Methylbutanol-1 und Propionsäure sowie zwischen Ethanol und Propionsäure wahrscheinlich auf den Hemmungseffekt von L. casei subsp. casei auf das Wachstum von Propionsäurebakterien zurückzuführen (Tabelle 6). Die beiden sekundären Alkohole Propanol-2 und Pentanol-2 waren miteinander positiv korreliert, was einen Hinweis für einen ähnlichen Stoffwechselweg dieser Komponenten sein könnte. Die positiven Korrelationen zwischen den zwei Estern (Propionsäure- und Buttersäurepropylester) mit ihren Ausgangsprodukten (Propion- und Buttersäure einerseits und Propanol-1 anderseits) bestätigen die Herkunft dieser Verbindungen.

Schlussfolgerung

Die vorliegende Arbeit zeigt allgemein eine Zunahme der meisten flüchtigen Komponenten während der zwölfmonatigen Reifungsperiode von 8 Schweizer Emmentaler Käsen. Unter den 38 Komponenten, die identifiziert und mit Hilfe von Reinkomponenten bestätigt wurden, nahm die Konzentration der primären und sekundären Alkohole, der Methylketone sowie der Ester zu. Ausnahmen bildeten dabei Butanol-1, 2,3-Butandion und Ameisensäuremethylester. Die Konzentration von Heptan und der aromatischen Kohlenwasserstoffe nahm hingegen signifikant ab. Generell wiesen die untersuchten Komponenten ein ähnliches Verhalten auf, wie dies in Gruyère Käse während derselben Reifungsperiode festgestellt wurde.

Der Zusatz von *L. casei* subsp. *casei* führte zu einer hochsignifikanten Diskriminierung der folgenden Komponenten: Ethanol, 2,3-Pentandion, 3-Methylbutanol-1 und Propionsäurepropylester über nahezu die gesamte Reifungsdauer sowie Propanol-1, 2-Methylbutanol-1 sowie 2- und 3-Methylbutanal über die 6 ersten Monate.

Die folgenden flüchtigen Verbindungen sind im Schweizer Emmentaler Käse als Aromastoffe zu betrachten (8-11): 2- und 3-Methylbutanal, Buttersäure- und

Tablelle 6 Hochsignifikante Korrelationskoeffizienten zwischen einigen flüchtigen Komponenten (n=32 Käse verschiedenen Alters)

Komponente	Ameisensäure	Propionsäure	Buttersäure	Propanol-1	Propanol-2
Ethanol	+0.82	-0.82	· · · · · · · · · · · · · · · · · · ·		
Pentanol-2					+0.85
3-Methylbutanol-1	+0.85	-0.74			10.05
Propionsäurepropylester		+0.87		+0.80	
Buttersäurepropylester			+0.68	+0.86	

Capronsäureethylester, Heptanon-2, Nonanon-2 und 2,3-Butandion. Weitere Aromakomponenten wie Essig-, Propion-, Milch- und Glutaminsäure sowie Ammonium wurden schon in Teil I (1) behandelt. Methanthiol, Skatol, δ-Decalacton, HMF und EHMF wurden jedoch in diesen Käsen mit der angewandten Methode nicht nachgewiesen.

Literatur

- 1 BACHMANN, H.-P., BÜTIKOFER, U., BADERTSCHER, R., DALLA TORRE, M., LAVANCHY, P., BÜHLER-MOOR, U., NICK, B., JIMENO, J., WARMKE, M., GROSCH, W.I., SIEBER, R. UND BOSSET, J.O. Reifungsverlauf von in Folien verpacktem Emmentaler Käse mit und ohne Zusatz von Lactobacillus casei subsp. casei. I. Mikrobiologische, chemische, rheologische und sensorische Untersuchungen.

 Lebensmittel-Wissenschaft und -Technologie, 30, 417-428 (1997)
- 2 JIMENO, J., LAZARO, M. J. AND SOLLBERGER, H. Antagonistic interactions between propionic acid bacteria and non-starter lactic acid bacteria. Lait, 75, 401-413 (1995)
- 3 RYCHLIK, M., WARMKE, R. AND GROSCH, W. Ripening of Emmental cheese wrapped in foil with and without addition of *Lactobacillus casei* subsp. casei. III. Analysis of character impact flavour compounds. *Lebensmittel-Wissenschaft und -Technologie*, 30, 471–478 (1997)
- 4 Bosset, J.O., GAUCH, R., MARIACA, R. AND KLEIN, B. Comparison of various sample treatments for the analysis of volatile compounds by GC-MS: Application to the Swiss Emmental Cheese. Mitteilungen aus dem Gebiete der Lebensmittelchemie und Hygiene, 86, 672-698 (1995)
- 5 BOSSET, JO. AND LIARDON, R. The aroma composition of Swiss Gruyère cheese. III. Relative changes in the content of alkaline and neutral volatile components during ripening. Lebensmittel-Wissenschaft und -Technologie, 18, 178-185 (1985)
- 6 Bosset, J.O., Collomb, M. and Sieber, R. The aroma composition of Swiss Gruyère cheese. IV. The acidic volatile components and their changes in content during ripening. Lebensmittel-Wissenschaft und -Technologie, 26, 581-592 (1993)
- 7 LANGLER, J.E., LIBBEY, L.M. AND DAY, E.A. Identification and evaluation of selected compounds in Swiss cheese flavor. *Journal of Agriculture and Food Chemistry*, 15, 386-391 (1967)

- 8 Preininger, M., Rychlik, M. and Grosch, W. Potent odorants of the neutral volatile fraction of Swiss cheese (Emmentaler). In: Maarse, H. and van der Heij, D.G. (Eds), Trends in Flavour Research. Amsterdam: Elsevier, pp. 267-270 (1994)
- pp. 267-270 (1994)

 9 Preininger, M. and Grosch, W. Evaluation of key odorants of the neutral volatiles of Emmentaler cheese by the calculation of odour activity values. Lebensmittel-Wissenschaft und -Technologie, 27, 237-244 (1994)
- 10 GROSCH, W., PREININGER, M., WARMKE, R. AND BELITZ, H.-D. Studies on the flavour of Swiss cheese (Emmentaler). In: ROTHE, M. AND KRUSE, H.-P. (Eds), Aroma — Perception, Formation, Evaluation. Potsdam-Rehbrücke: Deutsches Institut für Ernährungsforschung, pp. 425-439 (1995)
- 11 PREININGER, M., WARMKE, R. AND GROSCH, W. Identification of the character impact flavour compounds of Swiss cheese by sensory studies of models. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 202, 30–34 (1996)
- 12 McLafferty, F. and Stauffer, D. (Eds). Wiley Registry of Mass Spectral Data, 4th Edn. New York: Wiley and Sons (1988)
- 13 SYSTAT. Systat for Windows: Statistics, Version 5.0 Edition. Evanson, IL: Systat Inc. (1992)
- 14 DUMONT, J.P AND ADDA, J. Flavour formation in dairy products. In: LAND, D.G. AND NURSTEN, H.E. (Eds), Progress in Flavour Research. London: Applied Science Publishers Ltd, pp. 245–262 (1979)
- 15 LEES, G.J. AND JAGO, G.R. Role of acetaldehyde in metabolism. A review. 2. The metabolism of acetaldehyde in cultured dairy products. *Journal of Dairy Science*, 61, 1216-1224 (1978)
- 16 KEENAN, T. W. AND LINDSAY, R. C. Dehydrogenase activity of Lactobacillus species. Journal of Dairy Science, 50, 1585-1588 (1967)
- 17 RAYA, R.R., MANCA DE NADRA, M.C., PESCE DE RUIZ HOLGADO, A. AND OLIVER, G. Acetaldehyde metabolism in lactic acid bacteria. *Milchwissenschaft*, 41, 397-399 (1986)
- 18 Manning, D. J. Sulphur compounds in relation to Cheddar cheese flavour. *Journal of Dairy Research*, 41, 81-87 (1974)