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A B S T R A C T   

Free-stall cubicles are designed so that cows do not defecate in the bedding material, while still providing 
comfortable lying places. However, fixed cubicle elements, such as the partition and neck rail, restrict available 
movement space and may hinder cows from performing natural lying down and standing up movement patterns. 
Although there are various types of cubicle partitions that differ in shape, dimensions, or materials, there is no 
method other than visual observations to assess their effects on cow welfare. An automated detection system 
could improve the efficiency and promote objectivity of such assessments. Therefore, the aim of this research was 
to explore which atypical lying down and standing up behaviors could be detected using body-mounted accel-
erometers and machine learning. Three leg- and one head-mounted accelerometer set to record at 20 Hz were 
fitted to 48 lactating dairy cows (Brown Swiss and Holstein × Swiss Fleckvieh). Lying down and standing up 
events were simultaneously assessed through video observations, by assigning binary presence/absence labels for 
atypical behaviors, such as lunging the head sideways when standing up and pawing the bedding material before 
lying down. Different time series classification algorithms were employed for model development using a nested 
cross-validation strategy. The best performing classifiers were MiniRocket and the deep learning algorithm 
InceptionTime. Atypical behaviors performed during standing up events, namely Hesitant head lunge and Crawling 
backwards, were identified as most promising candidates for accelerometer-based detection. These behaviors 
were detected with balanced accuracies of 0.67 and 0.74, respectively, and their learning curves indicated that 
more training data might further improve model performance. Overall, achieved performances were not yet 
satisfactory for application in the evaluation of new dairy cow housing installations. Potentially, ethograms 
designed for human observers are not optimal for machine learning and adjustments with machine learnability in 
mind might be necessary. The behaviors identified as promising are good candidates for further development 
into an efficient and objective method that could complement human observations in the assessment of dairy cow 
housing installations.   

1. Introduction 

Lying cubicles in free-stall systems are designed to provide 
comfortable lying places for dairy cows while maintaining proper hy-
giene [1,2]. Free-stall cubicles are separated by partitions and fitted 
with a neck rail or band above the lying place. These fixed elements 
prevent cows from standing fully inside stalls and ensure that animals lie 
down near the end of the stall with their rear towards the walking alley. 

In these standing and lying positions, cows do not defecate in the 
bedding material but on the concrete surface of the walking alley which 
is regularly cleaned by a manure scraper. However, when fixed cubicle 
elements restrict available space and limit freedom of movement, stall 
cleanliness may come at the cost of cow welfare [3]. 

Limited movement space inside free-stall cubicles can specifically 
hinder cows from performing natural lying down and standing up 
movements. These posture transitions follow species-specific, innate 
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movement patterns in dairy cows [4,5]. The movements are largely 
determined by skeletal and muscular structure, leaving cows with 
limited ability to adapt them to their environment [6]. The prevalence of 
specific atypical behaviors during posture transitions, such as lunging 
the head sideways when standing up and pawing the bedding material 
before lying down, can indicate inadequate movement space in the lying 
cubicles [7,8]. Insufficient space in cubicles combined with other risk 
factors can cause ulcers, bruises on the metacarpal/metatarsal joints, 
hock lesions, and lameness [9,10,11]. These health issues can result in 
economic losses for the farmer because cows might stay in the herd for a 
shorter time and milk production, fertility, and slaughter value may be 
reduced [12,13]. The breeding selection for a higher milk yield and the 
associated increase in body size of dairy cows in recent decades have 
accentuated these issues [14]. 

To optimise free-stall cubicles both from a hygienic and animal 
welfare perspective, manufacturers of housing systems have developed 
various types of cubicle partitions (e.g. [15]). Assessing the impact of 
each type of partition on animal welfare is challenging as differences in 
e.g. shape, dimensions, and materials of the partition have diverse ef-
fects on cow behavior. Currently, novel partition types are evaluated 
through visual analysis of the cows’ behavior in the cubicles by a human 
observer using either direct observations or video recordings. This 
method is labour intensive and to a certain degree subjective [16]. Even 
experienced assessors can be influenced by contextual factors, such as 
the overall cleanliness of the stall. Thus, there is the need for a method to 
support assessments made by human observers in the evaluation of 
free-stall housing installations with regard to cow welfare. 

In contrast to visual observations by a human observer, automatic 
detection systems can provide efficient and objective methods to 
monitor animal behavior. Sensors, such as accelerometers, are now 
frequently used to study and monitor cow behavior. From acceleration 
data, general activities [17–19], lying behavior [20,21], grazing and 
rumination behavior [22–24], and health problems such as lameness can 
be tracked [25,26]. This data gives valuable insight into the welfare and 
health of animals, and enables farmers, veterinarians, and researchers to 
make informed decisions [27]. Similarly, manufacturers of 
mass-produced housing installations and regulatory authorities could 
evaluate the effects of new products using automatic detection systems 
[28]. 

Particularly, detecting atypical behaviors performed during posture 
transitions would be of great value because these are considered infor-
mative for decreased cow welfare in a stall-based housing environment 
[4,8]. Lying down and standing up events per se can be detected reliably 
with leg-mounted accelerometers and rule-based algorithms [29]. 
However, models for the detection of atypical movements performed 
during these posture transitions are currently not available. The task of 
detecting specific atypical movements during these transitions is far 
more complex than recognising the posture transitions themselves. 
However, results from human research suggest that it is possible to 
detect specific characteristics of standing-to-sitting and 
sitting-to-standing transitions from accelerometer data [30–32]. 

In general, supervised classification models are trained to flag events 
of interest from ‘features’ obtained by selecting and transforming the 
raw data [33,34]. Accelerometers collect data in the form of time series, 
which are often manually transformed into tabular features (e.g. 
maximum, mean, variance) to be compatible with standard 
machine-learning algorithms. However, recent advances in the field of 
time series classification (TSC) have provided classifiers that can effec-
tively learn from raw time series data, without the need of manual 
feature engineering [35,36]. Many of them are particularly good in 
exploiting the temporal structure of the data, whereas this information is 
often poorly preserved when doing manual feature engineering. 
Therefore, bespoke time series classifiers might be more effective to 
detect atypical behaviors from accelerometer data than standard ma-
chine learning classifiers with manual feature engineering. 

The aim of this study was to explore which atypical lying down and 

standing up behaviors are the most promising candidates to be detected 
with body-mounted accelerometers and machine learning. For this 
purpose, eight atypical behaviors described by Zambelis et al. [8] and 
Dirksen et al. [7] were targeted with individual binary classifiers pre-
dicting the presence/absence of the behavior. Several recent, concep-
tually different TSC algorithms, including a deep learning approach, 
were employed. Additionally, practical aspects of data collection and 
modelling, such as the effect of accelerometer sampling frequency on 
classifier performance, were investigated. 

2. Methods 

Ethical approval for the study was obtained from the Veterinary 
Office of the Canton Thurgau (Switzerland; TG03/2021, Approval No. 
33448). 

2.1. Animals and housing conditions 

The study was conducted during the summer and autumn of 2021 at 
the Agroscope research station in Ettenhausen, Switzerland. Data was 
collected from 48 lactating cows of the two most common dairy breeds 
in Switzerland (Table 1; 34 Brown Swiss and 14 Holstein × Swiss 
Fleckvieh). Withers height of the cows was 146.3 ± 4.8 cm (mean ±
SD). Cows were selected opportunistically based on availability to 
participate in the study. 

The cows were housed in a free-stall barn that consisted of an exer-
cise yard and three sections, one of which was used in this study. This 
section consisted of two rows of wall-facing deep-bedded cubicles (eight 
and nine cubicles, respectively) with a walking alley in between and a 
feeding alley on the opposite side of the wall of one of the cubicle rows. 
The cows had constant access to the exercise yard and additionally to the 
adjacent pasture whenever the weather allowed it. Cubicle partitions 
were of type Liberty (Krieger AG, Ruswil, Switzerland), and more than 
one cubicle was available per cow. A flexible neck band was installed. 
Cubicles measured 125 cm in width and 265 cm in length with a brisket 
board 200 cm from the curb and 65 cm head lunge space (Fig. 1). For the 
cubicle row adjacent to the feeding alley, a wooden board was removed 
from the head-facing wall to increase the head lunge space to >65 cm. 

Cubicles were maintained twice a day, including removing faeces 
and levelling of bedding material. The walking and the feeding alley 
were scraped eight times per day by a manure scraper robot. The cows 
were milked in a milking parlour twice a day, between 0500 and 0600 h 
and between 1600 h and 1700 h, respectively. They were fed a mixed 
ration twice a day at approximately 0900 h and after the afternoon 
milking. The mixed ration contained maize, grass, and hay silages, as 
well as concentrate and minerals. Additional concentrate was offered 
according to animal-individual allowance in an automated feeding sta-
tion. Water was available ad libitum from a self-filling water trough. 

2.2. Data collection 

The complete workflow for data collection, data pre-processing, and 
model development and evaluation is shown in Fig. 2. 

Table 1 
Withers height, age, and lactation number (mean and range) of cows summar-
ised per breed.   

Withers height Age Lactation 
number 

Breed Mean Range Mean Range Mean Range 

Brown Swiss 145 133–155 5.6 2–13 3.8 1–11 
Holstein × Swiss 

Fleckvieh 
148 140–155 4.0 2–6 2.2 1–4  
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2.2.1. Acceleration data 
Acceleration data was recorded along three Cartesian axes (x, y, and 

z) at ~20 Hz (512 * 26− 1 Hz) using MSR 145 data loggers with a tri-axial 
accelerometer (MSR Electronics GmbH, Seuzach, Switzerland; hereafter 
referred to as ‘sensors’). Data was stored on the 30 MB internal memory 
of the sensor. With a sampling frequency of 20 Hz, the battery life of the 
sensors was longer than a week. The memory capacity was the limiting 
factor during data collection, since the memory filled up before battery 
life was depleted. The working range of the accelerometers was ±15 g. 
Each cow was equipped with four sensors (Fig. 3a): one on the left hind 
leg (LHL), one on each front leg (RFL and LFL), and one on the left side of 
the head (H). Sensors LHL, RFL, and LFL were mounted on the outward- 
facing side of the metatarsus using a piece of foam and self-adhesive 
bandage (Fig. 3b). Sensor H was placed inside a leather pouch 
attached to a halter. All sensors were attached when the cows were fixed 
in the feeding rack during the morning feeding. The recordings started at 
0600 h the next morning, giving the cows one day to get used to the 
sensors and relieve potential stress effects of mounting the sensors. Re-
cordings stopped at 1600 h on the same day, and sensors were removed 
the next morning, read out, and set up for a new recording. Sensors’ 
batteries were recharged to full capacity during the data readout. Sensor 
recordings were made on 22 individual days, each time with 10 cows. 

2.2.2. Video data 
Two video cameras (Bascom 4XB40K, Bascom, Vianen, The 

Netherlands) were permanently installed at a height of four metres on 
opposite sides of the barn so that all cubicles were visible from both 
cameras. Cameras were connected to a well-accessible recorder (Bascom 
R4XK, Bascom, Vianen, The Netherlands). Continuous video recordings 
were made simultaneously to the collection of accelerometer data. The 
cows were marked with a number on the flank (RAIDEX animal marking 
spray) to identify individuals from the video footage (Fig. 3a). 

2.3. Data pre-processing 

2.3.1. Identifying and cutting out posture transitions 
Data pre-processing was largely done in R (v.4.2.0; [37]). First, lying 

down and standing up events were identified from the signal of the 
accelerometer mounted on the left hind leg using the workflow of the 
triact R package (v.0.2.0; [38]) with default parameters, apart from 
employing the add_lying method with a window size of 25 s for the 
median filter (window_size = 25) and no minimum lying bout duration 
(minimum_duration_lying = 0). The triact R package uses a simple 
rule-based algorithm to differentiate between standing and lying posture 
based on which axis of the leg-mounted sensor gravitation loads. In 
total, 560 lying down events and 569 standing up events were identified. 
The number of lying down and standing up events recorded per cow 

ranged from 2 to 26 (median: 11) and 2 to 33 (median: 12), respectively. 
Based on the maximal duration (87 s) observed in the videos, a time 

window from 60 s before to 30 s after (90 s in total) the time of posture 
transition as identified using triact was chosen to cut out lying down 
events. Standing up events (max. observed duration 54 s) were cut out 
from 45 s before to 15 s after (60 s in total) the time identified by triact. 
This resulted in time series lengths of 1772 and 1182 data points for 
lying down and standing up events, respectively. 

2.3.2. Video labelling 
Lying down and standing up events in the videos were located using 

the timestamps obtained with the triact R package (see Section 2.3.1) 
and labelled using the scoring system proposed by Zambelis et al. [8] 
and the behaviors observed by Dirksen et al. ([7]; Table 2). The observer 
(S.P.B.) had a background in observing animal behavior and was trained 
by an experienced scientist (P.S.) to assess the specific cow behaviors 
relevant in this study. To determine intra-observer reliability, the 
observer scored the same set of 40 videos (20 lying down and 20 
standing up movements) once before and once after the video labelling 
(three months in between). The level of agreement was almost perfect 
(Cohen’s Kappa κ = 0.96; [39]). If a behavior was not clearly identifiable 
owing to poor video footage (e.g. too dark, too far away from camera), it 
was not labelled but instead noted as missing value and later excluded 
from the dataset. The number of observations of each behavior, the class 
distributions, and the number of different cows that performed the be-
haviors in each class are given in Table 2. Lorenz curves indicating 
which percentage of cows performed which proportion of observations 
in each class are shown in Supp. Fig. 1B and C. 

2.4. Model development and performance evaluation 

Model development was done in Python 3.7, using the machine 
learning framework scikit-learn v.1.0.1 [40] together with its compan-
ion packages imbalanced-learn v.0.9.0 [41], sktime v.0.8.1 [42], and 
sktime-dl v.0.4.0 (github.com/sktime/sktime-dl). Models were trained 
via Microsoft Azure Machine Learning Studio on F72s_v2 compute in-
stances, apart from the GPU-based training of InceptionTime, which was 
conducted on NC4as_T4_v3 compute instances equipped with an NVidia 
T4 GPU. 

The detection of atypical lying down and standing up behaviors from 
tri-axial accelerometer data can in our case be described as a multivar-
iate times series classification (MTSC) task with n dimensions equal to 
three (axes) times the number of sensors. Individual MTSC models were 
developed to detect each atypical behavior. Of the four sensors attached 
to different body parts, between one and three sensors were used for 
training the classifiers (Table 2). Sensors were selected based on a pre-
liminary analysis where all possible sensor combinations were system-
atically tested (MiniRocket models without hyperparameter tuning and 
balanced accuracy as performance metric). Reducing the number of 
sensors was intended with regard to the applicability of the proposed 
automated detection system. Therefore, using a smaller subset of sensors 
with similar performance was preferred over using a larger subset or all 
sensors, respectively. For both lying down and standing up, class dis-
tributions of Non-species-specific and Interruption were imbalanced to 
such an extreme that classifiers could not be fitted for these atypical 
behaviors (Table 2). 

2.4.1. Machine learning models 
Three recently proposed MTSC algorithms that are among the best 

performing algorithms according to common domain-agnostic bench-
marks were compared: MiniRocket [43], HIVE-COTE 2.0 [44], and 
InceptionTime [45]. 

MiniRocket is a transform that generates features by transforming 
the input time series using a large number of convolutional kernels (104 

kernels). These features are subsequently used to train a linear classifier 
such as a Ridge regression classifier [43]. MiniRocket has a remarkably 

Fig. 1. Lying cubicle design and dimensions (partition type Liberty, Krieger AG, 
Ruswil, Switzerland). 
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low computational cost, while achieving high classification perfor-
mances. HIVE-COTE 2.0 is a meta ensemble classifier that combines four 
TSC models that use features from different data domains: the 
shapelet-based Shapelet Transform Classifier, the interval-based Diverse 
Representation Canonical Interval Forest Classifier, the 
convolution-based Arsenal (ensemble of Rocket transforms, the prede-
cessor of MiniRocket), and the dictionary-based Temporal Dictionary 
Ensemble. Each classifier is trained independently and makes a predic-
tion as probability estimate. The probabilities are then combined and 
weighted by an estimate of the quality of each model to make a final 
prediction [44]. HIVE-COTE 2.0 is one of the most accurate TSC models 

currently available, but its computational costs are excessive. Incep-
tionTime is a recent deep learning model for TSC. It is an ensemble of 
five deep Convolutional Neural Network models, each with the same 
architecture but different randomly initialised weights [45]. Each 
network is composed of a stack of multiple Inception modules. The core 
idea of these modules is that multiple filters of varying lengths are 
applied simultaneously. By stacking several of them, the network is able 
to extract latent hierarchical features of multiple resolutions [45]. 
InceptionTime has been applied to detect arm motor impairment from 
accelerometer bracelets worn by humans [46]. 

In addition to these three recently proposed algorithms, K-Nearest 

Fig. 2. Workflow used to develop classification models for detecting atypical behaviors performed by dairy cows during lying down and standing up events from 
accelerometer data. CV = cross-validation. 
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Neighbours with Dynamic Time Warping as distance measure (DTW +
KNN) was applied [47]. This has long been considered as ‘gold-standard’ 
and is now a popular TSC benchmark [36]. Lastly, a Dummy classifier 
that ignores the input and always predicts the majority class in the 
training dataset was used as a baseline to contrast with the more com-
plex classifiers. 

2.4.2. Model development 
A nested cross-validation (CV) strategy was used with an outer loop 

exclusively serving the purpose of evaluating the models’ generalization 
performance and an inner loop for hyperparameter tuning (Fig. 2; [48]). 
This strategy prevents any leakage of information from the test dataset 
into the model and thus allows an unbiased estimate of the model’s 
generalization performance [49]. In the inner CV loop, hyperparameter 
values (grid search) were evaluated using stratified group 5-fold CV. Each 
individual cow was considered as a group to ensure that data from the 
same cow were present exclusively in either the training or the tuning 
dataset. Additionally, the stratification ensured that percentages of ob-
servations from each class were preserved in each fold. Because be-
haviors were imbalanced to different extents, each training dataset was 
randomly oversampled to equalise the number of observations of the 
different classes. 

Hyperparameter values explored in hyperparameter tuning are listed 
in Supp. Table 1. Due to its excessive computational cost, HIVE-COTE 
2.0 was used with default hyperparameters without tuning. For these 
models, the inner loop was therefore obsolete and the strategy reduced 
to non-nested CV. Because behaviors were imbalanced to different ex-
tents and all classes were equally important, balanced accuracy was used 
as metric for model performance during tuning as well as during model 
evaluation (see next section). Balanced accuracy is insensitive to 
imbalanced class distributions, because it is the arithmetic mean of 

Fig. 3. (a) Sensors were attached to the left hind leg (LHL) and both front legs 
(RFL and LFL) with self-adhesive bandage, and to the left side of the head using 
a halter (H). (b) Detailed attachment of sensor LHL and orientation of the 
recording axes. 

Table 2 
Ethogram of atypical behaviors performed by dairy cows during lying down and standing up events (adapted from [7,8]). Number of observations, class distributions, 
number of different cows that performed the behaviors in the classes, the number of observations that were not clearly identifiable and therefore excluded from the 
dataset (‘NA’), and the sensors selected to detect the behaviors.  

Behavior Definition No. of observations 
(distribution in %) [No. of 
cows] 

Selected sensor(s)1,2 

Lying down    
Non-species-specific (yes/no)3 Cow first lowers the hindquarters and then the forequarters (‘dog-sitting’) Yes: 0 (0%) [0] 

No: 559 (100%) [48] 
NA: 1 [1] 

– 

Interruption (yes/no) Carpal joints touch the ground, but the lying down movement is then 
interrupted by raising from the carpal joints 

Yes: 2 (0.4%) [2] 
No: 557 (99.6%) [48] 
NA: 1 [1] 

– 

Repeated stepping with front legs 
(yes/no) 

Stepping in place with front legs more than two times before the lying down 
movement 

Yes: 61 (11.2%) [24] 
No: 483 (88.8%) [47] 
NA: 16 [13] 

LHL, RFL, LFL 

Extensive inspection (yes/no) Head lowered and sweeping sideways (while sniffing the bed surface) more 
than two times before the lying down movement 

Yes: 137 (24.9%) [45] 
No: 414 (75.1%) [48] 
NA: 9 [6] 

H 

Pawing (yes/no) Pawing with front leg (possibly displacing bedding material) before the 
lying down movement 

Yes: 47 (8.6%) [20] 
No: 498 (91.4%) [48] 
NA: 15 [13] 

LHL, RFL, LFL 

Standing up    
Non-species-specific (yes/no)4 Cow first raises the forequarters and then the hindquarters (‘horse-like 

rising’) 
Yes: 1 (0.2%) [1] 
No: 568 (99.8%) [48] 
NA: 0 [0] 

– 

Interruption (yes/no) Hindquarters lifted from the ground, but standing up movement is then 
interrupted by lowering the hindquarters (to the same or other side of the 
body) 

Yes: 2 (0.4%) [2] 
No: 567 (99.6%) [48] 
NA: 0 [0] 

– 

Hesitant head lunge (yes/no) Hesitant, interrupted, or repeated motion of the head during the head lunge 
movement 

Yes: 149 (26.2%) [37] 
No: 419 (73.8%) [45] 
NA: 1 [1] 

LHL, H 

Sideways head lunge (yes/no)5 Head lunge movement is directed sideways by bending the head and neck 
to the side 

Right: 200 (35.5%) [46] 
Left: 185 (32.8%) [44] 
Straight: 179 (31.7%) [43] 
NA: 5 [5] 

LHL, H 

Crawling backwards (yes/no) Backwards movement on carpal joints after the head lunge Yes: 71 (13.0%) [21] 
No: 477 (87.0%) [48] 
NA: 21 [16] 

LHL, RFL, LFL  

1 Dash indicates that no models were developed for the atypical behavior owing to too imbalanced class distribution. 
2 LHL = left hind leg, RFL = right front leg, LFL = left front leg, H = head. 
3 In species-specific lying down posture transitions, cows first drop onto their carpal joints and then lower their hindquarters. 
4 In species-specific standing up posture transitions, cows first lift their hindquarters during the head lunge and then rise from their carpal joints. 
5 Models were trained on the three classes left, right, and straight, and predictions were reclassified to yes (right and left) and no (straight; see Section 2.4.3). 
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sensitivity and specificity (Eq. 1, [50]). 

Balanced Accuracy =
sensitivity + specificity

2
(1)  

2.4.3. Performance evaluation 
The outer CV loop served the purpose of evaluating model general-

ization performance (Fig. 2). As with the inner loop, folds were obtained 
using stratified group 5-fold CV with cows as groups. To ensure unbiased 
comparison, the same set of folds were used when comparing models. 
For each outer fold, the model with the best hyperparameter values, as 
determined in the corresponding inner loop, was fitted to the entire 
training dataset and evaluated on the test dataset using balanced accu-
racy, and additionally accuracy, F1 score, precision, and recall. Gener-
alization performance and model robustness were then determined as 
mean and standard deviation, respectively, of these metrics across the 
five outer folds. Model robustness refers to the degree to which perfor-
mance is affected when changes are made to the training dataset. Side-
ways head lunge was trained on three classes (straight, left, and right; see 
Table 2), but predictions were reclassified as yes or no. Preliminary tests 
revealed that exploiting this additional information on the direction 
increased performance for the final prediction of the binary labels as 
compared with using the binary labels for training directly. Finally, 
differences in performance between classifiers were evaluated using 
Bayesian correlated t-tests (hereafter simply refererred to as ‘correlated 
t-tests’; [51]) with the two_on_single function of the baycomp Python 
package (v.1.0.2). Only differences of Bayes factor larger than 101/2 

were considered as substantial evidence for a performance difference 
between models [52,53]. 

2.5. Effect of training dataset size and accelerometer sampling frequency 

MiniRocket was selected for further analysis because it was found to 
be comparatively well performing and remarkably fast to train. To assess 
whether more data would increase model performance, learning curves 
were generated by fitting MiniRocket models on subsets of the training 
dataset of varying sizes (10% to 100% of the full dataset in 20 steps). 
Additionally, the trade-off between accelerometer sampling frequency 
and classifier performance was investigated by fitting MiniRocket 
models on down-sampled datasets. This trade-off is of interest because a 
lower sampling frequency implies a lower power consumption and less 
data to be stored on the device, which in turn eases limitations of 

memory and battery capacity. The investigated frequencies were 20 Hz 
(original), 10, 5, 1 and 0.5 Hz. Here too, correlated t-tests were used to 
compare the generalization performance of models trained on data with 
different sampling frequencies. With a sampling frequency of 0.5 Hz, 
time series approached the minimal length for MiniRocket (nine time 
points). For both, studying the effect of training dataset size and that of 
accelerometer sampling frequency, models were fitted according to the 
outer CV loop as described above (Fig. 2), with hyperparameter values 
as found to be best for the model developed at 20 Hz with the full dataset 
(see Section 2.4.2). 

3. Results 

3.1. Performance 

Best values for hyperparameters as identified in hyperparameter 
tuning (inner CV loop) are listed in Supp. Table 3. Generalization per-
formances (outer CV loop) as described by balanced accuracies are 
shown in Fig. 4. All performance metrics (balanced accuracy, accuracy, 
F1 score, precision, and recall) are listed in Supp. Table 2. Results of 
correlated t-tests for comparison between the balanced accuracies ach-
ieved by the different classifiers are shown in Fig. 5 (comparison of 
means across folds; Bayes factor > 101/2 regarded as substantial evi-
dence for a true difference in performance). 

Crawling backwards was the best detected atypical behavior overall, 
with a balanced accuracy of 0.74 ± 0.02 (mean ± SD) with Inception-
Time (Fig. 4). Correlated t-tests showed substantial evidence for a true 
difference in performance between InceptionTime and all other classi-
fiers for detecting this behavior (Fig. 5). Hesitant head lunge was detected 
with a balanced accuracy of 0.67 ± 0.06 using MiniRocket. However, 
correlated t-tests showed no substantial evidence for a true difference in 
performance between MiniRocket and HIVE-COTE 2.0 for detecting this 
behavior Extensive inspection was also detected with a balanced accuracy 
of 0.67 ± 0.06 using MiniRocket. Correlated t-tests showed substantial 
evidence that MiniRocket outperformed the other classifiers in detecting 
this behavior. Sideways head lunge was detected with a balanced accu-
racy of 0.65 ± 0.06 using InceptionTime. Based on correlated t-tests, 
there is substantial evidence that InceptionTime performed better than 
all other classifiers for detecting Sideways head lunge. Pawing was 
detected with a balanced accuracy of 0.57 ± 0.05 by MiniRocket. 
Correlated t-tests showed substantial evidence that MiniRocket 

Fig. 4. Balanced accuracies (mean ± SD across outer cross-validation folds) in detecting the six atypical behaviors performed by dairy cows during lying down and 
standing up events with the different classifiers. Open circles show performance observed for the individual outer cross-validation folds. DTW + KNN = K-Nearest 
Neighbours model with Dynamic Time Warping as distance measure. 
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performed better than all other classifiers for detecting this behavior. 
Lastly, Repeated stepping was the most poorly detected of all behaviors, 
with a balanced accuracy of 0.56 ± 0.05 achieved with MiniRocket. 
Correlated t-tests showed no substantial evidence for a true performance 
difference between DTW + KNN, MiniRocket, and InceptionTime for 
Repeated stepping. For both Repeated stepping and Pawing, the perfor-
mance of all five outer CV folds of the HIVE COTE 2.0 models was the 
same as that of the Dummy classifier. 

3.2. Effect of dataset size on performance 

The dependency of performance of MiniRocket models on training 

dataset size is shown for each atypical behavior in Fig. 6. For Hesitant 
head lunge and Crawling backwards, performance increased with 
increasing training dataset size up to the maximum available dataset 
size. For Sideways head lunge, performance generally increased, but this 
increase was more erratic. For Extensive inspection, Pawing, and Repeated 
stepping, there was little performance increase from using 10% of the 
dataset to using all available training data. 

3.3. Effect of accelerometer sampling frequency on performance 

Dependency of performance of MiniRocket models on the acceler-
ometer sampling frequency is shown in Fig. 7. The results of correlated t- 

Fig. 5. Bayesian correlated t-tests for compari-
son of classifier performance shown in Fig. 4 (i. 
e. comparison of the means across the outer 
cross-validation folds). The colour gradient 
shows the probability that the classifier on the 
Y-axis outperforms the classifier on the X-axis. 
Probabilities corresponding to substantial evi-
dence for true under- and outperformance 
(Bayes factor > 101/2) are coloured purple and 
green, respectively. Numbers represent the 
relative differences (%) in classifier performance 
with respect to X. DTW + KNN = K-Nearest 
Neighbours model with Dynamic Time Warping 
as distance measure.   

Fig. 6. Dependency of performance of MiniRocket models (mean ± SD across cross-validation folds) on training dataset size. Red dashed line indicates performance 
of the Dummy classifier. 
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tests comparing the model performances are shown in Fig. 8, together 
with the relative differences in performance. In general, lower perfor-
mance was observed for lower accelerometer sampling frequency. 
However, correlated t-tests showed only for Repeated stepping and 
Extensive inspection substantial evidence for a true performance decrease 

when using data sampled at 10 Hz as compared with 20 Hz. For Hesitant 
head lunge and Sideways head lunge, no substantial evidence for a true 
performance decrease was found even of when using a sampling fre-
quency of as low as 5 Hz (Fig. 8). 

Fig. 7. Balanced accuracies (mean ± SD across cross-validation folds) of MiniRocket models trained on accelerometer data with different sampling frequencies. Open 
circles show the performance observed for the individual cross-validation folds. 

Fig. 8. Bayesian correlated t-test comparing performance of MiniRocket models trained on accelerometer data with different sampling frequencies shown in Fig. 7 (i. 
e. comparison of the means across the cross-validation folds). The colour gradient shows the probability that performances for the frequency on the Y-axis were 
higher than for the frequency on the X-axis. Probabilities corresponding to substantial evidence (Bayes factor > 101/2) for true under- and outperformance are 
coloured purple and green, respectively. Numbers represent the relative differences (%) in classifier performance with respect to X. 
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4. Discussion 

The aim of this research was to investigate which atypical behaviors 
performed by dairy cows during lying down and standing up are 
promising candidates to be detected using body-mounted accelerome-
ters and machine learning. A two-step approach was used: lying down 
and standing up events were first cut out of the raw accelerometer data 
using a reliable rule-based approach. Subsequently, the presence or 
absence of atypical behaviors was classified using machine learning 
models based on recent MTSC algorithms. 

Achieved balanced accuracies for the detection of the atypical lying 
down and standing up behaviors ranged from 0.56 ± 0.05 to 0.74 ±
0.02. Best performances were obtained using the MiniRocket time series 
transform and the deep learning algorithm InceptionTime, which both 
have not previously been applied to classify time series data from sen-
sors worn by dairy cows. The obtained performances are not yet satis-
factory for application in the evaluation of new housing installations 
with regard to cow welfare. Nonetheless, Hesitant head lunge and 
Crawling backwards, appear to be the most promising candidates for 
accelerometer-based detection. These atypical standing up behaviors 
were detected with balanced accuracies of 0.67 and 0.74, respectively, 
and their learning curves indicated that more training data could further 
increase this performance (Fig. 6). 

The two atypical behaviors identified as promising for 
accelerometer-based detection have the most direct welfare implications 
for dairy cows. Hesitant head lunges are indicators of inadequate head 
lunge space, because the available lunge space and the shape of the 
cubicle partition primarily determine how cows perform the head lunge 
[4]. Inability to use the head properly as counterweight directly affects 
animal welfare by limiting the cow’s ability to rise up [5]. Crawling 
backwards occurs when cows lie to far forwards in cubicles. It exerts 
great force on the knee joints, which can result in discomfort and leg 
injuries [4,54]. Because this behavior is usually caused by inadequate 
stall dimensions or poor placement of the neck rail, it is highly relevant 
to farmers and producers of dairy cow housing installations [55]. 

The prevalence of the poorly detected behaviors, Repeated stepping 
and Pawing, is not only related to the design and configuration of fixed 
cubicle elements, but also to the quality of the lying place. Moreover, 
these behaviors are mainly indicators of hesitance to lie down and are 
even occasionally observed on pasture [4,8,56]. Although hesitation 
does not directly cause physical discomfort or injuries, it could lead to 
cows lying down less often and for less time [4]. Therefore, it is still 
highly relevant to assess indicators of hesitation with regard to dairy 
cow welfare. Extensive inspection, also indicative of hesitance [57], was 
better detected than Pawing and Repeated stepping and could be a more 
suitable behavior to assess hesitation before lying down. 

The generally not satisfactory detection performances raise the 
question whether behaviors as defined in an ethogram designed for 
human observers are suitable to be detected by machine learning algo-
rithms from accelerometer or other sensor data. For example, Pawing is 
described as pawing the ground with a front leg before the lying down 
movement [7]. However, this behavior was also labelled as present 
when the ground was pawed multiple times within one lying down 
event, possibly with both front legs. Even though one and multiple oc-
currences performed with either of the front legs are all evident cases of 
Pawing to a human observer, the variety in actual movements performed 
by the cow might have prevented the machine learning algorithm from 
effectively learning the generalizable patterns related to the target 
behavior. Surprisingly, Sideways head lunge was not among the best 
detected behaviors. Here, superior model performance was expected 
compared to detection models for other, seemingly more complex be-
haviors, such as Extensive inspection. This may be due to the lack of a 
clear boundary between a straight neck and a slightly bent neck in the 
ethogram (Table 2), which compromised label quality. However, Side-
ways head lunge was better detected when the model was trained on 
three classes specifying the actual direction of the head movement than 

when trained on the binary labels (see Table 2). This illustrates that 
redefining parts of the ethogram may help to increase detection per-
formance for certain atypical behaviors. 

In addition, it was occasionally impossible for the human observer to 
determine the presence or absence of atypical lying down and standing 
up behaviors beyond doubt. For example, cows occasionally performed 
multiple head lunge attempts within one standing up event, some of 
which straight and some directed sideways, leaving the observer puzzled 
how to record one value for the event. Ambiguous cases like these 
introduce a degree of error in the labels. Again, redefining the ethogram 
might alleviate the problem – classifying behaviors in more detail, for 
example with additional categories, could improve the quality of the 
labels and model performance. 

Differences in class imbalance might partly explain why some 
atypical behaviors were better detected than others. The least well 
detected behaviors, Repeated stepping and Pawing, were the least often 
performed ones, with class distributions being around 1:10 (presence: 
absence, Table 2). This imbalance in combination with a limited amount 
of data leaves only few instances of the presence class for the machine- 
learning models to learn generalizable patterns in the data related to the 
behavior. The random oversampling used in the study (Fig. 2) does not 
discard any potentially useful information from the already limited 
dataset (as opposed to random undersampling). However, as it balances 
the class distribution by duplicating instances from the minority class, it 
may lead to overfitting if there are very few observations of the minority 
class [58]. 

Additionally, there were large inter-individual differences in class 
balances between cows. For example, Pawing and Repeated stepping were 
never performed by approximately half of the cows included in the 
study, whereas other individuals performed these behaviors often (Supp. 
Fig. 1B). These differences could have caused the machine-learning 
models to learn patterns specific to the individual cows and not 
related to the behavior in a generalizable manner. Consistent with this 
rationale, for the better-detected behaviors related to the head lunge, 
inter-individual distribution was more favourable because at least 75% 
of all cows performed these behaviors at least once. However, the best- 
detected behavior overall, Crawling backwards, had the largest inter- 
individual imbalances (Supp. Fig. 1B). 

Substantially more data and employing random undersampling to 
balance class distributions, potentially even per cow, could improve 
detection performance. A sound strategy would be to collect more data 
on different farms (with different cubicle partitions and dimensions), 
where the atypical behaviors may be more common than in the research 
barn in this study. 

In the further development of this method, the sampling frequency of 
the sensors could likely be reduced, saving battery life and storage ca-
pacity, without substantially sacrificing model performance. Sub-
sampling the time series data from 20 to 5 Hz did not decrease the 
performance of MiniRocket models for the identified most promising 
behaviors, Hesitant head lunge and Crawling backwards. Moreover, for 
behaviors where lowering the sampling frequency to 10 Hz negatively 
affected performance, it decreased only by 4% as compared with 20 Hz. 

5. Conclusion 

A novel method was investigated to detect atypical lying down and 
standing up behaviours in dairy cows using accelerometers and machine 
learning. Overall, achieved detection performances for the atypical lying 
down and standing up behaviours were not yet satisfactory for appli-
cation in the evaluation of new housing installations with regard to cow 
welfare. However, two behaviours associated with a hindered standing 
up movement were identified as promising candidates for 
accelerometer-based detection using machine learning. Hesitant head 
lunge and Crawling backwards were detected by balanced accuracies of 
0.67 and 0.74, respectively, and their learning curves indicated that 
more training data might further increase model performance. 
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Therefore, these behaviours should be considered in the further devel-
opment of an accelerometer-based method to assess standing up be-
haviours of dairy cows. The generally rather poor detection performance 
of atypical lying down behaviours might indicate that behaviours, as 
described in an ethogram designed for human observers, might often not 
be suitable for detection by machine learning. Detection performances 
may be improved by adjusting the ethogram with machine learnability 
in mind. Issues with imbalanced class distributions and inter-individual 
differences could potentially be alleviated by collecting substantially 
more data in stables with different lying cubicles. When developed 
further, the proposed method could improve efficiency and promote 
objectivity in the evaluation procedure of dairy cow housing in-
stallations by complementing human observations. 
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