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Purification and functional reconstitution of the human Wilson
copper ATPase, ATP7B
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Abstract Wilson disease is a disorder of copper metabolism,
due to inherited mutations in the Wilson copper ATPase gene
ATP7B. To purify and study the function of the ATPase, the en-
zyme was truncated by five of the six metal binding domains and
endowed with an N-terminal histidine-tag for affinity purifica-
tion. This construct, D1–5WNDP, was able to functionally com-
plement a yeast strain defective in its native copper ATPase
CCC2. D1–5WNDP was purified by Ni-affinity chromatography
and reconstituted into proteoliposomes. This allowed, for the first
time, the functional study of the Wilson ATPase in a purified,
reconstituted system.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Wilson disease is caused by mutations in the copper ATPase

gene ATP7B. The disease is autosomal recessive and occurs at

a frequency of about 1 in 30000. It is associated with a sys-

temic overload of copper due to a lack of hepatic clearance

of the trace element. Major clinical manifestations of Wilson

disease are neurological impairment and hepatic cirrhosis.

ATP7B encodes the Wilson disease protein (WNDP), a copper

ATPase which is primarily expressed in the liver, but also in

the brain, kidney, cornea and spleen. In other tissues, the

homologous Menkes ATPase, ATP7A (MNKP), is expressed

instead. Defects in the latter enzyme result in Menkes disease,

a fatal defect in copper uptake by the organism (see [1–5]). It

was shown by phosphorylation assays, yeast complementation

assays, and transport studies with 64Cu that WNDP and

MNKP transport copper(I) and that this transport is ATP

dependent [6–9].
Abbreviations: WNDP, Wilson disease protein; MNKP, Menkes
ATPase; MBS, metal binding site; D1–5WNDP, six-histidine
tagged Wilson ATPase only containing metal binding domain 6;
SD, yeast minimal media
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WNDP is a 165 kDa protein consisting of 8 transmembrane

helices and a long N-terminal tail with 6 metal binding mod-

ules, each containing a CxxC (in the one-letter amino acid

code, which is used throughout) consensus copper binding mo-

tif. The enzyme is a member of the P-type ATPase family,

which use the energy of ATP hydrolysis to transport cations

across cell membranes. All P-type ATPases contain the charac-

teristic signature sequence DKTGT. The aspartic acid of this

motif is phosphorylated in the course of the reaction cycle,

which led to the name P-type ATPases [10]. More than 150

members of the P-type ATPase family have been identified

and divided into five subfamilies according to their sequence,

cation specificity, membrane topology and the presence of dif-

ferent regulatory domains [11].

Copper ATPases, first discovered in bacteria in 1992 [12],

marked the emergence of a new sub-family of P-type ATPases

involved in the transport of heavy metal ions. They are com-

monly called P1-type ATPases or CPx-type ATPases [13,14].

CPx-type ATPases differ in several important aspects from

non-heavy metal ATPases: (i) they feature one to six N-termi-

nal metal binding sites (MBSs); (ii) following the MBSs, they

have two additional transmembrane helices; (iii) they possess

a conserved CPC or CPH motif in membrane helix six (hence

the name CPx-type); (iv) they contain a conserved HP motif in

the second cytoplasmic loop; and (v) they only have two,

rather than six C-terminal membrane helices. CPx-type ATP-

ases appear to have retained the energy conservation and phos-

phorylation mechanism, but their very different primary

structure suggest major mechanistic differences. However, no

three-dimensional structure is available for a CPx-type ATP-

ase. In contrast, detailed structural information has been ob-

tained for the calcium ATPase of the sarcoplasmic reticulum

[15–19].

A unique property of eukaryotic copper ATPases is their

relocalization in the cell under conditions of copper excess.

Under low copper conditions, WNDP and related copper

ATPases are localized in the trans-Golgi network where the en-

zymes pump copper into to lumen for the incorporation into

cuproenzymes like ceruloplasmin or tyrosinase [20,21]. When

cells are challenged with high copper levels, the copper ATP-

ases traffic to a periplasmic vesicular compartment or to the

plasma membrane. Copper-induced trafficking was first de-

scribed for MNKP, but has also been described for WNDP

and homologous enzymes [22]. The relocalization of the cop-

per ATPases appears to serve in the secretion of excess copper,

either into the bile by WNDP, or across the plasma membrane

by MNKP. In patients with Wilson or Menkes disease, traf-

ficking of the mutant enzymes is often impaired [23–25].
blished by Elsevier B.V. All rights reserved.

mailto:marc.solioz@ikp.unibe.ch 


3590 R. Portmann, M. Solioz / FEBS Letters 579 (2005) 3589–3595
The N-terminal MBSs are a typical feature of CPx-type

ATPases. With the exception of a few bacterial enzymes which

feature histidine-rich N-termini [26], the MBSs encompass a

domain of 70–80 amino acids, containing a CxxC metal bind-

ing motif. The number of MBSs varies from one to two copies

in bacterial enzymes to six copies in the human copper ATP-

ases. MBSs are modular building blocks of the same babbab
structure [27–29] as the 8 kDa copper chaperones (e.g.,

HAH1, Atox1, Atx1, CopZ [30]). While it is clear that MBSs

can bind copper(I) via their CxxC motif and interact with cop-

per chaperones [31–33], their physiological function is still not

entirely resolved. For WNDP, it was shown that only MBS6

closest to the membrane was required for function and cop-

per-induced trafficking [34]. However, other studies showed

that cooperative stimulation of the catalytic activity of the en-

zyme required the presence of both, MBS5 and MBS6 [35].

The situation appears to be similar for MNKP, where only

MBS5 or 6 are required for function and trafficking [22]. In

contrast to the human enzymes, neither of the two MBSs of

the CopA copper ATPase of Escherichia coli appears to be re-

quired for function [36].

We here describe the establishment of a lean model system to

investigate structure-function aspects of the human Wilson

ATPase. The enzyme was truncated by MBS1–5, resulting in

an enzyme only containing MBS6. A N-terminal histidine-tag

was added for affinity purification of the enzyme. The resulting

103 kDa, six-histidine tagged Wilson ATPase only containing

metal binding domain 6 (D1–5WNDP), was active in Saccharo-

myces cerevisiae and could be purified by Ni-NTA affinity

chromatography. Induction by copper was necessary to solubi-

lize the enzyme, suggesting copper induced trafficking to an-

other membrane compartment. The purified ATPase could

be reconstituted into proteoliposomes, was stimulated by cop-

per, and had an approximate Km of 0.2 mM for ATP and an

ATPase activity of 7–8 nmol/min/mg. The system described

here should provide a useful model for the in vitro study of

WNDP.
2. Materials and methods

2.1. Materials
All chemicals were from Sigma-Aldrich or from Merck and were of

analytical grade. Dodecylmaltoside was from Anawa Trading,
Mono-Q column material from Amersham Pharmacia Biotech, and
Ni-NTA Superflow from Qiagen. The following oligonucleotides were
synthesized by Microsynth (Balgach, Switzerland): insert1, 5 0-GAT-
CCATGCCTGAACAGCATCACCATCACCATCACGATTACGA-
TATCCCAACGACCGA AAACCTGTATTTTCAGGGCC; insert2,
5 0-GTCGAGGCCCTGAAAATACAGGTTTTCGGTCGTTGGGA-
TATCGTAATCGTGATGGTGATGGTGATGCTGTTCAGGCA-
TG. The S. cerevisiae strains used in this study were as follows: BJ2168
(Mat a, prc1-407, pep4-3, prb1-1122, ura3-52, trp1, leu2, gal2) [37,38];
YSC7 (Mat a, Dccc2::LEU2, his3-200, trp1-101, ura3-52, ade5) [39].

2.2. Plasmid construction
Plasmid pG3A [40] containing the full length ATP7B gene was cut

with BamHI and XhoI to excise MBS1–5. An insert encoding a 6xhis-
tidine tag was generated by annealing primers insert1 and insert2 by
mixing them in equimolar concentrations, heating them to 85 �C,
and cooling them to room temperature over 2 h. This primer dimer,
containing overhanging ends compatible to the BamHI and XhoI ends
of cut pG3A, was ligated with this vector to generate pG31. Plasmid
pG31 contained a six-histidine tagged Wilson ATPase only containing
metal binding domain 6 (D1–5WNDP). The plasmid was propagated
in E. coliDH5a and was verified by commercial sequencing. The native
plasmid used for these constructs, pG3 [41], was used as a control. All
molecular biology procedures were conducted by published procedures
[42].
Yeast transformation. The multiple protease resistant S. cerevisiae

strain BJ2168 and the Dccc2 strain YSC7 were transformed with
pG3 or pG31 by LiCl-mediated transformation as described [43].
Clones were selected on plates with minimal media containing uracil
and leucine and were verified by PCR amplification. Standard methods
were used for growth and phenotypic selection of yeast strains [44].

2.3. Expression and purification of D1–5WNDP
A starter culture of BJ2168 containing pG31 was grown aerobically

in yeast minimal media (SD) containing uracil and leucine at 30 �C for
14 h. Of this starter culture, 2 ml were transferred to a fermenter con-
taining 14 l of YPD media. The cells were grown for 14 h at 30 �C with
15 l/min of air and stirring at 400 rpm. The culture was induced with
5 mM CuSO4 for 1 h and the cells harvested by centrifugation at
3000 · g for 10 min. The following steps were performed with ice cold
buffers. Cells were washed twice with buffer FP (50 mM Tris–SO4, pH
7.4, 10% (v/v) glycerol, 200 mM K2SO4, 5 mM dithiothreitol, 0.024 g/l
aprotinin, 0.065 g/l pepstatin A, 0.002 mM leupeptin, and 8.5 mM 4-
aminobenzamidine) and resuspended in FP buffer (1 ml/g of wet cells).
Cells were broken by three passages through a French press at 40 MPa.
Cell debris was collected by centrifugation at 5000 · g for 10 min and
the supernatant was centrifuged at 100000 · g for 1 h to collect cell
membranes. The membrane pellet was resuspended in 1 ml of FP buf-
fer per g of wet cells. The protein concentration was measured by the
method of Bradford [45]. The membranes were extracted with dodec-
ylmaltoside at a protein/detergent ratio of one. Insoluble material
was collected by centrifugation at 100000 · g for 1 h. The supernatant
(membrane extract) was passed through a Ni-NTA Superflow column.
D1–5WNDP was eluted with FP buffer containing 0.1% dodecylmalto-
side and 200 mM imidazole. Final purification was achieved by gel fil-
tration on a TSK3000G column in FP buffer containing 0.1%
dodecylmaltoside.

2.4. Reconstitution of D1–5WNDP into liposome
Asolectin was purified as described [46], and dissolved in acetone at

50 mg/ml. For reconstitution, 10 mg of Asolectin in acetone were vac-
uum-dried and dissolved in 100 ll of 20% octylglucoside. The follow-
ing steps were performed on ice. One millilitre of purified D1–5WNDP
containing approximately 50 lg of protein was added to the Asolectin
solution, followed immediately by dialyses against 200 volumes of
50 mM Tris–SO4, pH 7.5, once for 2.5 h and once for 14 h. The vesicle
density was checked by centrifuging vesicles without protein and vesi-
cles containing D1–5WNDP on sucrose density gradients which were
formed by freezing 25% (w/v) sucrose in 50 mM Tris–SO4, pH 8.0,
at 20 �C, followed by thawing at room temperature.

2.5. ATPase assay
Purified or reconstituted D1–5WNDP (5 lg) in assay mix (20 mM

MES–Tris–SO4, pH 6.0, 5 mM MgSO4, 1 mM ascorbate, 0.1 mM
tris(2-carboxyethyl)phosphine, and different amounts of CuSO4 or
BCA), was preincubated for 5 min at 37 �C. The ascorbate in the reac-
tion reduced copper to copper(I). The reaction was started by the addi-
tion of 1.5 mM Na-ATP (or as required for Km measurements), pH 6.
Samples were removed at times 0, 10, 20 and 30 min and transferred to
tubes containing 15 ll of 0.5 M Na-EDTA, pH 8. Released phosphate
was determined in these samples by the colorimetric method of Lanz-
etta et al. [47].
3. Results

3.1. Expression of D1–5WNDP in yeast

For structural and functional work on WNDP, we con-

structed a plasmid (pG31) expressing a small, but functional

variant of WNDP which contains a histidine tag for facile affin-

ity purification. For this, we deleted 540 N-terminal amino

acids containingMBS1–5 fromWNDP and added a 6xhistidine

tag by means of a synthetic, double-stranded oligonucleotide.
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This resulted in a predicted product of 960 amino acids with a

molecular weight of 103 kDa, called D1–5WNDP. To test if

D1–5WNDP was functional in vivo, we transformed the yeast

strain YSC7, which is defective in the CCC2 copper ATPase,

with plasmid pG31, which expressed D1–5WNDP. In this stain,

copper cannot be delivered to the trans-Golgi network where it

would be required for the synthesis of Fet3. Fet3 is part of the

high affinity iron uptake complex Fet3/Ftr1 at the plasmamem-

brane. If no copper is incorporated into Fet3, the complex is

not able to pump iron into the cell. Thus, a Dccc2 yeast strain

cannot survive under copper- or iron-limiting conditions [39].

It had previously been shown that a defect in CCC2 can be

complemented by heterologous copper ATPases such as human

MNKP, WNDP, or the Caenorhabditis elegans copper ATPase

[6,7,48].

Fig. 1 shows the growth response of the Dccc2 yeast strain

YSC7 on media depleted of iron by different concentrations

of ferrozine, and the effect of different vectors on the growth re-

sponse. On normal media, all YSC7 strains grew to the same

extent. With increasing amount of ferrozine, the Dccc2 yeast

strain YSC7 as well as YSC7 transformed with the control vec-

tor pG3 did not survive due to iron limitation. Transformation

of YSC7 with pG3A, the vector expressing full length WNDP,

or transformation with pG31, the vector expressing D1–
5WNDP, restored the ability of YSC7 to grow on iron-depleted

media. Thus, WNDP as well as the truncated D1–5WNDP cop-

per ATPase could complement the defect in copper homeosta-

sis of the Dccc2 yeast strain. In fact, there was no noticeable

difference in the complementation efficiency between WNDP

and D1–5WNDP.

3.2. Purification of D1–5WNDP

For the biochemical analysis of D1–5WNDP, the protein

was expressed in the protease deficient yeast strain BJ2168

transformed with pG31. In initial experiments, we were not

able to extract D1–5WNDP from isolated yeast membranes
Fig. 1. Plate assay for the growth of different yeast strains in the
presence of the iron chelator ferrozine. Yeast cells were plated on SD
media containing the concentrations of ferrozine indicated in the
Figure and grown aerobically for two days. Dccc2, untransformed
control strain without copper ATPase; pG3, Dccc2 strain transformed
with the control vector pG3; WNDP, Dccc2 strain transformed with
pG3A expressing complete WNDP; D1–5WNDP, Dccc2 strain trans-
formed with pG31 expressing D1–5WNDP.
with dodecylmaltoside or other detergents, even though the

protein was expressed as determined on Western blots. Even

the combination of detergents with 10% non-detergent sulfob-

etaines, which are powerful solubilizers, resulted in only mar-

ginal solubilization D1–5WNDP. We thus reasoned that the

protein is localized in a highly inaccessible compartment and

would traffic to a more soluble membrane fraction in the pres-

ence of copper. Indeed, when the cells were induced with 5 mM

CuSO4 for 1 h prior to harvesting, D1–5WNDP could easily be

solubilized from the resultant membrane fraction with dodec-

ylmaltoside. Induction of the cells with copper was therefore

a key step in the solubilization of D1–5WNDP and suggests

that the enzyme undergoes copper induced relocalization to

a different membrane compartment. Affinity purification of

D1–5WNDP over a Ni-NTA agarose column resulted in a pro-

tein of only 10–20% purity (Fig. 2). Further purification was

achieved by anion exchange chromatography on a Mono-Q

column, resulting in a D1–5WNDP preparation of approxi-

mately 75% purity. The protein band corresponding to an

apparent molecular weight of 103 kDa was verified to be D1–
5WNDP on Western blots with a polyclonal antibody specific

for the WNDP C-terminal part [40]. The overall yield averaged

4 mg of purified protein from 14 l of yeast culture.

3.3. Reconstitution of D1–5WNDP

To be able to study the function of D1–5WNDP in

membranes, we devised a reconstitution procedure for the gen-

eration of proteoliposomes. To this end, a detergent dialysis

method was employed. Although dodecylmaltoside proved to

be the detergent of choice for the purification of D1–5WNDP,
Fig. 2. Purification of D1–5WNDP. Detergent extract of membranes
from cells expressing D1–5WNDP (lane 1) was purified on a Ni-NTA
agarose column (lane 2), followed by purification on a Mono-Q anion
exchange column (lane 3). The band of apparent molecular weight 103
kDa (arrow) was confirmed to by D1–5WNDP on a Western blot (lane
4). Other details were as outlined under Section 2.



Fig. 4. Copper stimulation of D1–5WNDP in proteoliposomes.
Vesicles containing D1–5WNDP were incubated with different con-
centrations of copper and the ATPase activity was measured as
described under Section 2. The assays contained ascorbate, which
reduces the added copper to copper(I).
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it was not suitable for reconstitution. Because of its low critical

micellar concentration of only 0.1–0.6 mM, it dialyses very

slowly, which in turn impedes homogeneous vesicle formation.

Octylglucoside with a critical micellar concentration of

20–25 mM is much better suited for the formation of proteo-

liposomes. It did, however, inactivate D1–5WNDP upon pro-

longed exposure and incubation times in octylglucoside had

to be minimized. The efficiency of the reconstitution of D1–
5WNDP into lipid vesicles was addressed by density gradient

analysis of the proteoliposomes: protein-free vesicles are of

lower density than those containing protein. Fig. 3 clearly

shows that vesicles containing D1–5WNDP are denser than

vesicles reconstituted without protein. The reconstitution of

D1–5WNDP yielded only a small fraction of protein-free

(lighter) liposomes (difficult to see in the reproduction of Fig.

3) and no heavy fractions, which would be indicative of protein

aggregation. This suggests that the reconstitution of D1–
5WNDP resulted in a relatively homogeneous proteoliposome

population.

Purified, detergent solubilized D1–5WNDP displayed no sig-

nificant ATPase activity. When reconstituted into proteolipo-

somes, a basal ATPase activity of approximately 4 nmol/min/

mg was observed (Fig. 4). Depending on the preparation, this

activity was stimulated to 7–8 nmol/min/mg by 10 lM added

copper(I). At higher copper concentrations, the activity de-

creased to a level of around 5 nmol/min/mg at 100 lM copper.

The basal ATPase activity was probably due to contaminating

copper, but could only be reduced by 10–20% with 100 lM of

the copper chelating agent bicinchoninic acid. Copper-stimula-

tion of the ATPase activity suggests that the reconstituted

enzyme was functionally competent and could be used for

mechanistic studies. The affinity of D1–5WNDP for ATP

was determined by measuring ATP hydrolysis at different con-
Fig. 3. Density of reconstituted vesicles. Vesicles reconstituted without
protein (A) and with purified D1–5WNDP (B) were centrifuged on
sucrose density gradients. The vesicle bands were visualized by
illumination with white light from the side. Details of the procedure
were as outline under Section 2.

Fig. 5. Dependency of ATPase activity on the ATP concentration. The
ATPase activity of D1–5WNDP in proteoliposomes was measured as a
function of the ATP concentration. The activity was measured as
described under Section 2.
centrations of ATP in the presence of 2 mM copper and was

approximately 0.2 mM (Fig. 5).

In summary, this is the first demonstration of the purifica-

tion and functional reconstitution of a human copper ATPase.

Our studies also show that MNKP devoid of MBS1–5 is func-

tionally competent not only in vivo, but also in a reconstituted

in vitro system. The need for induction of the cells with copper

to solubilize D1–5WNDP from the membrane fraction sug-

gests copper-induced relocalization. Since protein expression

in yeast is very economical, the system described here will be

useful for structural and functional work on WNDP.
4. Discussion

We here describe the expression and in vitro analysis of the

functional properties of WNDP, the human copper-transport-

ing ATPase ATP7B. To make the protein easier to handle,
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WNDP was truncated by its first five metal binding sites,

resulting in D1–5WNDP. Using complementation of a Dccc2
yeast strain which is defective in the endogenous copper ATP-

ase CCC2, we could show that D1–5WNDP was able to restore

the ability of the Dccc2 yeast strain to grow on iron depleted

media. Complementation by D1–5WNDP did not differ from

complementation by full-length WNDP. This indicates that

D1–5WNDP was fully functional. This observation is in accor-

dance with the findings of Iida et al. [49], that MBSs1 to 5 are

dispensable and only MBS6 is required for function of this

copper ATPase in yeast.

For successful expression of D1–5WNDP, yeast strain

BJ2168 which is deficient in multiple proteases had to be used.

D1–5WNDP was present in low amounts in strain YSC7 and

could not be purified from this host. Most likely, this has to

be attributed to proteolytic degradation since the protease defi-

cient host gave reasonable expression levels. Detergent extrac-

tion of D1–5WNDP from the trans-Golgi network, the

presumed localization of the protein, turned out to be extre-

mely difficult. Only aggressive detergents like sodium dodecyl

sulfate could solubilize D1–5WNDP from the membrane frac-

tion, resulting in an enzyme without activity. A key step in the

purification of D1–5WNDP was the induction of the cells with

copper before harvesting. This resulted in a membrane prepa-

ration from which D1–5WNDP could be solubilized with the

mild detergent dodecylmaltoside, suggesting that D1–5WNDP

translocated from the trans-Golgi network to another cellular

compartment. Trafficking of the yeast CCC2 copper ATPase

has not been described, but our observations suggest that there

is copper-induced trafficking of D1–5WNDP in yeast and that

this process does not require MBS1–5.

The reconstitution efficiency was tested by isopycnic centri-

fugation of the vesicles on sucrose density gradients. This test

revealed that vesicles reconstituted with D1–5WNDP were of

uniformly higher density than vesicles formed in the absence

of protein. No D1–5WNDP could be detected at higher den-

sity, which indicates the absence of aggregated protein. Recon-

stituted D1–5WNDP had a basal activity of 4 nmol/min/mg.

This could be due to contaminating copper, but also to a frac-

tion of uncoupled ATPase. There was some reduction of the

basal activity by 100 lM bicinchoninic acid, but a relatively

high basal activity remained. Copper(I) stimulated the ATPase

activity of D1–5WNDP to 7–8 nmol/min/mg with an EC50 for

copper of 2 lM. The turnover appears relatively slow com-

pared to non-heavy metal ATPases. Slow turnover may be a

general property of eukaryotic copper ATPases. MNKP ex-

pressed in CHO cells was reported to pump copper at a rate

of only 0.7 nmol/min/mg; however, this value was determined

using native membrane vesicles [8]. Copper(I) concentrations

above 10 lM inhibited the activity of D1–5WNDP, as had pre-

viously also been observed for CopB [50]. Tsivkovskii et al.

using baculovirus-infected insect cells and Voskoboinik et al.

[9,51] using transfected CHO cells reported Km values for cop-

per activation of WNDP of 2–5 lM, which is in good agree-

ment with our findings.

The observed affinities for copper seem at odds with the find-

ings of Rae et al. [52] which indicate that intracellular free cop-

per is limited to less than one free copper ion per cell. This

conclusion was based on the kinetics of cupration of yeast

apo-superoxide dismutase. In a thermodynamic calibration

of the interaction of the E. coli CueR regulator with copper

in vitro, Changela et al. [53] found that it had zeptomolar
(10�21 M) sensitivity to copper. This contrasts with findings

using a biosensor for copper as well as an in vitro system to

measure the induction of the cop operon of Enterococcus hirae.

It was found that copper concentrations in the range of 2–

5 lM initiated induction of the cop operon in vivo as well as

in vitro and are thus ‘‘relevant’’ copper concentrations [54].

The issue of the �copper concentration� in cells is far from re-

solved, but there are some know factors which can give rise

to discrepancies. First, cellular chaperons can guide copper

to ATPases, repressors, and cuproenzymes and thereby ther-

modynamically uncouple these systems from the free copper

concentration. Secondly, copper ions form complexes with

buffers, reductants and bio molecules, which makes the free

copper concentration of in vitro systems difficult to control.

Therefore, copper concentration/activity relationships can

only be translated to apparent Km values. This makes compar-

ison of experiments from different labs virtually impossible.

How much the free copper can actually depend on the concen-

tration of proteins and copper-chelating agents in an assay has

been dramatically demonstrated with a biosensor in E. coli,

which presumably responds to free copper. Adding the same

amount of copper to Luria broth or to a NaCl solution gave

a 200-fold higher reading of the apparent free copper concen-

tration in the salt solution [54].

The Km for ATP of reconstituted D1–5WNDP was approx-

imately 0.2 mM under the conditions used here. Using baculo-

virus- infected insect cells, Tsivkovskii et al. [51] reported a Km

for ATP of 1 lM for full-length WNDP and Voskoboinik et al.

[9] using vesicles from transfected CHO cells, one of 10–

15 lM. The high apparent Km for ATP we measured for D1–
5WNDP is probably not just a consequence of experimental

differences. It could indicate functional disturbance of D1–
5WNDP, either by the artificial lipid environment or by the

truncation of MBS1–5. It has been shown that copper cooper-

atively stimulated the catalytic activity of WNDP and that this

effect was lost in WNDP only possessing a functional MBS6,

resulting in a 7–8-fold lower EC50 for the activation of cata-

lytic phosphorylation by copper [35]. Cooperativity, which

would be lost in D1–5WNDP, could also affect the affinity

for ATP and could be the reason for the relatively high Km

we observed. In view of the prevailing cytoplasmic ATP con-

centrations of 1.4 mM in mammalian cells [55], the in vivo

function of D1–5WNDP would, however, not be significantly

impaired by its lower affinity for ATP.

WNDP has not been previously purified and reconstituted

for functional studies. The system described here offers itself

to structural and functional work as D1–5WNDP can be pro-

duced easily and at modest cost with this expression system.
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