Natürliche Emulsionen mit Milchingredienzen

Autoren: Walter Bisig, Claude Hegel, Maximilian Schneider, Dominik Guggisberg, Magali Chollet

Einleitung

Milchingredienzen werden mit den beiden Emulgier-Systemen Hochdruckhomogenisator (HDH) und Rotor-Stator-System (RSS) auf ihre Emulgiereigenschaften geprüft.

Material und Methoden

30% Öl wurde in Wasser mit dem Hochdruckhomogenisator Rannie bzw. dem Rotor-Stator-System Kinematica Megatron 3000 mit Einmal-Durchlauf emulgiert.

Die Milchingredienzen Magermilchpulver low-heat, Na-Kaseinat, Molkenprotein 65% und Buttermilch-UF-Retentat-Pulver in Dosierungen von 3% (G/G) wurden verglichen mit Eigelbpulver (3%) und den niedermolekularen Emulgatoren Propylenglycol-Monoester (PGMS) und DATEM (0.08% für HDH bzw. 0.33% für RSS).

Die Milchingredienzen wurden mit Hilfe eines Stabmixers in Wasser, die Emulgatoren im Öl gelöst. Mit einem Stabmixer wurde 5 min bei 20℃ (Milchingredienzen) bzw. bei 55℃ (Emulgatoren) voremulgiert.

Die Emulgierung erfolgte im HDH 2stufig bei 200/30 bar bzw. im RSS mit Einmal-Durchlauf bei 30'000 min⁻¹. Für Milchingredienzen wurde bei 20℃ emulgiert, mit den Emulgatoren bei 55℃.

Der Malvern Mastersizer 2000 bestimmte mittels Laserbeugung die Partikelgrössenverteilung. Die Emulsionen wurden bei 20℃ (HDH, konserviert) bzw. bei 5℃ (RSS) gelagert und optisch beobachtet.

Resultate

Im HDH war es mit Na-Kaseinat, Molkenprot.65%, Eigelb oder DATEM möglich, min. 24 h stabile Emulsionen herzustellen (Tab.1). Partikelgrössen von <1 µm (Sauter- \varnothing von 0.34 µm) konnten nur bei Kaseinat nachgewiesen werden, sie waren jedoch auch mit Molkenprot.65%, Eigelb und DATEM in einem akzeptablen Bereich.

Tab. 1: Partikelgrössen und Emulsionsstabilität

Emulgierender Stoff	Magermilchp. Iow heat	Na-Kaseinat 90%	Molken- protein 65%	Buttermilch- UF-Retentat	Eigelbpulver- Ovobest	Grindsted PGMS	Panodan 517 DATEM
Emulsionen mit dem Hochdruckhomogenisator (nach 1 Tag)							
Peakmaximum 1 (µm)		0.648	4.141		4.698		3.320
Peakmaximum 2 (µm)		0.166	0.667		0.581		1.240
Peakmaximum 3 (µm)		-	0.168		0.169		-
Sauterdurchmesser D (3.2) (µm)		0.339	1.195		1.693		1.657
Optische Beurteilung nach 24 Stunden	instabil (< 3 h)	stabil	stabil	instabil (< 3 h)	stabil	instabil (< 30 min)	stabil
Emulsionen mit dem Rotor-Stator-System (nach 5 Tagen)							
Peakmaximum 1 (µm)			3.590	4.245			6.831
Peakmaximum 2 (µm)			-	-			1.094
Peakmaximum 3 (µm)			1	ı			1
Sauterdurchmesser D(3.2) (µm)			2.503	2.743			2.776
Optische Beurteilung	instabil (1.5 h)	instabil (30 min)	Stabil (10 Tage)	Stabil (10 Tage)	instabil (1.5 h)	instabil (< 30 min)	Stabil (14 Tage)

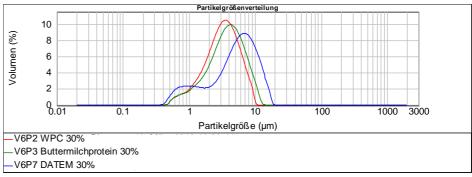


Abb. 1: Partikelgrössenverteilung der Emulsionen mit 30% Öl mit dem Rotor-Stator-System nach 5 Tagen

Im RSS erwiesen sich wie mit dem HDH die Emulsionen mit Molkenprotein 65% und mit DATEM als stabil (*Tab.1, Abb. 1*). Zusätzlich war mit dem RSS auch die Emulsion mit Buttermilch-UF-Retentat stabil, anders als im HDH. Im Gegensatz zum HDH war die Emulsion mit Na-Kaseinat instabil, ebenso jene mit Eigelb. Gleich wie mit dem HDH waren die Emulsionen mit Magermilchpulver low-heat und mit PGMS instabil.

Folgerungen

Das Rotor-Stator-System und das Hochdruckverfahren sind 7III Emulgierung mit Milchingredienzen zwei komplett unterschiedliche Emulgierverfahren. Die Wahl des Verfahrens muss auf das verwendete Milch-Protein abgestimmt sein. Bei Milchingredienzen mit geringer Proteindenaturierung ist eher ein Rotor-Stator-System zu wählen. Das Hochdruckverfahren ist bestens geeignet für nicht denaturierende Proteine wie zum Beispiel das Na-Kaseinat.