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accessions held in the Swiss National Genebank using a 15K 
wheat SNP array. The material included both spring and 
winter wheats and consisted of old landraces and modern 
cultivars. Genome- and sub-genome-wide analyses revealed 
that spelt and bread wheat form two distinct gene pools. 
In addition, we identified bread wheat landraces that were 
genetically distinct from modern cultivars. Such accessions 
were possibly missed in the early Swiss wheat breeding 
program and are promising targets for the identification of 
novel genes. The genetic information obtained in this study 
is appropriate to perform genome-wide association studies, 
which will facilitate the identification and transfer of agri-
culturally important genes from the genebank into modern 
cultivars through marker-assisted selection.

Introduction

Hexaploid wheat (Triticum aestivum) is one of the most 
important global crops (FAO 2015). The most widely culti-
vated subspecies is bread wheat (T. aestivum ssp. aestivum). 

Abstract 
Key message High‑throughput genotyping of Swiss 
bread wheat and spelt accessions revealed differences in 
their gene pools and identified bread wheat landraces 
that were not used in breeding.
Abstract Genebanks play a pivotal role in preserving the 
genetic diversity present among old landraces and wild 
progenitors of modern crops and they represent sources of 
agriculturally important genes that were lost during domesti-
cation and in modern breeding. However, undesirable genes 
that negatively affect crop performance are often co-intro-
duced when landraces and wild crop progenitors are crossed 
with elite cultivars, which often limit the use of genebank 
material in modern breeding programs. A detailed genetic 
characterization is an important prerequisite to solve this 
problem and to make genebank material more accessible to 
breeding. Here, we genotyped 502 bread wheat and 293 spelt 
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Spelt (T. aestivum ssp. spelta) is a close relative of bread 
wheat. It was the main wheat subspecies grown in Central 
Europe since the Bronze Age before bread wheat cultivation 
started to expand from the beginning of the 20th century 
(Akeret 2005; Jacquemin 2011; Schilperoord 2013). Today, 
spelt is only grown as a niche product in Central Europe. 
In contrast to free-threshing bread wheat, spelt is hulled 
and the kernels are surrounded by tenacious glumes. Both 
wheat subspecies can be interbred and crosses between win-
ter wheat and spelt were systematically explored to improve 
the agronomical value of spelt (Winzeler et al. 1991; Sie-
dler et al. 1994). On the other hand, spelt carries genes that 
were beneficial for bread wheat improvement (Kleijer et al. 
2012). For example, the stripe rust resistance gene Yr5, first 
described in spelt accessions, was transferred into bread 
wheat (Macer 1966; Sun et al. 2002). Similarly, the leaf rust 
resistance gene Lr65 was identified in a Swiss spelt from 
where it was subsequently introduced into the bread wheat 
gene pool (Mohler et al. 2012).

Domestication of wild progenitors of modern wheat 
started in the near east around 10,000 years ago (Salamini 
et al. 2002). Compared to wild wheat relatives and old lan-
draces, modern cultivars show a lower genetic diversity. 
This genetic bottleneck is due to the limited number of wild 
wheat progenitors and landraces that gave rise to modern 
wheat cultivars (Tanksley and McCouch 1997; Reif et al. 
2005b; Feuillet et al. 2008; Fu and Somers 2009). Several 
strategies are used to counteract this problem and to increase 
the genetic diversity in wheat breeding programs. For exam-
ple, tetraploid wheat can be crossed with the wild diploid 
D-genome progenitor Aegilops tauschii, resulting in syn-
thetic hexaploid wheat. This approach was widely explored 
by the International Maize and Wheat Improvement Center 
(CIMMYT) and other breeding programs (Mujeeb-Kazi 
et al. 1996; Dreisigacker et al. 2008). Another approach to 
increase diversity in modern cultivars is through the use of 
the genetic diversity present in landraces and wild wheat 
progenitors (Reynolds et al. 2006). Landraces are of inter-
est to breeders because they often carry genes with benefi-
cial effects that were not introduced into elite cultivars. For 
instance, the Swiss winter bread wheat landrace Muenster-
taler was identified as a source of resistance to snow molds 
(Gaudet and Kozub 1991) and Swiss barley landraces from 
mountainous regions were identified as sources of stem rust 
resistance (Steffenson et al. 2016).

The value of landraces and wild wheat progenitors has 
long been recognized, which resulted in the systematic col-
lection of plant genetic resources. Today, genebanks world-
wide maintain this agricultural diversity by storing and 
propagating seeds of hundreds of thousands of wheat acces-
sions (Börner et al. 2014). Hence, genebanks provide an 
enormous resource that can be used in research and breeding 
to make wheat more resilient to pests, diseases, or adverse 

climatic conditions. In Switzerland, this task is managed by 
the Swiss National Genebank, which has been established 
in the early 1900s. Until 1950, the focus of the bread wheat 
collection was on Swiss landraces, while spelt was also col-
lected from Germany, Belgium, Austria, Liechtenstein, and 
Spain. Today, the Swiss genebank contains the largest spelt 
collection worldwide with more than 2200 accessions (Klei-
jer et al. 2012). In addition, the genebank incorporates more 
than 5600 bread wheat accessions.

For the most efficient use of genebank material it is 
important to have detailed genetic information. For exam-
ple, breeders may be interested in using landraces that are 
genetically very different from current elite cultivars. Sin-
gle nucleotide polymorphisms (SNPs) distributed across the 
entire genome represents a valuable tool to assess genome-
wide diversity. It is nowadays possible to detect thousands of 
SNPs in a large number of accessions with high-throughput 
technologies like SNP arrays or genotyping-by-sequencing 
(GBS) in a reasonable time (Elshire et al. 2011; McCouch 
et al. 2012; Wang et al. 2014). SNP arrays consist of a pre-
defined set of polymorphisms, have low error rates and 
low computational needs during data analysis. However, 
data generated by SNP arrays may suffer from an ascer-
tainment bias that is caused by the selection of polymor-
phisms during array design (Albrechtsen et al. 2010). The 
15K SNP array used in this study was mainly designed with 
polymorphisms identified in bread wheat and durum wheat 
accessions (Wang et al. 2014). The array consists of 13,006 
gene-associated SNPs and was already successfully applied 
to genotype durum and bread wheat (Merchuk-Ovnat et al. 
2016).

Here, we used the 15K wheat SNP array to genotypi-
cally characterize a core collection of 502 bread wheat and 
293 spelt accessions of the Swiss National Genebank. The 
collection represents the history of Swiss wheat breeding 
and farming from the early 20th century to today. We show 
that bread wheat and spelt accessions represent two separate 
gene pools based on a large number of genome-wide mark-
ers. Based on the genotypic data, we identified two groups 
of bread wheat landraces that are genetically different from 
modern bread wheat cultivars. The obtained genotypic data 
can be used to narrow down the number of accessions to 
be used in breeding programs or to select accessions for 
genome-wide association studies based on their genetic 
diversity.

Materials and methods

Plant material

Seven-hundred-ninety-five hexaploid wheat accessions (502 
T. aestivum ssp. aestivum and 293 T. aestivum ssp. spelta) 
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from the Swiss National Genebank were used in this study 
(Online resource 1). Among the bread wheat accessions 
were 367 landraces, 5 breeder’s lines, and 120 cultivars 
from Switzerland. The remaining accessions came from 
Italy, Japan, USA, Russia, Mexico, Turkey (one cultivar per 
country), and France (one landrace, three cultivars). Acces-
sions are defined as landraces if they were collected prior 
to 1950. Cultivars are officially registered accessions and 
breeder’s lines originated from breeding or research projects. 
Cultivars and breeder’s lines are both representing modern 
material and were grouped together, i.e., each bread wheat 
accession belongs to one of the following groups: winter 
bread wheat cultivar, winter bread wheat landrace, spring 
bread wheat cultivar or spring bread wheat landrace (Supp. 
Tab. S1).

The separation of spelt accessions into landraces and 
cultivars is difficult, because registered spelt cultivars were 
often collected before 1950 and can also be considered as 
landraces. In addition, modern spelt lines are in general 
crosses of spelt with bread wheat accessions. Therefore, we 
grouped the spelt accessions into winter spelt and spring 
spelt (242 accessions), representing accessions collected 
before 1950, and into spelt/wheat crosses (51 accessions) 
representing accessions originating from breeding or 
research programs (Supp. Tab. S1).

DNA extraction and genotyping

DNA from one plant per accession was extracted as 
described previously (Stein et al. 2001). Accessions were 
genotyped with an Illumina Infinium 15K wheat SNP array 
(TraitGenetics GmbH, Gatersleben, Germany) consisting of 
13,006 SNPs. Haplotype-specific SNP markers were selected 
by allele frequency, functionality and sub-genome specificity 
in hexaploid wheat from the wheat 90K iSelect assay (Wang 
et al. 2014). Eleven spelt and eleven wheat accessions were 
genotyped twice. Ninety-eight SNPs returned missing data 
in all accessions and 26 bread wheat and 11 spelt acces-
sions (including one sample of a replicate) had missing data 
for all markers. These 37 accessions were excluded from 
the analysis. For the replicates, we kept the sample with 
fewer missing data and fewer heterozygous SNP calls for our 
analyses. Finally, 283 spelt and 476 bread wheat accessions 
were further analyzed. Genotyping data are deposited on 
the website of the Swiss National Genebank (bread wheat: 
https://www.bdn.ch/lists/1701/export/, spelt: https://www.
bdn.ch/lists/1699/export/) and in Online resource 2.

A randomly selected set of 29 wheat and 30 spelt acces-
sions were in addition genotyped using GBS (Supp. Tab. 
S2; Elshire et al. 2011; Poland et al. 2012). GBS was per-
formed by the Genomic Diversity Facility at Cornell Uni-
versity, USA, using PstI as restriction enzyme. SNP call-
ing was performed using the TASSEL 5 GBS v2 Pipeline 

of the TASSEL package (Glaubitz et al. 2014) using the 
TGACv1 assembly of wheat as reference (Clavijo et al. 
2017).

Data analysis

Most analyses were performed in Python v3.4.3 using 
the libraries scipy v0.17.0, numpy v1.11.0 (van der Walt 
et al. 2011), sklearn v0.17.1 (Pedregosa et al. 2011), pan-
das v0.18.0 (McKinney 2010), matplotlib v1.5.1 (Hunter 
2007) and ipython v4.2.0 (Perez and Granger 2007).

Genetic differentiation was determined using a simple 
Hamming distance (Hamming 1950; Wang et al. 2015), Rog-
ers’ distance (Rogers 1972; Reif et al. 2005a), discriminant 
analysis of principal components (DAPC), and the fixation 
index  FST. Because the original marker data were notated in 
the IUPAC notation (Cornish-Bowden 1985), we converted 
each marker data point into a two character code, e.g., ‘A’ to 
‘AA’, ‘K’ to ‘GT’ and concatenated them in the same order 
for each accession to calculate the Hamming distance. The 
distance between two accessions was calculated as the num-
ber of mismatches between those converted strings. Missing 
data were treated like matches. For the calculation of Rog-
ers’ distance, missing data were imputed with the mean of 
all alleles. Rogers’ distance was then calculated with the 
R-package poppr v2.5 (Kamvar et al. 2014). R package 
adegenet v2.0.1 was used for DAPC (Jombart et al. 2010). 
DAPC combines a principal component analysis (PCA) 
with linear discriminant analysis. While PCA is based on 
the variation in the whole dataset, DAPC results in cluster-
ing the data in a way that maximizes the variation between 
and minimizes variation within clusters. Pairwise FST val-
ues were calculated between the seven classes of accessions 
using the Weir–Cockerham method implemented in vcftools 
v0.1.15 (Weir and Cockerham 1984; Danecek et al. 2011). 
FST is a measure of population differentiation that, compared 
to PCA, is found to be less affected by a potential ascertain-
ment bias in SNP array data (Albrechtsen et al. 2010). Prin-
cipal coordinate analyses (PCoA) based on pairwise Rog-
ers’ distances and mean pairwise FST values were performed 
with R-package ape v3.5 (Paradis et al. 2004). Nei’s GST was 
calculated using vcfR (Knaus and Grünwald 2017).

Linkage disequilibrium (LD) of SNPs with a minor 
allele frequency greater than 0.05 was estimated by cal-
culating the squared correlation coefficients (r2) between 
genotypes with vcftools v0.1.15 (Danecek et al. 2011). 
To determine LD decay the r2 values were plotted against 
genetic distances and an exponential curve was fitted in 
the data.

Phylogenetic trees were constructed using R packages 
adegenet v2.0.1 and poppr v2.3.0 with 1000 bootstrap rep-
licates (Jombart and Ahmed 2011; Kamvar et al. 2014).

https://www.bdn.ch/lists/1701/export/
https://www.bdn.ch/lists/1699/export/
https://www.bdn.ch/lists/1699/export/
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Genome‑wide association study

A genome-wide association study (GWAS) was performed 
using EMMAX (Kang et al. 2010) and the binary trait ‘type’ 
(winter–spring) with the bread wheat accessions. Heterozy-
gous SNPs were set to missing, and SNPs with more than 
20% missing data were excluded. The applied genetic map 
consisted of 9809 SNPs at 2887 different genetic positions 
(Wang et al. 2014). Only one SNP was kept, if SNPs at the 
same genetic position had equal genotypes. Missing data 
was then imputed by MACH1 (Li et al. 2010) and input files 
for EMMAX were generated with PLINK 1.9 (http://pngu.
mgh.harvard.edu/purcell/plink/; Purcell et al. 2007) filtering 
out SNPs with minor allele frequencies below 5%. Bald-
ing–Nichols kinship matrix was used to account for popula-
tion structure in the GWAS. Manhattan plot was made with 
R package qqman (Turner 2014). SNP reads, i.e., sequences 
around SNPs, were extracted from Table S5 of Wang et al. 
(2014).

Results

Genetic distances reveal groups of highly similar 
accessions

Genotyping with the 15K wheat SNP array was successful 
for 476 bread wheat and 283 spelt accessions and resulted in 
12,895 polymorphic SNPs across all accession, 12,892 poly-
morphic SNPs across the bread wheat accessions alone, and 
11,662 SNPs across the spelt accessions alone. Missing data 
and heterozygous SNP calls were only slightly higher in the 
spelt than in the bread wheat accessions (Wilcoxon rank sum 
test: p < 0.001 in both cases; Supp. Fig. S1). Mean heterozy-
gosity rates in bread wheat and spelt were 0.5% and 0.4% 
and the mean missing data rate was 0.6% in both subsets. 
Missing data rates positively correlated with heterozygosity 
rates, which likely reflects problems during probe annealing 
of these accessions rather than actual heterozygosity (Supp. 
Fig. S1; Mengistu et al. 2016).

Hamming and Rogers’ distances allow to calculate the 
dissimilarity between individual accessions and conse-
quently provide an estimate for the relatedness of acces-
sions. The mean Hamming and Rogers’ distances between 
the bread wheat accessions (8553.7 s.d. 495.7 and 0.335 s.d. 
0.053, respectively) were higher than the mean distances 
between the spelt accessions (4747.7 s.d. 1027.2 and 0.187 
s.d. 0.066, respectively). Winter and spring spelt accessions 
were more similar to each other than to accessions result-
ing from crosses of bread wheat and spelt or to bread wheat 
accessions (Supp. Fig. S2). Replicates of the same acces-
sions showed a high level of reproducibility (Supp. Tab. 
S3). The mean Hamming distances of bread wheat and spelt 

replicates were 9.9 (s.d. 10.7) and 6 (s.d. 4), respectively. 
Based on these numbers, we selected a Hamming distance 
threshold of 25 to identify highly similar accessions across 
the bread wheat and spelt collections. This revealed 18 and 
21 groups of highly similar spelt and bread wheats consist-
ing of 63 and 44 accessions, respectively (Online resource 
3). Hence, the fraction of highly similar accessions was esti-
mated at 22% among the spelts and 9% among the bread 
wheats.

Our results might indicate that the spelt wheat gene pool 
analyzed in this study is genetically narrower than the bread 
wheat gene pool, which is an observation that has been made 
previously (Siedler et al. 1994; Bertin et al. 2001; Blatter 
et al. 2004). Alternatively, it is possible that the lower diver-
sity of the spelt wheat gene pool resulted from an ascertain-
ment bias that is associated with the selection of polymor-
phisms to construct the 15K wheat SNP array. To check for 
a potential ascertainment bias, we randomly selected and 
genotyped a subset of 59 bread wheat and spelt accessions 
using GBS. In contrast to SNP arrays, GBS does not rely on 
a set of pre-selected SNPs and consequently is less prone to 
an ascertainment bias comparable to SNP arrays. However, 
GBS might introduce other biases related to the choice of 
the restriction enzyme (Arnold et al. 2013). The GBS data 
confirmed that the spelt accessions showed a lower genetic 
diversity than the bread wheat accessions (mean Hamming  
distances wheat 4012.82 s.d. 137.4; spelt 3332.95 s.d. 
383.42; mean Rogers’ distances wheat 0.179 s.d. 0.016; spelt 
0.143 s.d. 0.038).

A comparison of the minor allele frequency distribu-
tion between the 15K wheat SNP array and the GBS data 
revealed differences for bread wheat while the minor allele 
frequency distribution was more similar for spelt (Supp. Fig. 
S3). Nei’s gene diversity index  GST was higher for the SNP 
array data compared to GBS data (Supp. Fig. S4), indicating 
that the array may overestimate the diversity, probably due to 
the choice of SNPs. On the other hand, it has been reported 
that GBS underestimates diversity (Arnold et al. 2013). In 
summary, both genotyping methods revealed that the spelt 
gene pool analyzed in this study was less diverse than the 
bread wheat gene pool and we conclude that a potential 
ascertainment bias had no influence on these results.

Genetic analyses revealed two distinct gene pools 
for bread wheat and spelt

The bread wheat and spelt accessions were clearly sepa-
rated in a PCA along the first axis (Fig. 1a). This sep-
aration of bread wheat and spelt remained even after 
including a worldwide set of six spelt and 393 bread 
wheat accessions that were previously genotyped with a 
90K SNP array (Fig. 1b) (Wang et al. 2014). These data 
indicate that the separation was not due to the narrow 

http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
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geographic distribution of the bread wheat accessions in 
the Swiss genebank. Spelt/wheat crosses, i.e., spelt acces-
sions resulting from breeding programs that carry intro-
gressions of bread wheat, located between the bread wheat 
and spelt clusters. The second axis of the PCA divided 
the bread wheat accessions into spring and winter types 
(Fig. 1a). In addition to PCA, we performed DAPC, PCoA 
of pairwise mean  FST values of the different groups of 
accessions and PCoA of Rogers’ distances with the SNP 
array data. The DAPC and both PCoA analyses confirmed 
the PCA results and revealed a clear separation of bread 
wheat and spelt (Supp. Figs. S5, S6, and S7). In addition, 
analysis of the 59 accessions genotyped by GBS confirmed 
the separation of bread wheat and spelt, indicating that 
these results are not caused by genotyping biases (Supp. 
Fig. S8).

Analyses of the bread wheat accessions alone revealed a 
separation of landraces from cultivars (Fig. 2, Supp. Figs. 
S9, S10, and S11, Online resources 4 and 5). We identified 
a cluster of winter bread wheat landraces and a cluster of 
spring bread wheat landraces that were distinct from the cul-
tivars. The accessions of the two clusters originated mainly 
from mountainous regions and were most likely not used to 
generate the cultivars analyzed in our set. The accessions 
of the two clusters are also grouped together in a phylo-
genetic tree based on the genotypic data (Online resource 
6). A PCA of spelt accessions alone showed no separation 
between spring and winter spelt accessions (Fig. 3), whereas 
DAPC and PCoA revealed a minor separation of winter and 
spring types (Supp. Figs. S12, S13, and S14). Spring spelt 
accessions were grouped together in the phylogenetic tree 
(Online resource 6). In summary, these results show that 

Fig. 1  Principal component analysis of bread wheat and spelt acces-
sions. a Bread wheat (left) and spelt (right) accessions are separated 
in Swiss material. b PCA including a set of worldwide bread wheat 

and spelt accessions. 9991 SNPs that were present in both the 90K 
SNP and the 15K SNP array were considered. Each dot represents an 
accession according to the color coding given in the legend
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bread wheat and spelt wheat form discrete gene pools using 
the 15K SNP array and GBS. In addition, the identification 
of ‘unused’ bread wheat accessions confirms the usefulness 
of high-throughput genotyping of genebank material for the 
selection of accessions with potentially novel traits. 

We also performed PCA and PCoA for the three wheat 
sub-genomes individually based on 4186 A, 5418 B, and 

1342 D genome-specific SNPs. The results for the sub-
genomes were similar to the results using the entire SNP 
set (Supp. Fig. S15, Supp. Fig. S16). The separation of 
spelt and bread wheat was observed for each of the three 
sub-genomes. The separation between spring and winter 
bread wheat on the other hand was only observed for the 
A and B but not for the D sub-genome.

Fig. 2  Principal component 
analysis of bread wheat acces-
sions alone. Two clusters of 
landraces originating mainly 
from the Wallis region (winter 
accessions, circle A, Online 
resource 4) and from the Wallis 
and Graubünden regions (spring 
accessions, circle B, Online 
resource 5) show no (A) or only 
little (B) overlap to cultivars

Fig. 3  Principal component 
analysis of spelt accessions 
alone
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The SNP data set is suitable for GWAS

LD decay was calculated because the extent of LD deter-
mines the number of markers required for GWAS (Flint-
Garcia et al. 2003; Vos et al. 2017). The LD decays in the 
A and B sub-genome were similar whereas LD decayed 
slowest in the D sub-genome (Supp. Fig. S17), which is in 
agreement with previous studies (Chao et al. 2010; Wang 
et al. 2014). The LD threshold of r2 = 0.1 was reached after 
1.94 cM in the wheat data and after 6.34 cM in the spelt 
data. A conservative estimation of the genetic map size of 
wheat is ~ 4000 cM based on Wang et al. (2014). The size 
of the map, the LD decay and the number of polymorphic 
SNPs lead to the conclusion that it is possible to use our 
dataset for GWAS.

An important difference between spring and winter acces-
sions is the vernalization requirement of winter accessions, 
i.e., the need of exposure to a cold period to induce flower-
ing. We used the simple binary trait ‘type’ (spring or winter) 
to test whether the genotypic information and the SNP den-
sity of the 15K SNP array are indeed sufficient for GWAS. 
The GWAS was conducted on the bread wheat accessions 
using 9737 SNPs (Online resource 1) and returned a peak 
on chromosome 5A (Fig. 4), in the region where the main 
vernalization gene VRN1A is located (Yan et al. 2003). 
The ten SNPs with lowest p values were in the range of 
89.56–91.3 cM (map positions based on Wang et al. (2014); 

Supp. Tab. S4). The extended sequence of the top SNP 
(wsnp_AJ612027A_Ta_2_1) produced a BLAST hit on a T. 
monococcum BAC clone (GenBank: AF459639) that was 
used for positional cloning of VRN1, showing the proximity 
of the GWAS peak to VRN1 (Yan et al. 2003). These results 
demonstrate that the SNP density in our dataset is sufficient 
to perform GWAS, provided phenotypic data are available.

Discussion

Naturally occurring genetic variation offers an enormous 
potential for crop improvement. In addition, landraces pre-
served in genebanks represent an important resource to dis-
cover and introduce novel genes into modern crop cultivars 
(Gaudet and Kozub 1991; Steffenson et al. 2016). However, 
a systematic phenotypic description of the many thousand 
accessions stored in genebanks is not feasible. It is, there-
fore, important that effective choices of genebank accessions 
can be made by breeders. The genetic characterization of 
genebank material, which is relatively cheap and easy, is a 
valuable strategy to identify groups of similar accessions or 
to select landraces for phenotypic testing (Kilian and Graner 
2012; Mason et al. 2015). For example, breeders might be 
interested in testing landraces that are very diverse from 
the cultivars in a specific breeding program to maximize 
chances to identify novel genes.

Fig. 4  Manhattan plot of 
GWAS using EMMAX with 
trait ‘type’ (winter or spring 
bread wheat). The blue line 
corresponds to a p value of 
5.14 × 10−6 (Bonferroni cor-
rection at a significance level 
of 0.05)
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In our study, we found clusters of bread wheat lan-
draces that were very diverse from the modern wheat 
cultivars. A possible explanation is that these accessions, 
which originate from the mountainous regions Wallis and 
Graubünden in Switzerland, were collected in 1943, after 
the Swiss wheat breeding program started around 1900 
and these accessions were then not introduced into the 
already advanced wheat breeding program (Martinet 1907; 
Schilperoord 2006). Such accessions might be sources of 
genes controlling frost tolerance, snow molds resistance 
and early maturing. A major drawback that often limits the 
use of landraces in modern breeding is the co-introduction 
of undesired traits (Feuillet et al. 2008). In comparison to 
improved cultivars, landraces often show inferior yield, 
are tall and thus susceptible to lodging. To make landraces 
accessible for modern breeding it is essential that desired 
traits can effectively be separated from genes that nega-
tively affect crop performance. A GWAS allows identi-
fying associations between traits and molecular markers 
among hundreds of accessions. The identified markers 
can then be used to introduce desired genes into modern 
cultivars through methods such as marker-assisted back-
crossing, thereby breaking the linkage drag (Collard et al. 
2008). A GWAS relies on genome-wide distributed poly-
morphisms and accurate phenotypes. The SNPs of the 15K 
SNP array are located in genic regions. In addition, wheat 
is self-pollinating and has a larger linkage disequilibrium 
than other cereals (Cavanagh et al. 2013; Wang et al. 2014; 
Sukumaran et al. 2015). Those factors make the 15K wheat 
SNP array amenable for GWAS despite the wheat genome 
size of ~ 17 Gb and the relatively small SNP density of 
the array (1 SNP per 1.3 Mb). We showed that the amount 
and distribution of markers in our panel was sufficient to 
perform reliable genotype–phenotype analyses.

Our genetic analyses conducted with two different geno-
typing methods revealed that European spelt represents 
a gene pool that is distinct from the gene pool of bread 
wheat landraces and cultivars. This observation is consist-
ent with previous observations (Siedler et al. 1994; Blat-
ter et al. 2004; Dvorak et al. 2012). In contrast to these 
previous studies that only used few markers or short gene 
sequences, our analysis assessed the diversity of bread 
wheat and spelt on a genome-wide level with thousands of 
polymorphisms. Analyses of minor allele frequencies and 
Nei’s gene diversity index GST showed that the SNP array 
data may suffer from an ascertainment bias. However, our 
results were consistent using different analyses, inter alia 
a FST-based method which is reported to be less affected 
by a potential ascertainment bias (Albrechtsen et al. 2010), 
and an additional genotyping method. Therefore, we con-
clude that our data are not influenced by a strong ascertain-
ment bias that would affect our conclusions.

Conclusion

The main task of genebanks has traditionally been the con-
servation of agricultural diversity and genebank material 
was not very frequently used in breeding in the past. Linkage 
drag and the co-introduction of undesirable genes are prob-
ably the two most important reasons for the limited use of 
old landraces and wild wheat progenitors in modern breed-
ing. We showed that it is now feasible, with the advances 
in wheat genomics, to genotype large collections of spelt 
and bread wheat accessions from a genebank and to search 
for diverse accessions. In combination with high-precision 
phenotyping, this genotypic information can be used to iden-
tify novel genes through GWAS. These genes can then be 
transferred into modern cultivars through marker-assisted 
backcrossing, thereby avoiding linkage drag. These genomic 
advances will help to transform genebanks from ‘storage 
facilities’ into active reservoirs for plant breeding.
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