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18 Abstract

19 Populations of European honeybee subspecies, Apis mellifera, have the ability to adapt 

20 naturally to the ectoparasitic mite, Varroa destructor. It is possible that a tolerance to mite-

21 vectored viruses may contribute to colony survival. If this is the case, surviving populations 

22 should show lower virus titers and prevalence compared to susceptible populations. Here, we 

23 investigated the prevalence and titers of 10 viruses, some known to be associated with V. 

24 destructor, in adult workers and pupae as well as mites. Samples were collected from both a 

25 mite-surviving and mite-susceptible honeybee population in Norway. Surviving colonies had 

26 a lower prevalence of a key virus (DWV-A) associated with V. destructor in individual adult 

27 bees sampled, and generally lower titers of this virus in mite infested pupae and mites within 

28 the colonies when compared to sympatric, susceptible controls. However, these surviving 

29 colonies also displayed higher prevalence and titers of two viruses not associated with 

30 V. destructor (BQCV & LSV1). The results of this study therefore suggest that general 

31 tolerance to virus infections is unlikely to be a key mechanism for natural colony survival in 

32 Norway, but evidence may point to mite control as a predominant mechanism.
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38 Introduction

39 Certain honeybee pathogens, such as DWV and its recombinants, which in the past were largely 

40 benign [1], have developed novel transmission pathways through the invasive ectoparasitic 

41 mite Varroa destructor [2] that bolster titers to the point of reducing the longevity of individual 

42 bees. This leads to colony weakening and  collapse in many cases. [3,4]. As a result, Varroa 

43 destructor, which made a host shift form the Eastern honeybee Apis cerana to the Western 

44 honeybee Apis mellifera, is one of the most serious threats to Western honeybees, both 

45 domestic and wild [3–5]. Due to the limited defense mechanisms of Western honeybees, their 

46 unhindered population growth can cause numbers to reach devastating levels in late summer 

47 and autumn, when the bees required for winter hibernation are being reared [3,6]. It is known 

48 now that Western honeybee populations left untreated for at least five years have the potential 

49 to develop the ability to manage V. destructor infestations without the need for human-

50 mediated mite control [7,8]. Previous evidence has pointed to several mechanisms: both 

51 mechanical, such as reduced post-capping period [9] and potential changes in brood volatiles 

52 [10], and behavioral, such as grooming [11], brood removal [12,13] and brood cell recapping 

53 [14]. One of the most prominent traits that has been detected in surviving bees, regardless of 

54 the mechanisms identified, is suppressed mite reproduction (SMR) [7,15], signified by lower 

55 reproductive output on average per foundress each reproductive cycle. SMR has been recorded 

56 not only in Africanized bee populations surviving V. destructor [16], but in the “more 

57 susceptible” European populations as well, including the Primorsky bees originating in Russia 

58 [17], the Gotland bees in Sweden, the Avignon bees in France [15,18] and a population in the 

59 Oslo region of Norway [8]. It has been proposed that viral tolerance is also a contributing 

60 mechanism, possibly due to changes in the dominant viral strain [19,20] or in the bees or mites 

61 themselves [21]. 
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62 A domestic population of surviving bees in Norway [8] has been used commercially since 

63 before the introduction of V. destructor into the local area approximately 30 years ago. 

64 Selection efforts employed by the beekeeper managing the population included the monitoring 

65 of high honey productivity, and this trait was preserved along with the development of the 

66 mite-surviving adaptations that stemmed from the lack of treatment and subsequent selective 

67 pressure [8]. Evidence has been gathered that suggest these bees possess mechanisms that focus 

68 on controlling the parasite directly, through SMR [7,8,14]. However, tolerance to viruses is an 

69 additional possibility when considering reasons for survivability [21]. In addition, tracking bee 

70 viral loads for viruses unlinked to V. destructor may provide us with insight into the potential 

71 weaknesses of a rapidly adapted bee population. This study investigated potential viral 

72 tolerances and susceptibilities in a population of bees left regularly untreated for V. destructor 

73 (the surviving population) by comparing their viral profiles with regularly treated, V. 

74 destructor-susceptible controls in the same area. Viruses known to be associated with V. 

75 destructor infestations (DWV, SBPV) [22] as well as eight other viruses (BQCV, KBV, LSV1, 

76 LSV2, SBV, CBPV, IAPV, ABPV) were monitored in worker bees throughout the active 

77 season. DWV was monitored in both developing pupae and mites contained in their brood cells. 

78 The goal was to examine viral titer levels and gather information on the bees’ potential ability 

79 to tolerate viral spread by V. destructor, or else reinforce previous findings that SMR and mite 

80 population control (and the subsequent decline in high-titer prevalence of DWV) is the central 

81 mechanism employed by Norwegian bees to achieve natural survivability. If viral prevalence 

82 and titer in surviving populations are high, we can assume viral tolerance plays a role. If only 

83 titer appears lower, we can assume an internal mechanism to fight infection and if prevalence 

84 is lower, we can infer that there is a mechanism that limits the spread of the virus, such as 

85 reducing mite loads. The other aim of the study was to measure viral prevalence and titer in 

86 viruses unassociated with V. destructor to detect potential susceptibility in the surviving 
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87 population to viruses that would, in un-adapted populations, not pose much of a problem. If 

88 titers or prevalence of any of these viruses are higher than in sympatric controls we could 

89 conclude that heightened susceptibilities may be present, possibly due to a genetic 

90 bottlenecking during the natural selection process.

91 Materials and Methods

92 Sample collection and Varroa destructor infestation rates

93 In autumn 2013, spring and summer 2014, samples were taken in Østlandet, south-eastern 

94 Norway from local queenright A. mellifera colonies surviving V. destructor infestation without 

95 treatment for at least 16 years (N=32, 3 apiaries), as well as colonies, regularly treated until 

96 2011/2012 with oxalic acid and/or drone brood removal, (N=69, 7 apiaries). Adult workers 

97 were collected from outer frames inside the hive. Phoretic mites were sampled using routine 

98 washing methods (~100-400 bees, [23]). Infested pupae were sampled, and their mites 

99 collected and stored. All samples were transported on ice to Bern, Switzerland for preserving 

100 [24] and then stored at -80°C until processing.

101 Sample selection and analytic approach

102 Pooled samples:

103 100 workers and all phoretic mites of the colonies sampled in summer 2014 (N=58; 

104 surviving=24, susceptible=34) were pooled and homogenized for each colony.

105 Individual samples:

106 Adult workers (N = 11-13 per colony) and phoretic mites (1-22 per colony) were sampled from 

107 10 surviving and 11 susceptible colonies in autumn 2013. From all three seasons (spring, 

108 summer and autumn), honey bee pupae with their corresponding mites (reproductive and non-
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109 reproductive) from 47 colonies (8 apiaries), (N=29 (3) Surviving and 18 (5) susceptible) were 

110 sampled from infested cells and selected for virus analysis.

111 Homogenization and RNA extraction

112 TN buffer (Tris 10mM, NaCl 10 mM; pH 7.6) was added to each sample (25 ml for pooled 

113 workers, 100-300 µl for pooled phoretic mites, 250 µl for individual workers and pupae and 

114 100 µl for individual mites) and the sample was homogenized with either a Dispomix® Drive 

115 homogenizer (Medic tools) for pooled worker samples or a tissuelyser (Qiagen Retsch MM300, 

116 1 min at 25g/s) for pooled phoretic mites and all individual samples [25]. An aliquot of 50 µl 

117 homogenate was used for RNA extraction using the NucleoSpin® RNA II kit, (Macherey-

118 Nagel) following the manufacture’s recommendations. The total extracted RNA was diluted in 

119 60 µl of RNase-free water.

120 Reverse transcription, PCR and qPCR assays

121 The RNA was transcribed to cDNA using M-MLV reverse transcription kit (Promega) 

122 following the manufacturer’s recommendations using a defined amount of RNA (1μg for bees 

123 and 50 ng for mites, respectively) according to fluorospectrometry (NanoDropTM 1000) 

124 measurements [25]. cDNAs were diluted 10fold in nuclease-free water. With a standard 

125 qualitative PCR (0.125 My TaqTM polymerase (Bioline), 5µl 5x buffer, 1 µl of the respective 

126 forward and reverse primers (Table S1); 2 min at 95°C, 35 cycles with 20 sec at 95°C, 20 sec 

127 at 57°C and 30 sec at 72°C, 2 min at 72°C), pooled worker and phoretic mite samples were 

128 screened for the following viruses: Deformed wing virus type A (DWV-A) and type B (DWV-

129 B), Acute bee paralysis virus (ABPV), Israeli acute paralysis virus (IAPV), Kashmir bee virus 

130 (KBV), Chronic bee paralysis virus (CBPV), Slow bee paralysis virus (SBPV), Sacbrood virus 

131 (SBV), Bee Macula-like virus (BeeMLV), Black queen cell virus (BQCV), Lake Sinai virus 1 

132 (LSV1) and Lake Sinai virus 2 (LSV2). Similar, pooled brood samples were screened for 
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133 DWV-A, DWV-B, ABPV, IAPV, KBV, SBV, LSV1, LSV2, SBPV and CBPV. Positive and 

134 negative controls were used for each PCR run. Each PCR Product was analyzed on 1.2 % 

135 agarose gel. The agarose gel was stained with GelRedTM and visualized by UV light. With 

136 quantitative RT-PCR (RT-qPCR; Kapa SYBR® Fast Master Mix (KAPA, Biosystems), 10 µl 

137 master mix, 3 µl cDNA template, 0.4 µl forward and reverse target primers (10 mM) and 6.2 

138 µl Milli-Q water; 3 min at 95°C, 40 cycles of 95°C for 3 sec and 55°C for 30 sec, melting 

139 curve: 95°C for 15 sec, 55°C for 15 sec and 95°C for 15 sec) pooled worker samples, where 

140 viruses were detected with qualitative PCR, were analyzed to determine virus levels (DWV-A, 

141 BQCV, LSV1, LSV2 and SBPV). Individual adult workers and phoretic mites were analyzed 

142 individually for DWV-A by use of qPCR (protocol described above). Individual brood samples 

143 (pupae and brood mites) were analyzed individually for the viruses detected in the PCR (DWV-

144 A, DWV-B, and SBPV, protocol described above). In order to normalize the data according to 

145 the amount of RNA, analysis of the β-actin gene was performed in parallel for each sample 

146 [26]. A Cq cut-off value (according to the value of the negative control) was used to define the 

147 disease status (positive or negative).

148 Sequencing

149 To confirm the virus identity of the PCR and qPCR positive samples (pooled and individual), 

150 selected PCR-products of each virus were commercially sequenced (Fasteris SA) and 

151 compared with reference sequences deposited in GenBank. 

152 Statistical analyses

153 Statistical analyses were performed using NCSS Statistical Software [27]. For comparison of 

154 virus levels, a two-tailed t-test or a Mann-Whitney U test was done, depending on normal 

155 distribution (Kolmogorov-Smirnov, Skewness, Kurtosis and Omnibus Normality). Equally, for 

156 comparison of infestation rates among multiple groups one-way ANOVA or a Kruskal Wallis 
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157 one-way ANOVA on ranks, followed by Dunn-Bonferroni correction was performed.  To take 

158 account of colony or apiary level variation, the data were additionally run through a linear 

159 mixed effects model using R 3.1.2 [28]. Virus values (# copies) were log transformed since the 

160 data covered a wide range of values of several magnitudes. Analysis of virus prevalence 

161 between groups were done with a Chi-Square test. For all statistical analyses, a significance 

162 level of α = 0.05 was applied.

163

164 Results

165 Mite population levels

166 Untreated colonies generally had lower phoretic mite loads (Kruskal-Wallis ANOVA, Dunn’s 

167 test, zspring>3.04 / zsummer>2.94, p<0.01, however brood infestation rates were comparable 

168 between populations for the sampling period.

169 Virus prevalence and viral load

170 Pooled samples:

171 In the pooled worker and phoretic mite samples of the 58 colonies (19 surviving, 39 

172 susceptible) sampled in summer 2014, the following viruses were detected: BQCV, DWV-A, 

173 LSV1, LSV2, SBPV and CBPV. All viruses found by PCR were confirmed by sequencing.

174 The surviving colonies had a significantly higher prevalence of BQCV than the susceptible 

175 colonies (Chi-Square test: 2=13.44, p<0.01, ~90% of surviving colonies and ~40% of 

176 susceptible colonies), but no such differences in prevalence were seen for any of the other 

177 tested viruses (Chi-Square tests: 2=1.25-2.80, p>0.05 in all cases, Fig 1). 
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178 Fig 1: Colony-level Prevalence of the detected viruses in pooled worker samples in summer 2014. 

179 While there were no significant differences for most viruses (Chi Square test: 2=1.25-2.81, DWV-A, 

180 LSV-1, LSV-2 and SBPV: p>0.05), untreated (surviving) colonies had a significantly higher BQCV 

181 prevalence, compared to treated (susceptible) ones (Chi Square test, 2=13.44, ** = p<0.01).

182 When comparing virus titers between surviving and susceptible colonies, the surviving 

183 colonies had higher BQCV and LSV1 loads (BQCV: Mann-Whitney and LSV1: two-tailed t-

184 test; p<0.01), but no significant differences were detected for DWV-A, LSV2 and SBPV 

185 (Mann-Whitney, p>0.05 in all cases, Fig 2). 

186 Fig 2: Viral titers of the detected viruses in pooled worker samples of summer 2014 from 

187 untreated (surviving) and treated (susceptible) colonies. Medians, interquartile ranges and maxima 

188 are shown. While there were no significant differences for most viruses (DWV-A: Mann-Whitney, 

189 LSV2, SBPV: two-tailed t-test, p>0.05) surviving colonies had significantly higher BQCV and LSV1 

190 loads, compared to treated ones (BQCV: Mann-Whitney, LSV1: two-tailed t-test; ** = p<0.01).

191 Individual samples:

192 No differences of the DWV-A titers between the surviving and susceptible colonies were 

193 found, neither for workers (N=201, Mann-Whitney, Usurviving=4131, Ususceptible=5463, p>0.05), 

194 nor mites (N=107, Mann-Whitney, Usurviving=1395, Ususceptible=1395, p>0.05). However, 

195 surviving colonies showed a significantly lower proportion of DWV-A positive workers than 

196 treated colonies did (Chi-Square test: 2=33.751, p<0.01, Fig 3, ~65% surviving workers and 

197 ~95% of susceptible workers).

198 Fig 3: Prevalence of DWV-A in workers and phoretic mites of autumn 2013 from untreated 

199 (surviving) and treated (susceptible) colonies. Means are shown. While there was no significant 

200 difference in the proportions of DWV-A positive mites (Chi Square, χ2=2.455, p>0.05), significantly 

201 fewer workers from surviving colonies had detectable DWV-A titers compared to susceptible colonies 

202 (Chi Square, χ2 33.751, ** = p<0.01).
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203 Viruses detected in brood and associated mites were Deformed wing virus-A (DWV-A), 

204 Deformed wing virus-B (DWV-B) and Slow bee paralysis virus (SBPV). No significant 

205 differences of virus prevalence were detected between susceptible and surviving pupae and 

206 mites for all tested viruses (Chi-Square: 2=0.76-3.17, p>0.05). Comparison of titers from 

207 susceptible and surviving pupae revealed that those from the susceptible colonies had 

208 significantly higher DWV-A titers (Mann-Whitney, workers: Utreated = 1511, Usurviving = 541, 

209 mites: Ususceptible = 2500, Usurviving = 620, p<0.01 for workers and mites, Fig 4). 

210 Fig 4: DWV-A titers of individual honeybee pupae and their associated mites in untreated 

211 (surviving) and treated (susceptible) colonies from all seasons. Medians, interquartile ranges and 

212 maxima are shown. Both pupae and mites from susceptible colonies had significantly higher DWV-A 

213 titers than those from surviving colonies (Mann-Whitney, workers: Ususceptible=1511, Usurviving=541, 

214 mites: Ususceptible=2500, Usurviving=620, ** = p<0.01).

215 No significant differences were detected between surviving and susceptible pupae and mites 

216 for DWV-B and SBPV titers.

217

218 Discussion

219 The proportion of adult workers and pupae that tested positive for one of the most prominent 

220 mite-transmitted viruses (DWV-A) was lower in surviving colonies than in susceptible 

221 controls, meaning the virus may have had a reduced transmission frequency, likely brought 

222 about by fewer phoretic mites. Individual adult workers in the surviving population had a 

223 higher prevalence for BQCV and higher titers of this virus as well as one other not commonly 

224 associated with V. destructor (LSV1) and this may suggest a reduced ability to overcome 

225 infections from these viruses.
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226 Though the DWV-A titer level was not different between individual adult worker bees in both 

227 colony groups (surviving and susceptible) the proportion of workers that tested positive for 

228 DWV-A was significantly lower. Phoretic mites did not have significantly different viral 

229 prevalence or titer between surviving and susceptible groups, meaning the mites were just as 

230 capable of spreading infection in surviving colonies as susceptible colonies. If viral tolerance 

231 played a role in mite-survivability we may not have seen such a distinction in viral prevalence. 

232 As prevalence is reduced in surviving colonies, it can be considered that the control factor is 

233 focused on reducing the probability of viral infection, i.e. reducing the mite loads. Viral 

234 prevalence in infested pupae was not different between surviving and susceptible colony 

235 groups and this also aligns with the idea of mite-targeted survival strategies: If a cell is infested, 

236 it has the same probability of becoming infected with a mite-transmitted virus. 

237 The reason we do not see this lower prevalence in the pupae could be because only infested 

238 pupae were sampled, though no differences in pupal infestation rates were found in this study, 

239 there were differences in phoretic mite load, and these surviving colonies have historically 

240 displayed consistently lower mite loads both phoretically and in brood [8]. 

241 Interestingly, there was a difference in DWV-A titers in both pupae and associated mites when 

242 comparing the colony groups (surviving and susceptible): surviving pupae and mites had lower 

243 titers of this virus. There is a possibility that this is due to the lower frequency of bees being 

244 bitten by mites (due to reduced mite load) and therefore a lower general level of DWV-A 

245 circulating within the population, however workers that did test positive for the virus did not 

246 display a difference in titer, nor did the phoretic mites. More likely, the mite-surviving strategy 

247 relies on reducing the number of offspring produced in mite-infested pupal cells (SMR: [7,8,29] 

248 and the lower number of offspring reduces viral transference in the closed system of the cell. 

249 These differences, though statistically significant, were small, but they provide further 

250 evidence that reducing mite loads is the predominant surviving trait.
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251 Surviving colonies had higher titers of BQCV and LSV1 and a higher prevalence of BQCV. In 

252 another surviving population in Sweden, BQCV and SBV titers decreased substantially 

253 compared to a local susceptible population [21]. The history of these Norwegian colonies 

254 contains a sharp reduction in population and a steady increase again from those few colonies 

255 that survived [7]. It is possible that the reduction of genetic material being bred from at the 

256 time created a larger susceptibility to generally non-lethal threats as has been shown in previous 

257 work [30]. Despite evolved strategies to combat inbreeding [31] bee species can suffer the 

258 effects of genetic bottlenecking [32–35]. It may also be possible that the strategy of mite-

259 survival may leave the colonies more vulnerable to other pathogens, in the way it is employed.

260 The presence of SMR in all recorded surviving populations [7,8,29] is good evidence to suggest 

261 that the reduction of mite infestation levels is the most successful natural strategy to mitigate 

262 the damages of V. destructor in populations of Western honey bee. With consistent evidence 

263 of hindering mite population growth in all populations, this strategy seems to be present 

264 everywhere Western honeybees are permitted to adapt naturally and should therefore be a core 

265 focus of Varroa destructor-resistant breeding efforts. Viral tolerance cannot be discounted, 

266 however future studies on mite survivability might benefit from a focus on regulating the 

267 parasite populations and not enduring them.

268
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