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Abstract 

The application of whole-genome sequencing (WGS) to the risk assessment of 

foodborne pathogens is a key challenge. WGS offers the highest level of strain 

discrimination for more precise hazard identification, hazard characterization and 

exposure assessment leading to deeper risk characterization. 

Genome‐wide association studies represent today powerful tools for the identification of 

associations between genomic elements and microbial phenotypic properties. Other 

cutting-edge tools include machine learning or statistical methods to characterize 

phenotype distribution on a phylogenetic tree. A panorama of the available methods is 

presented as well as the specific issues associated with the application of these 

methods to phenotypes of interest for risk assessment. 

Keywords:  

GWAS, quantitative microbial risk assessment, phenotypic marker  

Highlights 

- Numerous methods are available to identify markers of foodborne pathogen 

phenotypes, 

- The complexity of acquiring phenotypes challenges the application of these 

methods,  

- First applications of these methods in MRA show the concept of precision food 

safety. 
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1. Introduction 

By the late 1990s, concepts of risk and risk assessment have been employed to inform 

decision-making for the management of food safety risks [1]. The framework for carrying 

out risk assessments of foodborne pathogens is well established and relies on four 

components including hazard identification, hazard characterization, exposure 

assessment and risk characterization [2].  

A few years ago, novel scientific achievements demonstrated increasing evidence that 

food safety advances will require improved implementation of precision food safety 

approaches [3-5]. EFSA recently explored the role of whole-genome sequencing (WGS) 

and metagenomics to produce new information for food/feed risk assessments and 

which can contribute to better preparedness for risk management [6].   

The characterization of uncertainty and variability is at the heart of the concerns of risk 

assessors in microbiological food safety [7]. Indeed, risk situations are often associated 

with strains presenting atypical characteristics (the most virulent strains, the most 

thermoresistant strains, etc.). Understanding the processes by which the foodborne 

pathogens adapt and evolve leading to these different phenotypes is, therefore, of major 

importance for establishing risk-based control measures. Beyond foodborne pathogens, 

this point also applies today to the attribution to antibiotic resistance [8]. 

The genetic determinants of these particular behaviours are often not identified. If these 

determinants are known, a simple search for their presence in strains is sufficient to 

predict their phenotype. If no markers are known, the only solution is to characterize the 

phenotypes of strains by experimentation. 
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Considering the need for an improved implementation of precision food safety and the 

availability of genomes and of the relevant methods for identifying markers of variability 

in pathogen behavior, the stage is now set for the incorporation of omics technologies 

into risk assessment [9]. This review aims to present the latest methodological advances 

for the identification of phenotype determinants and to identify the difficulties that need 

to be overcome in order to routinely use genomics in microbiological risk assessment of 

foods.   

2. Methods for identifying markers of bacterial phenotypes 

2.1. Requirements to identify markers of interest 

The data required to identify genomic or phylogenetic markers for a qualitative or 

quantitative trait are the same in the three presented categories of methods (Figure 1A). 

The first step is to obtain a large collection of isolates. Although techniques such as the 

Ewens sampling formula [10] can be used to sample the diversity of a population, it is 

difficult to recommend a unique sample size [11]. The power of a method to identify 

causal variants or phylogeny clade associated to a phenotype is influenced by several 

other factors, including effect sizes, population structure, phenotype distribution, 

recombination rate [12, 13]. The diversity of the strains included in a study should be 

representative of the diversity of the pathogen or one of its sub-type of interest (e.g. ST, 

serovar) in the foods considered by the risk assessment. Another criterion to constitute 

the dataset is to consider the distribution of phenotypes for the trait of interest. The set 

of strains may be chosen in order to have a balanced distribution of phenotypes. This 

could improve the statistical power of the applied method to identify the markers. This 
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criterion based on the balance of phenotypes may be in contradiction with the criterion 

of the representativeness of strains isolated from a food sector. Several sets of strains 

can thus be considered for different objectives: marker determination, validation (for 

these two sets, both genotypes and phenotypes will be available) and prediction based 

on the GWAS results. For this last set of strains, it is not necessary to have the 

phenotypes, only the genomes of strains representative of the food sector are 

necessary.   

Then the acquisition of the genomic data using the recent developments in high-

throughput sequencing technology and the phenotypic data of the whole set of bacterial 

isolates have to be carried out [14]. The genetic features that will be used by the marker 

identification methods must be determined. Four main types of genetic features have 

been used so far. A first type is any SNV (Single Nucleotide Variant) or small 

insertion/deletion found in the alignment of the set of genomes. Since this alignment 

usually focuses on the core regions shared by all genomes, testing only SNVs misses 

the identification of non-core markers. The second type of genomic feature that could be 

tested is therefore the matrix of presence or absence of the accessory 

genes [15]. Accessory genes are often acquired by lateral transfer between strains 

through mobile genetic elements bringing new trait combinations [16]. A different 

approach is to use the presence or absence in each of the genomes of short sequences 

of DNA also called k-mers. For each genome, the presence or absence of each unique 

k-mer is recorded. As this approach does not require an alignment, k-mers capture both 

core and accessory genome events. More recently, the concept of unitigs, which are 

compacted De Bruijn graphs of k-mers, has been proposed as the genetic feature for 
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marker search items [17, 18]. As a unitig sequence is longer than a k-mer, its use in 

GWAS presents the advantage to reduce the redundancy present in k-mer counts and 

to generally easier interpretation of results [18]. MLST types, which are the 

consequence of the 4 mutations mentioned above, can also be used. Finally, a 

phylogeny that accounts for recombination can be determined generally based on of the 

alignment of core genome determinants. 

The input data used by the three methods differ. In case of the GWAS (Genome Wide 

Association Study) approach, the input data includes (continuous or binary) phenotypes, 

genetic determinants and recombination-aware phylogenies (Figure 1B). Methods based 

on Machine learning (ML) require genetic determinants and phenotypes. Phylogenetic 

methods for markers identification rely on phenotypes and population structure-

controlled phylogeny [14]. 

2.2 Genome-Wide Association Studies 

GWAS is based on a simple principle: a genome-wide set of genetic variants in different 

individuals is statistically observed to see if any variant is causally associated with a 

trait. The phenotypic traits and the genomic sequences of a strain collection are 

therefore necessary to assess genetic variant candidates explaining the phenotypic trait 

of interest. Statistical tests can thus assess whether certain genetic elements are more 

frequent in strains with a specific trait than in those without [19]. GWAS can be made at 

different genomic levels. Most of the applications of bacterial GWAS have been carried 

out with SNVs, small insertions and deletions (INDELs), k-mers or differences in 
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presence/absence of genes. More recently, unitigs have been proposed as the genetic 

feature for marker search items for the GWAS [17, 18]. 

An important challenge using GWAS is to take into account multiple statistical testing. 

To avoid high false-positive rates, a test correction must be performed considering the 

large number of tests being performed and to distinguish the significant results from 

those that will be observed by chance. Additional factors negatively affecting the 

performance of bacterial GWAS [20] are linkage disequilibrium (i.e., the nonrandom 

association of genetic alleles) and bacterial population structure (i.e., the presence of 

subpopulations that present large differences in the prevalence of both the allelic and 

phenotype frequencies). Feeding GWAS with a recombination-aware phylogenetic tree 

of the observed dataset helps to account for the population structure. 

Nowadays, a multiplicity of methods and complete pipelines, e.g. Scorary or pyseer, to 

conduct microbial GWAS are freely accessible. Two recently published reviews [20, 21] 

present in detail the specificity of these tools based on their ability to consider 

categorical and continuous phenotypes, the core and accessory genomic features, and 

their strategy to handle issues related to multiple-testing, linkage disequilibrium and 

population structure.   

2.3 Machine learning methods  

By definition, machine learning methods rely on computer systems that are able to learn 

and adapt, by using algorithms and statistical methods to analyze and draw inferences 

from patterns in data. Numerous algorithms have been trained to recognize patterns in 

bacterial genomic data [22]. The general process of the identification of genomic 
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markers is presented in Figure 1B. The dataset is split in a training and a testing 

dataset. The training is usually carried out with different algorithms which are then 

sorted based on their performance on the testing dataset [23]. After sufficient repetitions 

and selection of the algorithm, the trained machine can take as input the genome 

features of other strains to predict their phenotype.  

The genomic features used in machine learning methods are the same as applied in 

GWAS to predict bacterial phenotypes. The k-mers based approaches are often 

preferred [24, 25]. But genes presence/absence could be used as well [26]. Recently, as 

for GWAS, unitigs have been used for machine-learning identification of phenotype 

markers [22]. An advantage of these methods is that they allow the relative importance 

of each input variable to be specified and thus reduce the size of the data to be 

considered. Moreover, they allow to predict the phenotype of strains for which only the 

genome is known. The combination of ML methods with GWAS has also been shown by 

several authors to be promising for prioritizing loci, though this application is still in its 

infancy [27, 28]. 

Contrary to GWAS, few dedicated software tools are available [22, 24]. Most ML 

methods rely on generic ML Python libraries or R packages and user-defined scripts [23, 

29-31].  

2.4 Phylogenetic methods 

Phylogenetic methods do not account directly on genomic data but only through the 

phylogenetic trees derived from genomic data. Two classes of modelling approaches 

are using phylogeny. In the first, the evolution of the phenotype over time is modelled. In 
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the second, the evolution of the phenotype distribution along the phylogenetic branches 

is modelled. 

The first approach using phylogenies is to study the evolution of the phenotype with 

time. A researcher may be interested in whether, a bacterial phenotypic trait (e.g. lower 

temperature limit for growth) has evolved in association with environmental conditions 

(e.g. temperature) or in association with other traits (e.g. minimal pH limit). For solving 

this issue, Phylogenetic Comparative Methods (PCM) are an active field, that has shown 

many developments in the last few years [32]. Several methods have been specifically 

developed to study adaptive evolution. They rely on different models, such as 

Brownian motion or Ornstein–Uhlenbeck models that are implemented in R packages 

(see e.g. phytools, [33]; or PhylogeneticEM, [32]). All these modelling approaches have 

been mainly applied to eukaryotic organisms [34], and only a few articles described their 

application to prokaryotes yet [35]. 

 In the second class of phylogenetic approach, statistical methods are proposed to test 

for association between the phenotypic trait and a fixed tree structure across all levels of 

the tree hierarchy. Two R packages have been developed, treeBreaker [36] and treeSeg 

[37]. Contrary to the first category of phylogenetic method, they consider the evolution of 

the phenotypic distribution itself rather than the phenotype.  
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3. The challenge of applying genomics in risk assessment  

3.1 How to deal with continuous phenotypes in GWAS   

The input parameters used for risk assessment present some particularities. They do 

not usually correspond with the single measurement of a simple phenotype under a 

single set of in vitro experimental conditions. The parameters of interest are more 

complex and require extensive data acquisition and a modelling step [see e.g. 38]. An 

illustrative example is the minimum growth temperature that is used in secondary 

models for assessing the growth of the pathogen in the exposure assessment step. 

About ten kinetics with about ten points per kinetic must be collected. Then, models 

have to be fitted to kinetics in order to retrieve the growth rate. Finally, another model 

has to be fitted in order to determine the minimum growth temperature. It thus requires a 

lot of experimental work and the estimated parameter used as the phenotypic trait is 

prone to uncertainty. So far very few studies have attempted to address the issue of 

performing marker searches on such parameters [39]. Most of the current applications of 

marker research methods are applied to simple phenotypes (e.g. minimum inhibitory 

concentration) of food pathogen behavior directly derived from experiments [40-42]. The 

same can be established for the characterisation of the hazard. The parameters of the 

dose-response relationship are not easily accessible. Their estimation is complex and 

may involve epidemiological data and exposure assessment [26, 43]. 

The most commonly studied phenotypes in risk assessment are quantitative, such 

as the probability of illness for one cell, the maximal growth rate, or the cardinal values. 

The first software used in bacterial GWAS or for phylogenetic methods concentrates on 

Jo
ur

na
l P

re
-p

ro
of



qualitative phenotypes. Dividing the continuous phenotypes of strains into well-

defined categories is often tricky, even in a priori discriminatory conditions close to 

growth limits, due to minor differences between strains and experimental uncertainty 

[44]. In such a situation, a solution is to carry out the analysis on the most extreme 

phenotypes and to proceed with the identification of markers excluding strains that 

present phenotypes around the median, e.g. by excluding values between plus or minus 

one standard deviation around the median [42]. If the whole dataset is kept, hierarchical 

clustering could help to objectively define the phenotypic groups [40]. Software able to 

overcome issues are now available for taking into account the continuous nature of 

some phenotypes [18, 45]. 

3.2 Drawbacks associated with the nature of the phenotypic trait of interest 

The phenotypes of interest for risk assessment in foods (e.g. temperature adaptation, 

ability to induce infection or to colonize animal reservoirs…) have a complex 

multifactorial nature as the adaptation of bacterial strains may involve different genes or 

metabolic functions. The experience shows that GWAS and ML methods could return 

several hundred to thousands of genetic elements associated with complex traits [46, 

47]. Recent genome-wide association studies focusing on risk assessment phenotypes 

showed a higher number of candidate markers and lower statistical association values 

than association studies on microbial phenotypes of medical interest such as antibiotic 

resistance [40, 41]. This represents a challenge for GWAS methods, as it makes difficult 

to detect less prevalent adaptation mechanisms through simple statistical 

associations. Thus, it is complicated to identify the role of individual genes and look for 

(epistatic) interactions between them. While most applications of GWAS to date have 
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used the single-locus testing framework, recent innovations seek to expand upon this 

paradigm to elucidate more complex genotype-phenotype associations. The introduction 

of the concept of unitigs in ML and GWAS methods may help to decipher complex 

association as unitigs considerably reduce the number of potential causal markers and 

improve interpretability. Even though the use of unitigs has practical implications for 

MRA, two main issues to be solved for the deployment of GWAS are anchoring and 

integration of results into biological systems approach for translating molecular studies 

into risk [48]. Taking into account the homoplasy (the occurrence of multiple 

independent mutations at the same site) in the identification of mutations is also 

expected to improve the association [49]. 

   

3.3 From identification of markers to their use in quantitative microbial risk 

assessment 

The question of validation of the markers of the phenotypic traits is crucial for their use 

in risk assessment models. Meanwhile, the approach could be different according to the 

scientific fields [46]. For data analysts, markers are considered validated if robust 

statistical associations are proven. For laboratory-based researchers, validation is only 

considered valid when effects can be reproduced using complementary experimental 

approaches (see e.g. [50]).  Experimental validation by reverse genetics of the many 

markers associated with phenotypes of interest for microbial risk assessment is probably 

not feasible, at least in the short term. It is likely that risk assessors will be satisfied with 

a statistical validation (a p-value below the corrected significance threshold) of markers. 
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Validation of phenotype predictions on strains other than those used for marker 

identification also remains an achievable goal, even if it does not provide functional 

genomics justifications to scientists. 

An important issue for the application of genomics to describe phenotype variability in 

risk assessment models is also the ability of the methods to predict the phenotype of 

sequenced uncharacterized strains. Indeed, the collection of strains used to identify 

markers may represent either a fraction or a totally different set of strains for which 

prediction is needed. Here, ML methods present a clear advantage compared to most of 

GWAS or phylogenetic methods. The objective of these methods is to predict after the 

model is trained. The advantage of ML methods is that the uncertainty in their 

predictions can be easily incorporated into the uncertainty dimension of the QMRA 

models. Most GWAS and phylogenetic methods usually have a different objective, the 

central objective is mainly to establish an association between genomic features or 

clades in the phylogeny and the phenotype rather than to predict the unknown 

phenotype of a strain. Relative to that drawback recent development in GWAS was 

proposed by [18] where a penalized regression model completes the approach to predict 

the phenotype from the presence/absence of significant markers identified by GWAS. In 

their original phylogenetic approach, treeSeg, [37] proposes to predict the phenotype of 

a branch of the phylogeny.  

Regarding QMRA models, a high number of sources of variability are modelled. Not all 

these sources have the same importance concerning the outcome of QMRA models 

[51], thus the implementation of biomarkers is only meaningful for the highest priority 

sources of microbiological variability according to uncertainty or sensitivity analysis 
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methods. It’s worth to mention that hazard characterization for strain virulence is usually 

an important source of variability [44] and that there are high expectations for the 

application of these methods to improve the performance of risk assessments [5]. 

3.4 What can we expect in the coming years? 

There are various strategies for the application of genomics in quantitative risk 

assessment in the longer and shorter term. In the short term, genomics can be used to 

remove source of uncertainty in risk assessment. Strains’ variability will be better 

grasped and modelled by identifying molecular markers of adaptation (in connection with 

predictive microbiology) or virulence markers (for the parameters of the dose-response 

relationship) and their identification in a collection of strains representative of a food 

sector.  This better understanding of the intraspecific variability of the strains will, in 

particular, make it possible to test the commonly used hypothesis that the variability 

observed in laboratory strains is the same as that the one of strains present in the food 

production chain. In addition to reducing uncertainty, the use of genomics paves the way 

for easier validation of QMRA models by comparing the genomic diversity in patients 

predicted by the model with that observed by the epidemiologists. In the longer term, it is 

conceivable that genomic markers could be used to establish management measures 

better adapted to the different potentials of the strains [48]. But this implementation 

requires the development of rapid microbiological methods for the identification of 

markers on isolated clones or the systematic sequencing of strains. The standardization 

and the validation of microbiological method is a lengthy process and systematic 

sequencing of strains is difficult to envisage given that many labs cannot afford the costs 

and time required to obtain genomic sequence information yet.  
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4. Conclusion 

The application of GWAS, Machine-Learning and phylogenetic methods will probably 

considerably improve the identification of relevant markers of phenotypes of interest for 

foodborne pathogens in the next few years. Despite further efforts of biologists and 

computer scientists being needed to improve and validate comparative genomic 

methods, several publications have successfully used genomics in risk assessment [52, 

53].   

Although the degree of correlation between genotypic and phenotypic profiles still shows 

some uncertainty, genomics has a clear potential to improve model predictions, allow a 

link between QMRA and epidemiological observations and pave the way for precision 

food safety. The application of the three methods here presented is straightforward and 

easy when considering a phenotypic trait measured in a specific condition. Beyond the 

tools, the sharing of genomic data by risk assessment bodies is being achieved [54, 

55]. In this context, the bottleneck in the application of genomics for microbiological risk 

assessment is no longer the acquisition of genomic data or their analysis. Today, the 

difficulty lies more in acquiring the parameters of risk assessment models on a large 

number of strains than in sequencing or determining phenotype markers. One solution 

would be to set up ambitious research projects that would allow the characterization of 

these phenotypes at high throughput. Another possible solution is data sharing between 

the scientific actors of the predictive microbiology community. The application of 

standardized methods for experimental data acquisition and model fitting would be 

essential for a full exploitation of phenotype and identification of shared markers.   
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Annotation 

Papers of particular interest, published within the period of review, have been 

highlighted as: 

* of special interest 

** of outstanding interest 

- **Allen et al. 2021 [20]. This review presents recent advances in comparative 

genomic approaches to identify bacterial virulence determinants, with a focus on 

GWAS and ML. The list of methods identified is very large and the concept are 

very well presented. 

- **San et al. 2020 [21]:  This review provides an exhaustive review of the 

prominent tools in GWAS. It thoroughly discuss pitfalls and bottlenecks and 

provide insights into the selection of appropriate tools. 

- *Didelot, 2021 [14] presented in this reference the practical aspects for carrying 

out bacterial genome-wide association studies. 

- *Njage et al., 2021 [53]. This article provides a convincing application of genomics 

in quantitative microbial risk assessment.  
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Figure caption 

 

Figure 1. Dataset preparation (A) and general approaches (B) for identifying markers of 

phenotypes by using GWAS, machine learning or phylogenetic approaches. 
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