
RESEARCH ARTICLE

Drought and temperature limit tropical and temperate maize hybrids
differently in a subtropical region

Lucia Casali1,2 & Gerardo Rubio1,2
& Juan M. Herrera1,3

Accepted: 21 June 2018
# INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Abstract
Although the semiarid and subhumid Chaco regions in northern Argentina have been traditionally considered marginal and
unsuitable for cultivating grain maize for human and livestock nutrition, this crop is increasingly being adopted by local farmers.
The low maize yields observed in the area suggest that climatic constraints limit productivity, while changes in genotypes and
management may be useful to mitigate the effect of these constraints. We analyzed data from 792 farm paddocks with multi-
variate mixed models to identify and quantify the main environmental and management constraints to maize’s yield. In addition,
we used the cropmodel CERES-Maize to assess the potential of a temperate maize hybrid to overcome water constraints. Results
from the mixed models identified the amount of rainfall during February as a primary determinant of maize yield and showed that
tropical hybrids tended to withstand higher temperatures and heat stress better, while temperate hybrids performed better under
conditions of water scarcity. CERES-Maize simulations suggested that temperate maize hybrids have the potential to increase
grain yields from 18 to 21 kg ha−1 (14.5%moisture content) for every millimeter of rain during February. This report is the first to
identify alternative roles of temperate and tropical maize hybrids for counteracting climatic risks in the studied subtropical
regions. These findings will provide plant breeders urgently needed information to breed better adapted maize genotypes for
the semiarid and subhumid Chaco.
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Abbreviations
DD Degree days
D35 Degree days accumulated above 35 °C
TJA Average maximum temperature from January to April

1 Introduction

Maize (Zea mays L.) in the southern cone of South
America was mainly cultivated in the humid Pampas
(Lavado and Taboada 2009). In the last decade, this crop
has spread to other regions, previously considered

marginal and unsuitable for its cultivation. Among them,
the semiarid and subhumid Chaco were epicenters of an
agricultural expansion that was favored by changes in
land tenure (Goldfarb and van der Haar 2016).
Agricultural expansion was also promoted by the increase
in annual precipitation (approximately 18%) observed in
the last decade (Ricard et al. 2015) and in water use effi-
ciency achieved by the adoption of no-till farming
(Piquer-Rodríguez et al. 2015). Currently, maize is being
increasingly adapted by local farmers, and its expansion is
expected to continue (Giménez et al. 2015). Recent eval-
uations showed that these regions have the highest yield
gaps for maize in Argentina (41% of water-limited yield
potential) (Aramburu Merlos et al. 2015). The current sit-
uation calls for identifying main constraints to maize pro-
ductivity, to minimize the climatic risk, and to improve
management practices taking into account soil, climate,
and genotypes (Andrade et al. 2017). It is also critical to
maximize productivity of the existing agricultural lands
given the high rate of deforestation in the region
(Vallejos et al. 2015).
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There is a trend by local farmers to delay sowing dates
from October to December to reduce the risk of drought.
By delaying sowing dates, maize encounters a less re-
strictive water balance during the reproductive period
which is critical for yield determination. However, this
delay increased the risk that the crop would be affected
by heat stress during the reproductive periods (Edreira
and Otegui 2012; Maddonni 2012). Furthermore, modifi-
cations in practices such as sowing dates will certainly
have implications in terms of the most suitable genotype
to grow. Independent of the strategy, the improvement in
maize management in this area is a challenge because of
scarce previous experience and research. It is thus neces-
sary to generate valid information for the design of agro-
nomic practices that make high productivity compatible
with no or minimal environmental impacts.

Models represent valuable tools to design agronomic
practices since they make the combination of a high num-
ber of variables or treatments that would be unaffordable
and time consuming to study by means of field experi-
ments feasible (Jones et al. 2003). CERES-Maize is a
mechanistic model that integrates information about soil,
weather, crops, and management to evaluate several com-
binations of production practices (Jones et al. 2003). This
model was evaluated and calibrated in temperate regions
of Argentina, showing low estimation errors (e.g., Brisson
et al. 2001). In contrast, there are no reports of CERES-
Maize performance in the studied area, where its critical
evaluation is needed prior to use because the predictions
of such models for subtropical areas may be biased ac-
cording to recent assessments (e.g., Ray et al. 2015).
Because the calibration of mechanistic models requires
an extensive collection of field data (Lobell et al. 2003),
the use of empirical models to mine existing data may
represent an alternative to obtain insights in less time.
Empirical models allow researchers to conceptualize hy-
potheses, generalize relationships, and develop meaning-
ful explanations of problems (Burnham et al. 2011).
Models with higher explanatory power can be derived
from more simple models and be tested to accept or reject
alternative explanations (Kirwan et al. 2009). Linear
mixed-effect models are excellent statistical tools when
databases are unbalanced and/or data have a hierarchical
structure and as a result do not fulfill the assumption of
independence (Smith et al. 2005).

The goals of this study were to (i) determine the main
climatic and management constraints that explain variabil-
ity in maize yields in the semiarid and subhumid Chaco,
(ii) determine if mechanistic and empirical models can be
combined to identify maize constraints, and (iii) identify
genotypic characteristics with the potential to alleviate the
effects of the identified climatic constraints.

2 Materials and methods

2.1 Study area

The assessment was performed in two regions of the Gran
Chaco known as the subhumid and semiarid Chaco
(Adamoli et al. 2011). These two regions cover a great pro-
portion of the Northern Argentinean provinces of Santiago del
Estero and Chaco (Fig. 1). In addition, the studied regions
exhibit one of the highest rates of deforestation in South
America caused by an expansion of agriculture, which was
motivated by higher agricultural prices and changes in land
tenure (Vallejos et al. 2015). In 2016, maize was planted in
661,560 ha in Santiago del Estero and 166,150 ha in Chaco.

The subhumid and semiarid Chaco have annual precipita-
tion ranges (1901–2011) from 750 to 950 mm and from 500 to
750 mm, respectively. Annual precipitation follows a mon-
soonal pattern, with higher precipitation in summer
(December to March) than in winter (June to September). It
is in these areas that some of the highest absolute maximum
temperatures of South America have been recorded
(Naumann 2006), and every year, summer crops such as
maize are exposed to temperatures above 30 °C during late-
vegetative and reproductive stages, making them frequently
affected by heat stress. Agricultural soils are mainly
Haplustolls and Argiustolls.

2.2 Field data

Data on maize production were obtained from farms (85% of
the observations) and genotype evaluations on fields (15% of
the observations). The farm data were gathered by an associ-
ation of farmers (AACREA: Asociación Argentina de
Consorcios Regionales de Experimentación Agrícola) while
the genotype evaluation data were from two different sources:
(i) an official maize genotype evaluation network and (ii) an
evaluation conducted by a seed company (Don Mario S.A.,
Chacabuco, Argentina).

The consolidated dataset included data of 792 production
paddocks and genotype evaluation plots from five growing
seasons (2010/11, 2011/12, 2012/13, 2013/14, and 2014/15)
across five locations in the semiarid Chaco and 14 locations in
the subhumid Chaco (Fig. 1). The dataset included grain yield
of maize for each production paddock and variables that char-
acterize the paddocks in terms of previous management (e.g.,
years that the paddock has been cropped, years under no-till,
and crop rotation) and maize management (e.g., maize hybrid,
sowing and harvest dates, sowing density, crop arrangement,
fertilizer application, and crop protection measures). From the
792 paddocks, 34 were fertilized with N at sowing with rates
from 20 to 100 kg N ha−1. Three different types of maize
hybrids grown in the area were included: tropical, temperate,
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and crosses between tropical and temperate inbred lines.
Tropical hybrids compared to temperate ones showed better
adaptation in environments prone to high temperature stress
but tended to show undesirable agronomic traits such as tall
plants, excessive foliage, long cycle, and poor harvest index.
The crosses between tropical and temperate inbred lines rep-
resented a highly heterogeneous group. Most genotypes were
genetically modified organisms with traits for insect
resistance.

2.3 Environmental data for model inputs

Global solar radiation (total shortwave radiation onto a hori-
zontal surface) and air temperature (1.5 m above soil surface)
were obtained from six automatic weather stations (most of
them from Davis Instruments, California, USA) of INTA
(Instituto Nacional de Tecnología Agropecuaria; http://siga2.
inta.gov.ar/) at Las Breñas, Añatuya, Gancedo, Los Frentones,
Quimili, and Sacháyoj. Most of the precipitation data were
collected at each farm on a weekly basis. For the few cases
where local precipitation data were not available, data from
the closest weather station were used. For some combinations
of sites and years, solar radiation data was not available. In
these cases, we used data from NASA (http://power.larc.nasa.
gov/) because recent assessments showed that in flat areas
such as Chaco, the correlation between measured and
NASA’s estimated solar radiation was reliable (Van Wart et
al. 2013).We confirmed the validity of this relationship for the
studied area with data from the weather stations located at Las
Breñas and Añatuya (r = 0.97). For the few cases with missing
temperature data, we made linear regressions between month-
ly means of minimum and maximum temperatures and be-
tween the weather stations and NASA data. Although corre-
lations were significant and had high coefficients of determi-
nation (R2 > 0.8), NASA data tended to slightly overestimate

temperatures. Due to lack of other alternatives for missing
temperature data, we still used NASA data but corrected with
a function obtained from the previously described correla-
tions. From the weather database (i.e., precipitation, solar ra-
diation, minimum and maximum temperature), we calculated
effective precipitation, potential evapotranspiration according
to Penman-Monteith and Hargreaves, precipitation-
evapotranspiration ratios, and photothermal quotients. In ad-
dition, we calculated 12 different heat indexes based on the
number of days and the degree days accumulated in which
maximum temperature was above six threshold values (i.e.,
20, 25, 30, 35, 40, and 45 °C). We used a threshold of 35 °C
following previous studies (e.g., Lobell et al. 2013), and we
considered the additional thresholds, above and below 35 °C,
to determine (i) if there was an influence of the threshold
values on the relationships and (ii) if there was a value differ-
ent from 35 °C that should be used as a reference of heat stress
in the studied regions. All the calculated variables were esti-
mated for the entire growing season of maize, monthly pe-
riods, and for ten growth stages defined according to thermal
phases. Overall, these calculations yielded 304 variables that
were considered as potential predictors in empirical models to
predict the grain yield of maize. Although we expected this to
generate redundant variables, we still calculated them to be
sure that all potential predictors with a high predictive power
were considered. An additional reason to consider a high num-
ber of predictors was to address the fact that two redundant
predictors may have similar explanatory power but may differ
on how the information from that predictor can be translated
into agronomic practices and practical interventions. Soil
characterization included soil series, soil taxonomy, and soil
use. The used soil data were provided by INTA. For the mech-
anistic model, hydraulic parameters, defined by wilting point
and field capacity, were estimated by pedotransfer functions
(Saxton et al. 1986), soil water saturation was estimated as a

Fig. 1 a Location of the studied area in the subhumid and semiarid Chaco and spatial distribution of on-farm data included in the analysis. bMaize field
at the three-leaf stage
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function of soil porosity (Padarian et al. 2014), and bulk den-
sity was estimated following Rawls and Brakensiek (1989). In
addition, farmers were asked to assess water availability at
sowing according to a three-category scale (i.e., bad, interme-
diate, or good).

2.4 Empirical modeling: single andmultiple constraint
linear mixed models

Wewere interested in identifying the most relevant environ-
mental and management variables determining grain yield
variability of maize in the studied area and in quantifying
the magnitude of their effects. To define the model that best
describes the observed data, we considered a linear mixed-
effects model since these models can handle unbalanced
data and missing observations, and are particularly useful
where measurements are made on related statistical units
(Smith et al. 2005).

Although the final goal was to count with a multivariate
model that explains variability in grain yield of maize, we
began by developing single-constraint models for each group
of similar variables. These groups were temperature, heat
stress, water availability, management (i.e., sowing date, row
distance, plant density, fertilization, type of maize hybrid), and
soil characteristics (i.e., soil taxonomy, use capacity). Single-
constraint models were of the type: Yield = μ + Predictor +
(Site × Year) + ϵ; with Yield: the prediction of grain yield as-
sociated with environments (Site × Year), μ: mean grain yield,
Predictor: variable evaluated as predictor.We defined environ-
ment as the year-site combination in order to take into consid-
eration the fact that some observations came from nearby sites
and from the same site in different years. The predictor was set
as a fixed effect factor while the couple Site × Year was set as a
random factor.

Once the most explicative single constraints within each
group of similar variables were identified, we considered
their potential use for the multiple constraint model. We
followed an established protocol (Zuur et al. 2010) to
check for (i) outliers, (ii) homogeneity of variance, (iii)
normal distribution, and (iv) independence and type of re-
lationship of the candidate variable with the response var-
iable. Multicollinearity and relationships among quantita-
tive variables were evaluated with correlations according
to Pearson. Spatial trends, using geographic coordinates,
were also explored as a potential source of patterns modi-
fying the model’s performance. To identify deviations from
homoscedasticity or normality, we inspected visually resid-
ual plots for deviations and checked Gaussian and homo-
scedasticity assumptions for the standardized residuals of
the models. The random structure of the multiconstraint
model was set as the year-site combination representing
environments, and it was done in the same way for the
single-constraint models. Variance heterogeneity across

environments was specifically checked by fitting a model
per environment and comparing the residual variance.
Observations of candidate fixed effect predictors were
standardized by z-scores to address the fact that predictors
had very different scales; z-scores do not modify the func-
tional relationship between the response and predictor var-
iables. To select predictors for the final model, we followed
the top-down strategy of model selection and the
multimodel inference approach based on information the-
ory (Burnham et al. 2011). The multimodel inference ap-
proach does not rely on the assumption that there is a
unique “true model” but rather that model selection can
identify the best approximating model that will summarize
which “effects” (represented by predictors) can be support-
ed by the data. Selection of model predictors was based on
the AIC (Akaike information criterion) criteria (Burnham
et al. 2011). The coefficients of the final model were esti-
mated using REML (restricted maximum likelihood).
Goodness of fit of mixed models was assessed with R2 of
adjusted models following Nakagawa and Schielzeth
(2013). Marginal R2 represents the variance explained by
fixed factors, while conditional R2 represents the variance
explained by the entire model (fixed and random effects).

2.5 Mechanistic modeling: CERES-Maize

Because of the lack of reports validating or using CERES-
Maize in the studied area, it was necessary to evaluate the
suitability of CERES-Maize (Jones et al. 2003) for these re-
gions. We evaluated CERES-Maize v4.5 with data from the
consolidated database, except observations that had one or
more of the following characteristics: (i) crop management
was unusual for the area, (ii) precipitation during the growing
season was unusually low (< 100 mm) or unusually high for
the studied area (> 550 mm), and (iii) grain yields were un-
usually low (< 2000 kg ha−1) or unusually high (>
11,500 kg ha−1). The previous thresholds were chosen to use
CERES-Maize with scenarios that represent average growing
seasons. For example, the precipitation threshold of 550 mm
was used because precipitation was greater than 550 mm in
only 5% of the cases. Overall, the dataset used with CERES-
Maize covered 69 paddocks (10% of the paddocks in the
consolidated dataset) across four growing seasons (2010/11,
2011/12, 2012/13, and 2013/14); four locations in the semiar-
id Chaco: Girardet, Otumpa, Quimili, and Roversi; and nine
locations in the subhumid Chaco: Campo del Cielo, Campo
Largo, Charata, Gancedo, La Paloma, Las Breñas, Loro
Blanco, Los Frentones, and Pampa del Infierno.

Simulations were conducted for the temperate hybrid DK
747 because it was the most grown temperate hybrid in the
area during the duration of the study and data for model cal-
ibration were available. Genetic coefficients for the hybrid DK
747 were derived from previous studies (e.g., Aramburu
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Merlos et al. 2015) and unpublished data from well-managed
experiments.

The soil data used with the model (i.e., percentage of clay
and silt, organic carbon and total nitrogen, color, drainage, and
runoff potential) were obtained from the soil profiles de-
scribed by the Institute of Soils of INTA. For the identification
of the soil profiles in the localities of Santiago del Estero, the
geographical information system of Santiago del Estero
(SigSE) (Angueira et al., 2007) and the GeoINTAviewer were
used (scale 1:500,000) (http://geointa.inta.gov.ar/). For the
soils of Chaco, we used the soil chart of the Argentine
Republic, Province of Chaco (scale 1:50000) and the
GeoINTA viewer. In each locality, a dominant series was
identified, and when it presented an association of soils, we
used the series with the highest percentage of representation
that was suitable for agricultural use as the soil of one
paddock.

Argillic horizons restrict root growth and water uptake
(Dardanelli et al. 1997). Therefore, we considered the value
of the soil root growth factor according to the percentage of
clay: we used a value of 1.0 when clay < 32%, 0.4 when 32%
< clay < 40%, and 0.2 when clay > 40% (Dardanelli et al.
1997). We considered a soil depth of 2 m based on studies
that report this value as the average rooting depth of maize in
similar soils (e.g., Dardanelli et al. 1997). For those sites
where soil data were not available for the 2 m profile, we
repeated the values of the last soil depth available until the
2 m were completed. Initial soil nitrate and soil ammonium
availability were set at 70 and 15 kg N ha−1, respectively,
based on soil analysis conducted by local agronomists.
These N contents can be taken as the usual values at these
locations and sowing dates. We assumed an exponentially
decreasing N distribution with depth following reports in the
literature (Rimski-Korsakov et al. 2012). To parameterize wa-
ter availability at sowing, we relied on the qualitative assess-
ment that farmers did at sowing. Among the simulated pad-
docks, only five had been fertilized with urea (46% N) at
sowing with 62 kg N ha−1 on average.

The meteorological data for each simulation were ob-
tained from the meteorological station (see Section 2.3)
closest to the field (less than 60 km away). The crop man-
agement data for each simulation were those of the pad-
dock, and one simulation was conducted for each paddock.
For some paddocks, data were missing for row distance
and sowing density; we used the most frequent values of
52 cm and 6 plants m−2 for row distance and sowing den-
sity, respectively. In all cases, we used a sowing depth of
5 cm. Although there were farmers who sowed maize at
other dates, the sowing dates used to run CERES-Maize
were between December 23 and January 20 since these
were the sowing dates used in the paddocks that were
modeled. When there was no information about the pre-
ceding crop, we assumed that it was soybean as it is the

most common crop in the study area. Grain yield of pre-
ceding crops was obtained from an official repository of
agricultural information (http://www.siia.gov.ar). Residues
(shoot and root biomass) were estimated according to
Álvarez et al. (1998), and we assumed no incorporation
of residues since no incorporation of residues was per-
formed after the harvest of the preceding crop until the
sowing of maize. Shoot biomass was estimated using grain
yield (0% moisture content) and a shoot biomass-grain
ratio of 1.33, 1.9, and 1 for soybean, wheat, and maize,
respectively. Root biomass was estimated as 20% of shoot
biomass. We assumed an N content of 1% in the residues.
We entered the harvest date of the preceding crop as the
date of simulation start, and this was generally 6 months
before planting maize when the preceding crops were soy-
bean, maize, and cotton and 2 months before when the
preceding crop was wheat.

Simulations were conducted setting constraints on water
and nitrogen and choosing the Priestley-Taylor method to
simulate evapotranspiration. Water infiltration was simulated
following the approach of the Soil Conservation Service
(USDA Soil Conservation Service, 1972).

After evaluating the crop model, we explored the relation-
ship between simulated grain yield and water availability for
DK747 at sowing and during February. Available water (0–
2 m) at sowing was estimated by running the crop model
throughout the fallow period. The starting date of the fallow
simulation was set according to the harvest date of the preced-
ing crop.

2.6 Statistical analyses

Package lme4 (Bates et al. 2015) of the statistical software R
(R Development Core Team 2007) was used to perform a
mixed-effects analysis of the relationship of grain yield with
environmental and management predictors. Using the final
multi-constraints mixed model, we performed a variance com-
ponent analysis to determine if a few single factors explained
most of the variance. We compared the model having only
mixed-effects predictors with other models incorporating
fixed-effects predictors.

CERES-Maize performance was evaluated according to
two deviation metrics: RMSE (root mean square error) and
NRMSE (normalized RMSE) (Wallach et al. 2014). We quan-
tified water productivity of the maize hybrid DK 747 by
means of conventional and 95% quantile boundary regres-
sions fitted to simulated data. The latter was done using
quantile regression as implemented in the R package quantreg
(Koenker 2016). Grain yield values within the 95th percentile
of each precipitation class were regressed against precipitation
and the fitted model was taken as the maximum bound for
water productivity.
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3 Results and discussion

3.1 Main database results

The consolidated dataset covered the typical growing condi-
tions of summer crops in the studied area. Most of the selected
sites have been cropped more than 5 years and soybean was
the previous crop in approximately two-thirds of the observa-
tions. Crop yield averaged 6156 kg ha−1 but showed a great
variation; with minimum and maximum values of 297 and
11,015 kg ha−1 (14.5% moisture content). Most local farmers
(87%) sowed maize in a relatively narrow window that
spanned from December 15 to January 31. Compared to the
humid Pampas, local farmers delay sowing dates to make the
water balance less restrictive during critical periods as a mea-
sure to reduce the climatic risk (Giménez et al. 2015). An
additional advantage of the delayed sowing date is that maize
growth occur during periods of higher solar radiation.
However, delayed sowing is not free of disadvantages and
maize is exposed to higher temperatures and heat stress during
advanced growth stages.

Farmers cropped maize mostly at an inter-row spacing of
52 cm (81%) while 14 and 5% of farmers used 76 and 70 cm,
respectively. Average plant density ranged from 3.8 to
7.6 plants m−2 and 63% of the paddocks were treated with
insecticides. In the study area, there is an ongoing process of
replacing tropical by temperate hybrids which was captured in
our database. While in 2010, the percentage of temperate hy-
brids was 32%, in 2013, it was 68%. Considering all the years
of the database, the most commonly grown maize hybrid was
the tropical DK 390 (relative maturity 150 days) (22% of the
cases), followed by the temperate hybrid DK 747 (relative
maturity 125 days). On average, the length of the maize grow-
ing season was 185 days.

3.2 Single-constraint models

Single-constraint models allowed identification of the most
explicative variable within groups of similar variables and
reduction of the number of candidate predictors for a multiple
constraint model (Kirwan et al. 2009). The variables in the
consolidated dataset allowed the evaluation of 40, 73, 59,
10, and 14 single-constraint models of the temperature, heat
stress, water availability, soil, and management groups, re-
spectively. Among the evaluated variables for the relationship
between temperature and grain yield, average maximum tem-
perature from January to April (TJA) was the predictor that
explained the highest amount of variance. Interestingly, the
variable that was retained among the temperature variables
was the most associated with heat stress. In the case of heat
stress, the predictor that explained the highest amount of var-
iance was the sum of degree days above 35 °C (D35).
Sinsawat et al. (2004) indicated that 35 °C is above the

optimal temperature threshold value for maize development,
growth, reproductive processes, pollen viability, and grain
yield.

In terms of the variables related to water availability, the
amount of rainfall during February (Fig. 2) was a better pre-
dictor of maize yield than the different indexes of evapotrans-
piration evaluated. Evapotranspiration may have explained
less variance because by delaying sowing dates, the water
balance around the critical period may be less restrictive.
Only 1.8% of the farmers planted early (September–
October). In the case of the predictors associated with rainfall,
the relationship was stronger since the interannual variability
in rainfall was greater than that of the evapotranspiration
(Maddonni 2012). In addition, the precipitation data came
from each farm, which could help detect more local variability
than the evapotranspiration data that came from only a few
meteorological stations. When we evaluated the relationship
between precipitation and grain yield, the goodness of fit,
indicated by R2, was 0.02 (precipitation during the entire
growing season, Fig. 2a), 0.005 (December, Fig. 2b), 0.35
(February, Fig. 2c), and 0.09 (April, Fig. 2d). The environ-
mental variables in monthly periods explained higher variance
in grain yield than the values of the same variables during the
entire growing season because there are periods in which the
occurrence of abiotic stress has higher influence on grain yield
than during other growth stages (Maddonni 2012). In the case
of maize, this period occurs around flowering, when the inci-
dence of water stress negatively affects grain yield more than
in any other period (Edreira and Otegui 2012).

A practice that could reduce water limitation is more effi-
cient weed control. However, the data collection scheme did
not consider quantifying weed control efficiency. Ricard et al.
(2015) suggested irrigation as an effective measure to coun-
teract precipitation variability in the studied area. Double
cropping, an efficient water use practice widespread in other
parts of the continent, is considered unsuitable in this region
because of the high water consumption. However, a reconsid-
eration of double cropping supported by further research is
recommended since highly positive water balances are also
to be avoided; unutilized water excess represents an environ-
mental risk from erosion, flooding, and salinization (Giménez
et al. 2015). Information for Chaco about the effect of weed
control on the water balance is also missing and should be
collected in future projects. Although, irrigation is practically
null in the area, collected data shows that is a promising alter-
native to reduce yield variability.

Among the management variables, the type of maize hy-
brid explained a significant amount of variance (Table 1). This
result suggests that farmers can influence the attainable maize
yield by not only choosing a specific hybrid but also by
selecting between tropical or temperate hybrids. Indeed, ge-
notype choice is one of their primary options for adapting crop
production to climatic conditions (Maddonni 2012). Although
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the amount of variance explained was lower than for the type
of maize hybrid, the preceding crop and number of years the
site has been cropped also explained significant amounts of
variance on the grain yield of maize. In contrast, all the eval-
uated variables associated with soil were poor predictors of
grain yield. A qualitative variable that classified sites

according to whether they were located in the semiarid or
subhumid Chaco was also not retained by the models, sug-
gesting that this classification may have little operational ap-
plication for modeling purposes. Although other studies re-
ported significant associations between plant density and
maize grain yield (e.g., Andrade et al. 2017), in our case, plant

Fig. 2 Relationships between
grain yield (14.5% moisture
content) and precipitation during
the whole growing season (a),
December (b), February (c), and
April (d) at selected analyzed
periods. Data were obtained from
792 maize production paddocks
in the subhumid and semiarid
Chaco. Lines are linear
regressions between grain yield
and precipitation

Table 1 General structure of multiple constraint models for predicting
maize yields in the subhumid and semiarid Chaco shown with selected
examples. Models differed in the predictors included and in the additive

or interactive relationship among predictors. We arrived at a final model
(# 2) by a step-wise selection process according to Akaike’s information
criterion (AIC)

Models Predictors AIC Marg. R2 Cond. R2

1. Full model Yieldi = D35 × TJA × RF ×HT × (Site × Year)i + ϵi 3816 0.55 0.66

2. Heat × temperature Yieldi = D35 + TJA + RF +HT +D35 × TJA × (Site × Year)i + ϵi 3722 0.40 0.60

3. No heat and interactive effects Yieldi = TJA × RF ×HT + (Site × Year)i + ϵi 8920 0.32 0.65

4. No heat and additive effects Yieldi = TJA + RF +HT + (Site × Year)i + ϵi 8990 0.32 0.65

5. No heat and no genotype Yieldi = TJA × RF + (Site × Year)i + ϵi 9247 0.31 0.56

Marg. R2 represents the variance explained by fixed factors; Cond. R2 represents the variance explained by the entire model; D35, degree days
accumulated above 35 °C; TJA, average maximum temperature from January to April; RF, rainfall during the month of February; HT, type of maize
hybrid; ϵ, error
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density did not explain variability in grain yield. This result
may be explained by the fact that farmers in the area used a
very narrow range of plant densities.

3.3 Multiple constraint models

After identifying predictor candidates with single-constraint
models, we developed a multiple constraint model with the
goal of summarizing the main environmental and manage-
ment factors that influenced maize grain yield in the studied
area and of understanding whether the relationships among
variables were of an additive or interactive type. From a longer
list of candidate models, Table 1 shows five examples of can-
didate models to document our model selection criteria and
procedure. Among the considered models, model 2 showed
the best overall fit. Model 2 showed the lowest AIC, which is
the most informative criterion for multivariate model selection
(Burnham et al. 2011). The higher conditional R2 of other
models could show a tendency of these models to be over-
fitted, while the marginal R2, which indicates the variance
explained by the fixed factors, was higher for model 2 than
for all the other simplified models. In general, models that
ignored heat stress had worse approximations of the data than
those including it. To illustrate this, Table 1 shows models
where D35 was included (models 1 and 2) and not included
(models 3 to 5) as a predictor. A full model including interac-
tions among all the identified single predictors (model 1 in

Table 1) had a better fit than other combinations of interactive
and additive predictors but a worse fit than the selected model
2 that included all parameters as additive except the interac-
tion between an index of heat stress (i.e., D35) and TJA (av-
erage maximum temperature from January to April).

Figure 3a shows the relationship between grain yield and
precipitation during February. Although the interaction be-
tween type of hybrid and precipitation did not have a signifi-
cant effect on grain yield, there was an additive effect of the
type of hybrid on grain yield. With low precipitation, temper-
ate hybrids tended to perform better than tropical ones, which
supports the ongoing adoption of temperate hybrids by local
farmers. The adoption of tropical hybrids was encouraged in
the past because the expectation that they would be better
adapted to the local temperature and photoperiod require-
ments. Figure 3b shows the relationship between grain yield
and TJA and the interactive effect of a heat stress index (D35)
on this relationship. As expected, grain yield of maize dimin-
ished as TJA increased over the already high average of 29 °C
that was measured in the studied area. As could also be ex-
pected, the heat stress index was correlated with TJA (r = 0.58
according to Pearson’s product-moment). However, the corre-
lation between these two variables was not tight enough to
prevent different intensities of heat stress for a similar TJA.
These combinations of maximum temperatures and heat stress
have implications for maize productivity, and they were cap-
tured by the multiple constraint model. The significant

Fig. 3 a Relationship between
grain yield (14.5% moisture
content) of tropical and temperate
maize hybrids and precipitation
during February. b Relationship
between grain yield and average
maximum temperature from
January to April (TJA) as
influenced by a heat stress index
(D35). Data were obtained from
792 maize production paddocks
in the subhumid and semiarid
Chaco. Lines are linear
regressions fitted to the data
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interaction between temperature and heat stress is visible by
the fact that at the lowest extreme of TJA (i.e., < 30 °C), there
were no observations with D35 > 150 DD (degree days),
while at the highest extreme of TJA (i.e., > 34 °C), there were
no observations with D35 < 150 DD. At TJA of approximate-
ly 31 °C, grain yield tended to be higher with D35 > 150 DD,
while at approximately 34 °C, grain yield tended to be higher
with D35 < 150 DD. Thus, more heat events resulted in lower
grain yield with higher temperatures, but not with lower tem-
peratures. Although this effect may look subtle, it indeed
shows how complex the dilemma is for local farmers to
choose a type of hybrid, sowing dates, and other management
decisions that mediate the effect on productivity of two cli-
matic effects that in a narrow range can result in very different
outcomes. This result, in turn, suggests that besides improve-
ments from breeding or better crop management, strategies
towards diversification (e.g., rotations or genotypes) are ad-
visable to minimize the risk of climatic effects that are difficult
to anticipate.

With the selected multiple constraints model (model 2),
we conducted a variance component analysis to identify the
impact of these sources of variability on grain yield. Eight
percent of the variance was ascribed to the type of hybrid, a
factor that can be controlled by farmers. In contrast, most of
the effects on grain yield were explained by environmental
variables for which farmers have no or indirect control; D35
(11%), average maximum temperature from January to
April (26%), rainfall during February (13%), the interaction
D35 × TJA (13%), and the interaction Site × Year (11%).
However, the choice of hybrid had implications on the ef-
fects that the environmental variables exert on grain yield.
When we circumscribed the variance component analysis to
a subset with only tropical genotypes, precipitation in
February explained 24% of variance in grain yield, the en-
vironment (i.e., Site × Year) 17% and TJA 29%, whereas
heat stress alone or interacting with temperature explained
almost no variance. The partition of variance was rather
different for temperate hybrids; i.e., 20, 22, 34, and 8%were
explained by the interaction heat × TJA, heat alone, temper-
ature alone, and precipitation, respectively. The respective
values for the tropical × temperate were 6, 18, 36, and 10%.
Similarly, in field experiments carried out in the humid
Pampas of Argentina, the effects of heat stress on grain yield
were larger for temperate than for tropical hybrids (Edreira
and Otegui 2012). An analysis covering the entire Chaco
region highlights the role of water availability as another
factor determining maize yields (Adamoli et al. 2011).
Although our results show that water availability is one
important constraint on maize productivity, depending on
the type of hybrid it may not be the one explaining the
higher amount of variance. Therefore, our results support
the conclusions of other studies (e.g., Baldi et al. 2015) that
multiple factors should be taken into consideration in the

design of improved agronomic management and farming
systems in semiarid and subhumid subtropical areas.

Although the type of hybrid explains less variability than
other variables, it would be a strategic factor to increase
maize’s productivity in the area because through the choice
of genotypes farmers can influence the effects that climate
constraints have on maize productivity more easily or afford-
ably than through other interventions. Farmers have no means
to directly influence temperature while influencing soil mois-
ture with irrigation needs major investments that most local
farmers cannot afford. Tropical hybrids were less affected by
heat stress and higher temperatures than temperate ones.
However, tropical hybrids were more affected by precipitation
than temperate ones, presumably due to their higher biomass
and the associated higher consumption of water (Edreira and
Otegui 2012). The rationale of combining two types of hy-
brids on one farm is to cope with uncertainties that arise from
climate variability. The crosses between tropical and temper-
ate inbred lines represented a highly heterogeneous group that
as a category did not show clear cut differences compared to
tropical or temperate hybrids. Although this scenario could
have been an advantage in terms of adaptation and stress tol-
erance, we did not observe this. This result may be explained
because the crosses included in this study were the first at-
tempts to generate this type of genotype in the region and the
physiological traits from tropical lines that confer advantages
for heat tolerance were probably not targeted.

An unexpected outcome of the model selection was that N
fertilization was not retained in the final multiple constraint
model and it was not identified as a predictor with acceptable
explanatory capacity by a single-constraint model. Three hy-
potheses may explain this outcome. First, the observed vari-
ability in N fertilization rates was low for adequately testing N
effects and the real soil N content was uncertain. Second, the
soil N availability could be high enough for summer crops due
to the local soils that have been only recently cropped and still
hold the fertility of virgin soils, and the high summer temper-
atures exacerbate N mineralization, generating N pulses dur-
ing the periods of high demand. Third, limitations imposed by
N availability may have been obscured by other constraints,
e.g., drought and heat stress. In general, local farmers consider
that the application of fertilizers does not assure economic
benefits, local soils are still fertile enough to achieve satisfac-
tory maize yields, and/or climatic variability makes the re-
sponse to N fertilization highly uncertain.

3.4 Mechanistic modeling

Mechanistic models became powerful tools to assess the ef-
fects of climate change and climate variability (Ray et al.
2015). In this study, the goal of using CERES-Maize was to
extend the conclusions suggested by the field data, to increase
statistical power, to solve uncertainties, and to improve effect
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size estimation. An initial evaluation of CERES-Maize for the
most used temperate hybrid in the area (DK747) showed that
RMSE, NRMSE, and R2 of the regression between simulated
and observed grain yields were 1680 kg ha−1, 25%, and 0.38,
respectively. A question in this study was to better understand
why CERES-Maize performs generally poorly in subtropical
areas (e.g., Ray et al. 2015). The opportunity to overcome this
lack of accuracy has implications for our understanding of the
potential effects of global climate change and for aligning
sustainable development efforts taking into consideration
these effects. Therefore, we searched for sources of deviations
between simulated and observed values among variables as-
sociated with weather, crop characteristics, management, and
environment.We could not identify a consistent source, such as
heat stress or intense drought, for reducing the accuracy of
CERES-Maize. We identified three sources of deviations: (i)
biases at specific locations (Charata, Loro Blanco, and
Girardet that we attributed to inaccurate soil data), (ii) biases
at specific fields (two fields in which the soil was probably
degraded to some extent), and (iii) biases from specific sowing
dates (three observations from 2014 where there were problems
in the emergence of maize). When observations had one of the
above-mentioned characteristics were not included in the sub-
dataset, RMSE, NRMSE, and R2 of the regression between

simulated and observed values were 1246 kg ha−1, 16%, and
0.61, respectively. Therefore, CERES-Maize performance was
satisfactory (Fig. 4a), and it included a wide range of combina-
tions of factors to support decisions in a relatively new cropping
area where locally available information is scarce.

Mechanistic models allow researchers to extend the scope
of observational results (Jones et al. 2003). This is an impor-
tant opportunity to overcome a potential problem associated to
mining observational data, which is that for certain response
variables the range of values is incompletely covered by field
data (Rosenbaum 2002), and data may be characterized by
forming discrete groups of data within the observed ranges.
This process can be a source of inaccuracy since regressions
can be the result of a few groups having high leverage effects.
After evaluating CERES-Maize for the studied area, we con-
ducted simulations to quantify the water productivity of this
hybrid. Figure 4b shows conventional and 95% quantile
boundary regression analyses applied to the simulated data.
Our analysis with conventional regression indicated that the
hybrid DK 747 has a potential to increase grain yield by
18.5 kg ha−1 (14.5% moisture content) for every millimeter
of rainfall during February. We additionally used a boundary
regression fitted to the 95% quantile of the simulated data to
assess the maximum water harvest potential of the temperate

Fig. 4 aRelationship between the
grain yields (14.5% moisture
content) of the temperate maize
hybrid DK-747 simulated by
CERES-Maize and grain yields
observed on farms located in the
subhumid and semiarid Chaco.
Dotted line represents 1:1
relationship. b Relationship
between simulated grain yields of
the temperate maize hybrid DK-
747 by CERES-Maize and
precipitation during February
(mm). Solid and dashed lines
represent regression and
boundary regression of the 95%
quantile, respectively
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hybrid DK 747. The results indicated a maximum possible
increase in grain yield by 21.3 kg ha−1 (14.5% moisture con-
tent) for every millimeter of rain fell during February. Even
though the mechanistic model left unanswered questions, it
significantly reduced the number of queries that were posed
at the inception of this project and will allow a more efficient
investment of resources in subsequent projects by focusing
only on those questions that remain open.

4 Conclusion

The combination of empirical and mechanistic modeling of
farm data allowed the identification of constraints to maize
production in an area where maize cropping is in its early
stages. The empirical model identified the amount of rainfall
during February as a primary determinant of maize yields.
Based on these observations, CERES-Maize simulations indi-
cated that suitable temperate hybrids have the potential to
increase grain yield from 18 to 21 kg ha−1 (14.5% moisture
content) for every millimeter of rainfall during February.

An additional key contribution of the multivariate
mixed model was to elucidate the role of genotypes
since most mechanistic models are still not advanced
enough to capture differences at the genotypic level
(Jeuffroy et al. 2014). Our empirical model showed that
temperate hybrids tended to perform better under condi-
tions of water scarcity while tropical hybrids tended to
withstand better conditions that arose from higher tem-
peratures and heat stress (temperature > 35 °C). This
situation suggests that farmers face a difficult dilemma
when choosing between temperate and tropical hybrids
to reduce vulnerability to drought and heat stress, which
are two stresses that tend to occur simultaneously.
Farmers are thus exposed to a deadlock where the main
option in terms of genotype choice to minimize climatic
risks may be to diversify and mix them in different
paddocks within a farm as a measure to minimize the
overall climatic vulnerability. The findings of this study
provide plant breeders urgently needed information to
breed better adapted maize genotypes for these regions,
which in turn can increase local farmers’ options.
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