

CLA Isomers in Milk Fat from Cows Fed Diets with High Levels of Unsaturated Fatty Acids

Marius Collomb, Robert Sieber and Ueli Bütikofer

Short description of the 2 studies

1st study: only grass feeding, 10 mixed milks per altitude (45 to 88 cows)

ALTITUDES

- Lowlands (600-650 m)
- Mountains (900-1210 m)
- Highlands (1275-2120 m)

2nd study: 10 individual milks per variant;

2 weeks feeding:

- Control: Basal diet: Hay ad libitum + 15 kg fodder beet
- Supplementation of 1 kg rapeseed
- Supplementation of 1 sunflowerseed
- Supplementation of 1.4 kg sunflowerseed
- Supplementation of 1kg linseed
- Supplementation of 1.4 kg linseed

Oilseed study: Levels of the most important unsaturated FAs in the 3 oilseeds (g / 100 g of fat)

Fatty acid	Rapeseed	Sunflowerseed	Linseed
Oleic acid (C18:1 cis 9)	54.67	15.20	17.55
Linoleic acid (C18:2 cis 9 cis 12)	17.95	53.62	14.21
alpha linolenic acid (C18:3 cis 9 cis 12 cis 1	8.88 5)	0.14	46.63

Oilseed study: Daily intake of unsaturated fatty acids (g day¹ cow¹)

	Oleic acid	Linoleic acid	α -Linolenic acid
RAP1	258	85	42
SUN1	80	281	1
SUN1.4	106	375	1
LIN1	59	48	157
LIN1.4	84	68	224

Ag+-HPLC Chromatogram of the CLA

Retention time (min)

CLA isomers analysed in milk fat

trans trans

cis trans / trans cis

t6 t8	t7 c9
t7 t9	t8 c10
t8 t10	c9 t11
t9 t11	t10 c12
t10 t12	c11 t13
t11 t13	t11 c13
t12 t14	ct / tc 12,14

Sum of the trans, trans CLA

Sum of the cis, trans / trans, cis CLA

CLA cis 9, trans 11

Metabolic pathway for the formation of the CLA C18:2 cis 9, trans 11 from linoleic acid

Linoleic acid (C18:2 cis 9 cis 12)

Isomerase in the rumen

Conjugated linoleic acid (CLA) (C18:2 cis 9 trans 11)

Biohydrogenation in the rumen

trans vaccenic acid (C18:1 trans 11)

Ref.: Griinari, Corl, Lacy, Chouinard, Nurmela and Bauman. *J. Nutr.* 130, 2285-2291 (2000).

Metabolic pathway for the formation of the CLA C18:2 cis 9, trans 11 from α -linolenic acid

Ref.: Wilde and Dawson. *Biochem. J.* <u>98</u>, 469-475 (1966); Griinari, Corl, Lacy, Chouinard, Nurmela and Bauman. *J. Nutr.* <u>130</u>, 2285-2291 (2000).

CLA C18:2 trans 11, cis 13

Metabolic pathway for the formation of the CLA C18:2 trans 11, cis 13 from α -linolenic acid

Ref. Wilde and Dawson. *Biochem. J.* <u>98</u>, 469-475 (1966); Kraft, Collomb, Möckel, Sieber and Jahreis. *Lipids* <u>38</u>, 657-664 (2003)

CLA C18:2 trans 7, cis 9

Metabolic pathway for the formation of the CLA C18:2 trans 7, cis 9

Ref. Corl, Baumgard, Griinari, Delmonte, Morehouse, Yurawecz and Bauman. Lipids <u>37</u>, 681-688 (2002)

RELATION trans 11, cis 13 / trans 7, cis 9

Ref. Kraft, Collomb, Möckel, Sieber and Jahreis. Lipids 38, 657-664 (2003)

CLA C18:2 trans 8, cis 10

OILSEEDS STUDY: Positive correlation coefficients between the daily intake of UFA and the concentration of CLA in milk (P<0.001)

Oleic acid	Linoleid	acid	α-Linolenia	acid
t7c9: 0.57	t10t12:	0.78	t12t14:	0.88
	t9t11:	0.58	t11t13:	0.89
	t8t10:	0.60	ct/tc12,14:	0.88
	t7t9:	0.47	t11c13:	0.76
	t10c12:	0.89	c11t13:	0.74
	c9t11:	0.81		
	t8c10:	0.85		
	t7c9:	0.74		

OILSEEDS STUDY: Principal component (PC) analysis of the daily intake of UFA and the CLA tt in milk. PC1 explains 39 % and PC2 28 % of the total variance

OILSEEDS STUDY: PC analysis of the daily intake of UFA and the CLA ct/tc in milk. PC1 explains 46 % and PC2 35 % of the total variance

CONCLUSION

- The concentrations of much isomers were highest in milk fat from highlands but those of only 3 isomers (CLA c9t11, t11c13 and t8c10) increased linearly with elevation. These 3 compounds (and particularly the CLA t11c13) could be interesting indicators for the origin of summer Alpine milk products
- CLA t7c9 was found in highest concentration in milk fat from cows fed a oleic acid-rich diet (RAPESEED)
- CLA t10t12, t9t11, t8t10, t7t9, t10c12, c9t11 and t8c10 were found in highest concentrations in milk fat from cows fed a linoleic acid-rich diet (SUNFLOWERSEED)
- CLA t12t14, t11t13, ct/tc 12,14, t11c13 and c11t13 were found in highest concentrations in milk fat from cows fed a α -linolenic acid-rich diet (LINSEED)