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Land-use intensification differentially affects 
bacterial, fungal and protist communities 
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Abstract 

Background: Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth 
and productivity. Yet, a holistic understanding of the impact of land‑use intensification on the soil microbiome is still 
poorly understood. Here, we used a field experiment to investigate the long‑term consequences of changes in land‑
use intensity based on cropping frequency (continuous cropping, alternating cropping with a temporary grassland, 
perennial grassland) on bacterial, protist and fungal communities as well as on their co‑occurrence networks.

Results: We showed that land use has a major impact on the structure and composition of bacterial, protist and fun‑
gal communities. Grassland and arable cropping differed markedly with many taxa differentiating between both land 
use types. The smallest differences in the microbiome were observed between temporary grassland and continu‑
ous cropping, which suggests lasting effects of the cropping system preceding the temporary grasslands. Land‑use 
intensity also affected the bacterial co‑occurrence networks with increased complexity in the perennial grassland 
comparing to the other land‑use systems. Similarly, co‑occurrence networks within microbial groups showed a higher 
connectivity in the perennial grasslands. Protists, particularly Rhizaria, dominated in soil microbial associations, as they 
showed a higher number of connections than bacteria and fungi in all land uses.

Conclusions: Our findings provide evidence of legacy effects of prior land use on the composition of the soil 
microbiome. Whatever the land use, network analyses highlighted the importance of protists as a key element of the 
soil microbiome that should be considered in future work. Altogether, this work provides a holistic perspective of the 
differential responses of various microbial groups and of their associations to agricultural intensification.
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Background
Agricultural intensification represents one of the major 
causes of biodiversity loss in the twenty-first century 
[1, 2]. Intensive land use also threatens ecosystem mul-
tifunctionality [3] and increases negative environmen-
tal impact, for example by increased greenhouse gas 

emissions [4] and nitrogen losses through leaching [5]. 
Land intensification is most often associated with shifts 
in vegetation, which in return can affect the soil micro-
biome. It is well known that above-ground vegetation 
influences below-ground microorganisms through, for 
example, the exudation of organic carbon or the modi-
fication of soil properties in close vicinity to plant roots 
[6–8]. Besides, intensive agricultural practices such as 
tillage, fertilization, and the use of pesticides can affect 
the soil microbiome [9–11]. Not only current but also 
past land-use can have effects that persist for decades, 
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affecting the microbiome in contemporary land use [12, 
13]. For example, a history of tillage or no tillage 60 years 
before conversion to longleaf pine savanna was found to 
differentially affect the diversity and composition of bac-
terial and fungal communities [13]. Since soil microbes 
are major players of the biogeochemical cycles and there-
fore tremendously important for ecosystem functions 
[14–16], it is important to understand how microbial 
communities are affected by increased land-use intensity, 
and to what extent the responses are modulated by legacy 
effects of prior land use.

Although the soil microbiome is highly diverse and 
complex, most studies investigating the impact of land-
use intensification on microbial diversity have focused on 
either bacteria and/or fungi [17–20]. However, microbes 
are not a mere collection of independent populations, 
but form complex communities and the direct and indi-
rect interactions between taxa appear to play a crucial 
role for the assembly of microbial communities, with 
consequences for ecosystem functioning [21–25]. For 
example, the often neglected protists are important in 
agricultural ecosystems as they control microbial popula-
tions through predation [26–28] and influence ecosystem 
functions e.g. nutrient cycling [29]. In particular, by graz-
ing on bacteria, phagotrophic protists are increasing the 
mobilization of bacterial nitrogen and are therefore con-
tributing to nitrogen mineralization [29, 30]. This exem-
plifies the close interaction across soil microbes from 
different domains and that such interactions can affect 
soil functioning. An integrated assessment of the soil 
microbiome is thus needed for a comprehensive under-
standing of the impact of land-use intensification on 
soil microorganisms. Co-occurrence networks are often 
used to decipher relationships between microorgan-
isms [31]. Although co-occurrence patterns might not 
reflect the true complexity of microbial interactions, this 
integrative approach can help to better understand the 
consequences of changes in land use on microbial com-
munities [31–33]. For example, fungal networks were 
more connected in organic farming than in conventional 
or no-till farming systems, which was concomitant with a 
decrease in root colonization by arbuscular mycorrhizal 
fungi [17]. However, studies investigating how land-use 
intensification modifies co-occurrence patterns within 
and especially across domains are still scarce.

Here, we investigated how land-use intensification 
and the legacy effects of prior land-use affect the diver-
sity, structure and co-occurrence patterns within and 
between bacterial, protist and fungal communities. For 
this purpose, we used a long-term (> 12 years) replicated 
field experiment, where a gradient of land-use intensity 
was established, with high (continuous cropping with 
annual crops), medium (alternating annual crops with 

a temporary grassland) and low (perennial grassland) 
intensity. We hypothesized that (i) changes in land-use 
will lead to distinct responses across microbial groups 
with smallest differences between temporary and per-
ennial grasslands if there are no legacy effects (i.e. no 
impact of the continuous cropping preceding the tem-
porary grassland), and (ii) co-occurrence patterns of the 
soil microbiome will shift along the gradient of land-use 
intensity with a higher network complexity in the per-
ennial systems since the annual rotation of short lived-
seasonal crops is less likely to support the co-evolution 
of multitrophic interactions within the soil microbiota. 
Because soil microbes are key players in the cycling of 
nitrogen, which is the major nutrient limiting primary 
production in terrestrial ecosystems [34], we also inves-
tigated whether land-use intensification affected the 
abundances of functional microbial guilds involved in 
N-cycling.

Methods
Experimental design and soil sampling
Soil samples were collected from a long-term field 
experiment SOERE-ACBB (Systems of Observation and 
Experimentation in Environmental Research in Agro-
ecosystems, Biochemical cycles and Biodiversity) at the 
INRAE experimental station located at Lusignan, France 
(46°25′12.91″ N; 0°07′29.35″ E). The soil is a Cambisol 
with loamy texture (105 g  kg−1 sand, 727 g  kg−1 silt and 
168  g   kg−1 clay). Organic carbon content and nitro-
gen levels are shown in Additional file 1 (table S1). The 
experiment was established in 2005 in a randomized 
complete block design divided in four blocks containing 
plots with a surface of 4000  m2 each (Additional file  1: 
Figure S1). Each block comprises the following treat-
ments: a three-year crop rotation of maize-wheat-bar-
ley (CC), a three-year temporary grassland alternated 
with the three-year crop rotation (TG) and a permanent 
grassland (PG). In the crop rotation, conventional till-
age (mouldboard ploughing) and fertilizer management 
was applied, whereas in the grasslands, the timing and 
rate of nitrogen application was guided by a nitrogen 
nutrition index between 0.9 and 1.0 to provide the low-
est nitrogen amount for potential plant production [35, 
36]. The dominant vegetation of the temporary and per-
manent grassland was composed of Lolium perenne, Fes-
tuca arundinacea and Dactylis glomerata. The land-use 
intensity was defined by cropping frequency (continuous 
cropping > alternating cropping with a temporary grass-
land > perennial grassland).

Sampling was carried out in November 2017, which 
was before sowing for CC and TG, and therefore after 
the last year of the temporary grassland for TG. Five soil 
cores were collected randomly from each replicated plot 
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using a soil corer of 20 cm depth and 5 cm diameter to 
obtain 20 samples from each treatment (N total = 60 
samples). Plant debris and roots were removed from soil 
samples, which were then homogenized and sieved at 
4  mm. Soil relative moisture was determined by drying 
10 g of fresh soil at 105 °C for 24 h.

Assessment of microbial community composition and 
diversity
DNA was extracted from the 60 soil samples using the 
DNeasy PowerSoil-htp 96 well DNA isolation kit  (Qia-
gen, France). Analysis of the diversity and composition of 
the bacterial, protist and fungal communities were per-
formed for all DNA extracts using Illumina sequencing of 
the 16S rRNA and 18S rRNA genes and the fungal ITS1 
region. Amplicons were generated for all DNA extracts 
in two steps. In the first step, the V3-V4 hypervariable 
region of the bacterial 16S rRNA gene was amplified 
by polymerase chain reaction (PCR) using the fusion 
primers U341F (5’-CCT ACG GGRSGCA GCA G-3’) and 
805R (5’-GAC TAC CAG GGT ATC TAA T-3’)[37]. The V4 
hypervariable region of 18S rRNA gene was amplified 
by PCR using the primers EK-565F (5′-GCA GTT AAA 
AAG CTC GTA GT-3′) and 18S-EUK-1134-R–UnonMet 
(5′-TTT AAG TTT CAG CCT TGC G-5′) [38, 39]. Fun-
gal ITS1 region was amplified using the primers ITS1F 
(CTT GGT CAT TTA GAG GAA GTAA) and ITS2 (GCT 
GCG TTC TTC ATC GAT GC) primers [40, 41]. Sequenc-
ing was performed on MiSeq (Illumina, 2 × 250  bp and 
2 × 300  bp) using the MiSeq reagent kit v2 and v3 (500 
and 600 cycles, respectively).

Sequencing and bioinformatic analysis
Sequence data from the 60 soil samples was analyzed 
using an in-house developed Python pipeline (https:// 
forge mia. inra. fr/ vasa/ illum iname tabar coding). Briefly, 
16S rRNA gene, 18S rRNA gene and ITS sequences were 
assembled using PEAR [42] with default settings. Further 
quality checks were conducted using the QIIME 1 pipe-
line [43] and short sequences were removed (< 400  bp 
for 16S, < 450 bp for 18S and < 300 bp for ITS). Reference 
based and de novo chimera detection, as well as OTU 
clustering were performed using VSEARCH [44] and the 
adequate reference databases (SILVA representative set 
of sequences for 16S and 18S rRNA, and UNITE’s refer-
ence dynamic dataset for ITS). The identity thresholds 
were set at 94% for 16S rRNA gene-based on replicate 
sequencing of a bacterial mock community that contains 
40 different bacterial strains for which we have the full-
length 16S rDNA sequences [45] and 97% for 18S rRNA 
gene and ITS. Representative sequences for each OTU 
were aligned using PyNAST [46] and MUSCLE for 16S 
rRNA and 18S rRNA, respectively. Phylogenetic trees 

were constructed using FastTree [47]. For 16S, taxonomy 
was assigned using UCLUST [48] and the SILVA refer-
ence database 132 [49]. For 18S, taxonomy was assigned 
using  PR2 database 4.11.1 [50]. For ITS, the taxonomy 
assignment was performed using BLAST [51] and the 
UNITE reference database (v.7–08/2016 [52]). Raw 
sequences were deposited at the NCBI under the BioPro-
jects PRJNA741976, PRJNA741982 and PRJNA742156.

Based on taxonomic assignments, we filtered out 
OTUs from the 18S rRNA gene sequences that were 
non-protist (i.e. OTUs belonging to Fungi, Streptophyta, 
Mollusca and Porifera) and OTUs from ITS sequences 
that were non-fungal (i.e. OTUs belonging to Cerco-
zoa). In total, 2 319 835 bacteria sequences, 1 632 206 
protist sequences and 3 244 474 fungal sequences were 
obtained and assigned to 6 999, 3 867 and 1 866 OTUs, 
respectively. Bacterial, protist and fungal α-diversity met-
rics (i.e. observed species, Simpson’s reciprocal, Shannon 
as well as Faith’s Phylogenetic Diversity PD for bacteria 
and protist [53]) were calculated based on rarefied OTU 
tables (23,000 sequences per sample for 16S rRNA, 
9000 sequences per sample for 18S rRNA and 35,000 
sequences per sample for ITS). Bray–Curtis dissimilar-
ity matrix were also computed to detect variations in the 
structure of microbial communities.

Quantification of N-cycling bacterial and archaeal 
communities
The abundances of total bacterial and fungal microbial 
communities as well as that of nitrogen cycle micro-
bial guilds were estimated by real-time quantitative 
PCR (qPCR) assays. For each land use, the five DNA 
extracts from each replicated plot were pooled in equi-
molar amounts which corresponded to 4 composite sam-
ples per land use used as templates for the qPCR assays 
(n = 4). Total bacterial and fungal communities were 
quantified using 16S rRNA and ITS primers as described 
by Muyzer et al. (1993) [54] and White et al. (1990) [41], 
respectively. Marker genes for nitrification (amoA in 
archaea and bacteria) and denitrification (nirK and nirS) 
were quantified as described previously [55, 56]. Finally, 
nifH and nrfA genes were used to quantify communi-
ties involved in nitrogen-fixation [57] and dissimilatory 
nitrate reduction to ammonium (DNRA) [58, 59], respec-
tively. The qPCR reactions were carried out using a ViiA7 
(Life Technologies, USA) in 15  µl reactions contain-
ing 7.5 µL of Takyon Master Mix (Eurogentec, France), 
1  µM of each primer, 250  ng of T4 gene 32 (QBiogene, 
France) and 1  ng of DNA. Two independent runs were 
performed for each real time PCR assay. Standard curves 
were obtained using serial dilutions of linearized plas-
mids containing appropriated cloned targeted genes from 
bacterial strains or environmental clones. PCR efficiency 
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for the different assays ranged from 77 to 101%. No tem-
plate controls gave null or negligible values. Inhibition in 
qPCR assays was tested by mixing soil DNA extracts with 
either control plasmid DNA (pGEM-T Easy Vector, Pro-
mega, France) or water. No inhibition was detected with 
the amount of DNA used.

Statistical analyses
Statistical analyses were conducted using R statisti-
cal software version 3.4.1 [60]. Differences in gene copy 
number (16S rRNA, ITS, bacterial and archaeal amoA, 
nirK, nirS, nifH and nrfA) were tested using the Kruskal–
Wallis test followed by Dunn’s multiple comparison test 
(adjusted p-value < 0.05). Differences in the microbial 
α-diversity indices were tested using ANOVA followed 
by Tukey’s honestly significant difference (HSD) test 
(p-value < 0.05) using the agricolae package [61]. Normal-
ity and homogeneity of the distribution of residuals were 
verified and log-transformations were performed when 
necessary. Permutational multivariate analysis of vari-
ance (PermANOVA) was carried out on the Bray–Cur-
tis dissimilarity distance matrices using adonis function 
implemented in the vegan package [62]. Pairwise post 
hoc tests were conducted using the function pairwise.
adonis from the pairwiseAdonis package [63] with Holm 
corrections. As sequencing data are usually sparse, low-
abundance OTUs were filtered out by keeping OTUs that 
are present at a threshold of 0.04% in all samples. We also 
discarded the OTUs that were not found in at least 10 out 
of the 60 samples. This filtering step allows reducing the 
zero counts in sequencing datasets, which can inflate the 
number of false positive for the differential abundances 
analysis and spurious correlation between OTUs in net-
work analysis. This resulted in 472 OTUs for 16S rRNA, 
341 OTUs 18S rRNA and 218 for ITS. Differential abun-
dance analysis of microbial community composition was 
conducted by pairwise comparisons between land uses of 
filtered count matrices (n = 20) using the DESeq2 pack-
age (FDR-corrected p-value < 0.00001, Additional file  2) 
[64]. Significantly discriminant OTUs were illustrated by 
ternary plots using ggtern package [65] and Upset plot 
using UpsetR package [66].

Networks were inferred using a sparse multivariate 
Poisson log-normal (PLN) model with a latent Gaussian 
layer and an observed Poisson layer using the PLNmod-
els package (Additional file 2) [67]. The best network was 
selected using a Stability Approach to Regularization 
Selection (StARS) [68], which performs a random sub-
sampling of the input data to select a network with low 
variability in the selected edges. A specific normaliza-
tion with the TSS (Total Sum Scaling) method was per-
formed in order to take into account the heterogeneity of 
sequencing depth within and between microbial groups. 

All networks were constructed using filtered count 
matrices (i.e. 472 OTUs for 16S rRNA, 341 OTUs 18S 
rRNA and 218 for ITS). Bacterial, protist and fungal net-
works were inferred separately for each land use (n = 20) 
and for visualization purpose only partial correlations 
with |ρ|> 0.1 were considered. Inter-domain networks 
were inferred using all microbial groups for each land 
use (n = 20), and for visualization purpose partial correla-
tions with |ρ|> 0.08 were visualized. Networks were then 
visualized using the Cytoscape software [69]. The Net-
workAnalyser tool from Cytoscape was used to calculate 
network topological parameters (i.e. nodes, links, cluster-
ing coefficient and degree).

Results
Land-use intensification impacts soil microbial 
communities
To characterize the soil bacterial, fungal and protist com-
munities under continuous cropping (CC), alternating 
cropping with a temporary grassland (TG) and perennial 
grassland (PG), we used DNA metabarcoding targeting 
the bacterial, protist and fungal communities. Signifi-
cant differences in α-diversity indices were observed for 
the bacterial community, with OTU richness, Shannon 
index, and phylogenetic diversity being higher in contin-
uous cropping and temporary grassland than in the per-
ennial grassland (Tukey’s test, p-value < 0.05, Additional 
file  1: Figure S2). By contrast, the α-diversity indices of 
the protist and fungal communities were similar across 
the three land-uses.

Comparison of β-diversity using Principal Coordinates 
Analysis (PCoA) of Bray–Curtis distances showed a clus-
tering of samples according to management with 37%, 
23% and 34% of the variance explained by the first two 
axes of the PCoA for bacterial, protist and fungal com-
munities, respectively (Fig.  1). PermANOVA confirmed 
significant differences in the structure of the micro-
bial communities between land uses (PermANOVA, 
p-value < 0.05). However, the structure of the bacterial 
and protist communities were more similar between con-
tinuous cropping and the temporary grassland than the 
perennial grassland (Additional file 1: Figure S3).

The abundance of the total bacterial community, deter-
mined by quantification of the 16S rRNA gene, was sig-
nificantly lower under continuous cropping compared 
to temporary and perennial grasslands (Dunn’s test, 
adjusted p-value < 0.05, Fig. 2). For the N-cycling guilds, 
the percentage of DNRA bacteria (nrfA) within the total 
bacterial community (nrfA/16S rRNA gene abundance) 
increased along the land-use intensity gradient (Dunn’s 
test, adjusted p-value < 0.05, Fig.  2). The percentage of 
AOB and of nirS-denitrifiers were also higher in the con-
tinuous cropping, but significant differences were not 
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observed for other N-cycling guilds (Dunn’s test, adjusted 
p-value < 0.05).

Identifying differentially abundant OTUs
Across all samples, the dominant bacterial phyla were 
Proteobacteria (33%), Acidobacteria (21%) and Act-
inobacteria (17%). Protists were dominated by Cerco-
zoa (45%), Chlorophyta (15%) and Stramenopiles (14%), 
whereas Mortierellomycotina (42%) and Sordariomy-
cetes (22%) represented the most abundant fungal taxa 
(Additional file  1: Figure S4). The ternary plots showed 

the distribution of the most abundant OTUs, with those 
present at similar abundances in all samples being near 
the center of the ternary plots (Additional file  1: Figure 
S5). Differential abundance analysis based on the most 
abundant OTUs (472 OTUs for 16S rRNA, 341 OTUs 
18S rRNA and 218 for ITS), identified 173 bacterial 
OTUs with significant changes in abundances between 
land-uses (FDR-corrected P < 0.00001) (Fig.  3a). The 
strongest differences were observed between continuous 
cropping and permanent grasslands, with 166 discrimi-
nant bacterial OTUs and 101 of them being significantly 
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more abundant under perennial grasslands than con-
tinuous cropping (Fig.  3b). By contrast, only 28 OTUs 
differed significantly between continuous cropping and 
temporary grasslands, with 27 OTUs increasing in the 
latter. OTUs belonging to Actinobacteria were the most 
impacted by land-use intensity, showing a decrease in 
relative abundances from 7 to 3% from the perennial 
grassland to the continuous cropping (Fig. 3a and Addi-
tional file 1: Figure S4 a). For the protist, 79 out of the 341 
dominant OTUs differed significantly between the three 
land uses (Fig. 3c). The majority were differentially abun-
dant between perennial grassland and continuous crop-
ping (Fig. 3d), with a decrease in the relative abundances 
of 55 OTUs from 32 to 10%, respectively. The most 
impacted OTUs belonged to Apicomplexa and Cercozoa 
(Fig. 3 c and Additional file 1: Figure S4b). For the fungal 
community, 95 out of 218 fungal OTUs were significantly 
impacted by the land management (Fig.  3e). Similar to 
the patterns observed for bacteria and protist, the largest 
differences were between the perennial grassland and the 
continuous cropping with 42 OTUs being more abundant 
under perennial grassland (e.g. Agaricomycetes and Mor-
tierellomycotina), and 48 OTUs mainly assigned to Doth-
ideomycetes having higher abundances under continuous 
cropping (Fig.  3f and Additional file  1: Figure S4c). We 
found that only 4 OTUs belonging to fungi and protist 
were significantly increasing along the land-use intensity 
gradient, (CC > TG > PG), while 12 OTUs that belonged 
to all three domains were decreasing (CC < TG < PG).

Co-occurrence networks within microbial groups are 
influenced by land use

We inferred microbial association networks from con-
tinuous cropping, temporary and perennial grassland soil 
samples for the bacterial, protist and fungal communities 
using a recently developed sparse multivariate Poisson 
log-normal model [67]. The complexity of networks was 
estimated using network size (i.e. the number of nodes), 

links, the positive to negative links ratio in the networks, 
the clustering coefficient (i.e. the degree to which nodes 
are clustered) and the average degree (i.e. average links 
per node) (Table  1). In the bacterial networks, both the 
number of nodes and links gradually decreased along 
the land-use intensity gradient (Fig.  4a, Table  1). How-
ever, the highest ratio of positive to negative links in the 
temporary grassland was more than three times higher 
than that in the other land uses (CC = 2.33, TG = 7.45 
and PG = 2.22), due to a decrease in negative associations 
in the temporary grassland with 13% of negative links 
comparing to 42% and 45% for continuous cropping and 
perennial grassland, respectively. For protists, the ratio 
of positive to negative links was also higher in the tem-
porary grassland, whereas the other network properties 
were similar between land uses (i.e. number of nodes, 
links and average degree) (Fig. 4b and Table 1). The fun-
gal networks showed a different trend with a higher com-
plexity in the temporary grassland (Fig. 4c and Table 1). 
The fungal network also revealed an increase in the ratio 
of positive to negative links in the temporary grassland 
(CC = 3.20, TG = 5.21 and PG = 4.50), similar to bacte-
rial and protist networks. Networks from the temporary 
grassland of the bacterial, protist and fungal communi-
ties exhibited the highest clustering coefficient.

Associations across microbial groups differ among 
land uses

To better understand how land use influences associa-
tions between bacteria, protist and fungi, we inferred co-
occurrence networks including all three groups for each 
land use (Fig. 5a). The microbial network with all groups 
from the perennial grassland was the most complex with 
586 nodes and 985 links, followed by the temporary 
grassland with 517 nodes and 971 links and continuous 
cropping network with 445 nodes and 778 links (Fig. 5b). 
By contrast, we found a higher clustering coefficient 
and average degree in the temporary grassland network 

Table 1 Properties of microbial co‑occurrence networks

Microbial group Bacteria Protist Fungi All

Land use CC TG PG CC TG PG CC TG PG CC TG PG

Total number of OTUs 472 472 472 341 341 341 218 218 218 1031 1031 1031

Nodes 65 85 137 210 208 207 128 132 117 445 517 586

Links 60 93 161 326 330 315 168 211 143 778 971 985

Positive links 42 82 111 182 217 189 128 177 117 519 700 676

Negative links 18 11 50 144 113 126 40 34 26 259 271 309

Ratio ± 2.33 7.45 2.22 1.26 1.92 1.50 3.20 5.21 4.50 2.00 2.58 2.19

Avg. clustering coefficient 0.032 0.105 0.067 0.020 0.037 0.024 0.047 0.094 0.057 0.039 0.049 0.031

Avg. degree 1.85 2.19 2.35 3.10 3.17 3.04 2.63 3.20 2.44 3.50 3.76 3.36
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indicating that the nodes were more connected than 
those of continuous cropping and perennial grassland 
(Table 1). The comparison between inter-group networks 
showed that 46.3% of nodes are shared between land 
uses. In contrast, only two microbial links (fungi-fungi 
and protist-protist) were shared between to the networks 
from the three land uses (Fig. 5d).

To distinguish differences in taxa co-occurring among 
land uses, we compared the number of positive and nega-
tive links within and between microbial groups (Fig. 5c). 
Regardless of land use, microbial networks were domi-
nated by fungi-protist (28%), protist-protist (27%) and 
fungi-fungi (24%) associations. Bacteria-protist and 
bacteria-bacteria associations represented only 11 and 
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Leotiomycetes
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Mortierellomycotina
Pezizomycetes
Pucciniomycetes
Sordariomycetes
Tremellomycetes
Unclassified
Zoopagomycotina
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Fig. 4 Co‑occurrence networks of a bacterial, b protist and c fungal communities in continuous cropping, temporary grassland and perennial 
grassland. Nodes are colored according to their taxonomic affiliation at phylum and class levels. The size of the nodes is proportional to the number 
of links per node (i.e. degree). Link thickness is proportional to partial correlations between nodes and represents associative (black, ρ > 0.1) or 
exclusionary relationships (red, ρ < − 0.1)
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3% of the total number of links, respectively. However, 
the positive to negative link ratio for the bacteria-bacte-
ria associations was the highest in temporary grassland 
(CC = 16, TG = 29 and PG = 3.3). Associations across all 
three groups were mainly characterized by a higher num-
ber of links in temporary and perennial grasslands. This 
was the case for bacteria-Rhizaria, fungi-Rhizaria, fungi-
Alveolata and fungi-Stramenopiles associations (Addi-
tional file 1: Figure S6).

Discussion
Investigations of belowground effects of land-use 
changes have often focused either on the bacterial or on 
the fungal community. However, as the main consumers 
of bacteria, protists influence the composition of the soil 
microbiome [26, 70]. This highlights the need to adopt 
more comprehensive approaches for holistic insights into 
the soil microbiome [24]. Here, we performed compara-
tive and integrative analyses of the soil bacterial, fungal 
and protistan communities across a gradient of land-use 
intensity based on cropping frequency. We showed that 
β-diversity of all three domains was affected by land-
use type, with significantly different communities in the 
continuous cropping, temporary grassland and peren-
nial grassland. Little is known about the importance of 
land-use intensity in driving soil protists and there are 
large discrepancies between studies [27]. Although cli-
matic factors have been described as the top predictor 
of composition of protist communities [71], our result 
indicate that protists can be affected by changes in land 
use to the same extent as bacterial and fungal commu-
nities. However, the α-diversity of the protist and fungal 
communities showed no significant differences across 
land uses, although the bacterial α-diversity did, with the 
highest diversity in continuous cropping and temporary 
grassland compared to perennial grassland. In line with 
our results, previous studies found that shifts to agricul-
tural land-use increased bacterial diversity [72, 73]. This 
might be explained by the rotation of plant communi-
ties in these systems that likely led to a greater diversity 
in soil nutrients through root exudates and crop residues, 
ultimately increasing bacterial diversity [74]. This is con-
gruent with the observed differences in the biochemi-
cal nature of the soil organic matter (SOM) between the 
long-term grasslands and continuous cropping systems 
studied here [75]. The relative abundances of N-cycling 

communities (i.e. nitrifiers, denitrifiers and DNRA bac-
teria) were the highest in the continuous cropping, sug-
gesting that land-use can be a driver for these functional 
groups. Accordingly, previous studies reported signifi-
cant effects of land use on the relative abundances of 
AOB and DNRA bacteria [55, 76]. However, since micro-
bial communities involved in N-cycling processes result-
ing in nitrogen losses (denitrification and nitrification) as 
well as in nitrogen retention (DNRA) were enriched in 
the crop rotation, further work is needed to determine 
the fate of inorganic N in these systems.

To determine potential legacy effects of prior land 
use (i.e. continuous cropping followed by three years of 
temporary grassland), the soil samples were collected in 
all land uses when the cycle of the temporary grassland 
ended (TG). Without any effect of land-use history, it was 
expected that microbiomes would be more similar under 
temporary and perennial grasslands than under continu-
ous cropping. Instead, the smallest differences in com-
munity structure for all domains were observed between 
temporary grassland and continuous cropping, which 
suggests lasting effects of the cropping system preceding 
the temporary grasslands. The impact of land-use history 
on microbial communities has been investigated in previ-
ous studies with large variation in the persistence of the 
legacy effects [77, 78]. For example, past arable farming 
land resulted in long-lasting legacies on forest microbial 
communities that were persisting over half a century after 
agricultural abandonment [13, 79]. An explanation for 
these long-lasting effects is that historical land use caused 
shifts in soil properties, such as C and N content or pH, 
which are important drivers of soil microbial communi-
ties and may require decades to recover. Consistent with 
this and our results, Crème et  al. (2018) [75] observed 
that despite the insertion of three years of temporary 
grasslands within the crop rotation, the biogeochemical 
signature of the soil organic matter was more similar to 
the continuous cropping system than to the permanent 
grassland. Moreover, plant species can also affect differ-
ently soil microbial communities through a myriad of 
processes [8, 80] and create legacies that are detectable 
under subsequent plant communities [81], therefore also 
explaining the similarities between temporary grassland 
and continuous cropping [82]. Overall, we found that 
prior cropping systems that were at least three-year-old 
continued to play a role in shaping microbial community 

(See figure on next page.)
Fig. 5 a Co‑occurrence networks across three groups in continuous cropping (CC), temporary grassland (TG) and perennial grassland (PG). Nodes 
are colored according to their taxonomic affiliation at phylum levels. The size of the nodes is proportional to the number of links per node (i.e. 
degree). Link thickness is proportional to partial correlations between nodes and represents associative (black, ρ > 0.08) or exclusionary relationships 
(red, ρ < ‑0.08). b Number of nodes per land‑use for each microbial group. c Number of positive (black) and negative (red) links in inter‑domain 
networks for each land‑use type and within microbial domains. d The Venn Diagrams show the number of shared/unique nodes and links across 
inter‑domains networks
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composition across groups, which highlight the impor-
tance to consider legacies of past land-use when assess-
ing the impact of management practices. This is all the 
more important considering that such changes in soil 
communities can in turn affect subsequent plant commu-
nities [83].

Due to intrinsic differences in eco-evolutionary 
dynamics between perennial and annual systems, it can 
be hypothesized that plant-soil feedbacks can lead to 
more complex and more connected networks in perma-
nent grassland. However, when inferring microbial co-
occurrence networks for each group (i.e. bacteria, protist 
and fungi), only the bacterial network was more com-
plex in the perennial grassland with a gradual increase in 
the number of nodes and links between bacterial OTUs 
along with decreasing land-use intensity (i.e. from CC to 
PG). This is in agreement with a previous study showing 
higher bacterial network complexity in grassland than 
cropping system [84]. Interestingly, perennial grasslands 
also had the lowest bacterial diversity, which suggests 
that changes in soil microbial diversity do not necessar-
ily reflect changes in microbial networks [85]. In contrast 
to a previous study showing that agricultural intensifica-
tion reduces fungal network complexity [17], we found a 
higher complexity in the temporary grassland compared 
to the perennial and continuous cropping systems. This 
discrepancy may be attributed to the fact that root-
associated fungi were monitored by Banerjee et  al. [17] 
whereas the present study focuses on soil communi-
ties. Differences in the structure and composition of the 
protist community across land-use types were not mir-
rored in the network complexity. However, when consid-
ering the link type, we found an increase in the positive 
to negative link ratio in the temporary grasslands for 
protists as well as the other two groups, indicating that 
positive associations between soil microorganisms were 
promoted. This pattern might be due to increased niche 
differentiation when alternating temporary grassland 
and crop rotation, which results in a decrease of compe-
tition between microbial species [86, 87]. On the oppo-
site, the decrease in the positive to negative link ratio in 
the cropping systems suggests less effective establish-
ment of cooperation rather than increased competition 
between microbial taxa. Alternatively, previous work 
showed that differences in community evenness are 
likely to also affect the positive edge percentage since less 
prevalent taxa tend to contribute more to negative edges 
[32]. In any case, further studies are required to decipher 
whether these changes in co-occurrence networks were 
induced by biotic interactions or differences in environ-
mental filters among the three land-use types.

Finally, we inferred networks encompassing all three 
groups to obtain an integrated and holistic view of the 

soil microbiome along the land-use intensity gradi-
ent. Similar to the bacterial network, we found a higher 
complexity of the inter-group network under permanent 
grasslands, which supports our hypothesis that perennial 
systems lead to more connected microbial networks. This 
increase in complexity was mostly due to an increase in 
the number of bacterial and protist nodes as well as bac-
teria-bacteria, protist-protist and bacteria-protist links, 
despite that the individual protist networks were similar 
between land uses in contrast to those of the bacterial. 
While almost half of the nodes of the inter-domain net-
works were similar, links were distinct between land-use 
types, indicating that microbial associations are more 
sensitive than community structure to land-use intensi-
fication. That land-use management affected associations 
within the soil microbiome is important to consider given 
that recent studies have shown that ecosystem function-
ing could be related to microbial network complexity [33, 
88]. Whatever the land-use, protists were dominant in 
the inter-group network (Fig. 5b), especially the Rhizaria 
(Cercozoa), which were highly connected to both bacte-
ria and fungi. Although co-occurrence networks suffer of 
spurious correlations when the effects of habitat filtering 
are strong, they can also recapitulate possible interactions 
between microorganisms under certain conditions [89, 
90]. While not all protists feed on other organisms, they 
are known as the main consumers of bacteria [29]. How-
ever, we found more negative associations between pro-
tists (Rhizaria but also Amoebozoa and Stramenopiles) 
and fungi than between protists and bacteria. Accord-
ingly, recent work suggest that protist feeding on fungi 
might equally be important [91]. On the other hand, 
some fungi have developed trapping structures, such as 
adhesive spores, hyphae to capture soil-inhabiting micro-
organisms such as protists [92]. Fungi can also be protist 
parasites, when for example amoeba ingests the spores or 
conidia, resulting in its death [93]. These predatory/para-
sitic interactions could explain some of negative associa-
tions between fungi and protists observed in our study.

Conclusions
Using a holistic microbiome investigation of bacterial, 
fungal and protist communities in a long-term field 
experiment managed under different levels of land 
use intensity, we showed that land management only 
affected α-diversity of the bacterial community, with 
increased diversity in the continuous cropping system. 
However, we identified a clear shift in the structure 
and the composition of all communities in response to 
land use, in particular between the continuous crop-
ping and the perennial grassland. Moreover, our results 
showed legacy effects of cropping on the structure of 
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the soil microbiome that lasted after three years of 
temporary grasslands. This highlights that prior land 
use can shape the present-day community for multi-
ple microbial groups across domains. The perennial 
grassland system led to more complex bacterial as well 
as inter-domain networks, which can have implication 
for the contribution of microbes to ecosystem multi-
functionality [16]. Inter-domain networks also revealed 
the predominant role of the protist as key taxa in soil 
microbiome networks across all land-use types. Future 
work need to validate the importance of protists in 
shaping soil microbial communities, directly through 
biotic interactions and/or indirectly through changes in 
abiotic factors.
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