Sulfat-Bestimmung im 0.01 M Calciumchlorid-Extrakt (1:4)

Version 1.1 (2020)

Code der Referenzmethode	Smin		Mögliche Einsatzbereiche	
	Ackerkulturen und Gr Gemüsebau (Freiland Gewächshaus) Weinbau, Obstbau, B Gewürz- und Medizin		land / u, Beerenanbau,	x x
	Standortcharakterisierung			
Einsatzbereich	Schadstoffbeurteilung			
	Recyclingdünger		Kompost Gärgut fest Gärgut flüssig Klärschlamm	
	Hofdünger		Mist Gülle	
	Mineraldünger			
	Pflanzenkohle			
Rechtliche Grundlagen / Vollzugshilfen	Forschungsmethoden Messung von Nährstoffgehalten für Düngeberatung laut den Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz			
Zulassungskriterien für Labors	-			
Analysenprogramm	Probennahme	NM-PN		
	Probenaufbereitung	NM-PA		
	Aufschluss	NM-Ex		
	Messung	Smin		

Konzentrations- / Messbereich	0 – 80 mg SO ₄ -S / kg trockene Feinerde
Angabe der Ergebnisse	mg SO ₄ -S/kg Boden-TS; 1 Dezimalstelle kg SO ₄ -S/ha; keine Dezimalstelle
Äquivalente Methoden	
Sicherheit / Umwelt	Keine besonderen Massnahmen

Sulfat-Bestimmung im 0.01 M Calciumchlorid-Extrakt (1:4)

1. Prinzip

Die mineralische, pflanzenverfügbare Form des Schwefels - Sulfat - wird analog zu N_{min} als S_{min} bezeichnet und ebenfalls mit Calciumchlorid (0.01 M CaCl₂, 1:4) extrahiert (siehe Referenzmethode NM-Ex). Sulfat wird im unverdünnten Extrakt mittels Ionenchromatographie (mit chemischer Suppression und Leitfähigkeitsdetektion) bestimmt.

Aus dem Messresultat (mg SO_4 -S pro Liter) wird der S_{min} -Gehalt (in kg SO_4 -S pro ha) berechnet, ebenfalls analog zu N_{min} .

2. Durchführung

Vorbemerkung

Für die Ionenchromatographie gibt es verschiedene, teilweise prinzipiell unterschiedliche Instrumente und eine Vielzahl von Trennsäulen mit verschiedenen Selektivitäten, Eluenten und Retentionszeiten, von denen sich einige gut für die Bestimmung von SO_4^{2-} im 0.01 M Calciumchlorid-Extrakt von Böden eignen dürften.

Die hier beschriebene Methode beinhaltet keine Wertung der verschiedenen Anbieter, sondern beschreibt eine gut getestete Möglichkeit mit gebräuchlicher Säule und Eluent. Die Adaptation der Methode auf andere Instrumente und Trennsäulen sowie deren Validierung muss den einzelnen Labors überlassen werden.

Apparaturen und Geräte

- (A) Analysenwaage (0.1 g Teilung).
- (B) diverse Pipetten und Messkolben.
- (C) Ionenchromatograph mit Leitfähigkeitsdetektor und 25 µl Injektionsloop.
- (D) Vor- und Trennsäule, geeignet für die Detektion von Sulfat neben grossem Überschuss an Chlorid. In dieser Methode: Dionex AG4A-SC + AS4A-SC (4 mm).
- (E) Suppressor
 - In dieser Methode: Selbstregenierender Suppressor Dionex ASRS, betrieben mit 50 mA Anmerkung: Dieser Suppressor benötigt keine Regenerierlösung.
- (F) Automatischer Probengeber In dieser Methode: Dionex AS40. Benötigt Druckluft zur Betätigung des Injektionsventils.
- (G) Helium zur Entgasung des Eluenten.

Reagenzien

- (1) Demineralisiertes Wasser (H₂O, Leitfähigkeit < 1 μS/cm).
- (2) Eluent, passend zu Trennsäule (D) und Suppressor (E). In dieser Methode: Carbonat/Bicarbonat-Eluent:
 - (2a) Natriumcarbonat Na₂CO₃x10H₂O, 286.14 g/mol, p.a.
 - (2b) Natriumhydrogencarbonat NaHCO₃, 84.00 g/mol, p.a.
 - (2c) Eluent-Konzentrat:
 - 41.2 g Natriumcarbonat (2a) und 11.4 g Natriumhydrogencarbonat (2b) in einem 1 Liter Messkolben in Wasser (1) lösen und zur Marke auffüllen.
 - (2d) Eluent: 1.8 mM Na₂CO₃ + 1.7 mM NaHCO₃: 25 ml Konzentrat (2c) und 2 Liter H₂O (1).
- (3) Extraktionslösung (0.01 M CaCl₂).
- (4) Standardlösungen:

2/6 Smin Version 1.1 (2020)

- (4a) Standardlösung (0.5 Mol/L H₂SO₄), gebrauchsfertig.
- (4b) Standardlösung B (0.02 Mol/L): 20 ml Standardlösung (4a) mit H₂O (1) auf 500 ml bringen.

(5) Kalibrierlösungen:

```
    (5a) Extraktionslösung (3) = 0 μMol S/L = 0 mg SO<sub>4</sub>-S/L
    (5b) 0.2 ml Lösung (4b) + ad 200 ml mit Extraktionslösung (3) = 20 μMol S/L = 0.63 mg SO<sub>4</sub>-S/L
    (5c) 0.5 ml Lösung (4b) + ad 200 ml mit Extraktionslösung (3) = 50 μMol S/L = 1.60 mg SO<sub>4</sub>-S/L
    (5d) 2.0 ml Lösung (4b) + ad 200 ml mit Extraktionslösung (3) = 200 μMol S/L = 6.41 mg SO<sub>4</sub>-S/L
    (5e) 4.0 ml Lösung (4b) + ad 200 ml mit Extraktionslösung (3) = 400 μMol S/L = 12.82 mg SO<sub>4</sub>-S/L
    (5f) 6.0 ml Lösung (4b) + ad 200 ml mit Extraktionslösung (3) = 600 μMol S/L = 19.22 mg SO<sub>4</sub>-S/L
```

Anmerkungen:

Die Kalibrationsfunktion ist deutlich nicht-linear und wird mit einer guadratischen Regression berechnet.

Die Kalibrationspunkte sind gegebenenfalls an gerätespezifische Eigenschaften anzupassen.

Wenn die Auswertungs-Software S-förmige Kalibrationskurven berechnen kann, ist es möglich, den Kalibrationsbereich nach höheren Werten auszudehnen.

Arbeitsvorschrift

Instrument (C,D,F,G) anstellen (siehe Geräteanleitung), Eluenten-Zufuhr primen (schnelles Pumpen unter Umgehung der Säulen)

Eluent mit 2 ml/Min pumpen, dann Suppressor-Strom (E) auf 50 mA stellen. Warten bis die Nulllinie konstant ist.

Einen Standard einspritzen und dann das Chromatogramm beurteilen.

Peakerkennung der Retentionszeit anpassen, Zeitfenster ±5%

Messdauer: 1 Minute länger als die Retentionszeit von SO₄²⁻ (6-8 Min.)

Peakfläche und Rückdruck mit dem Erfahrungswert vergleichen (siehe Anmerkungen)

Standards und Proben unverdünnt messen (F).

Auswertung mit Peakfläche.

Anmerkungen: •

- •Liegen die Messwerte über der Kalibrationsreihe, sind die Extrakte zu verdünnen und nochmals zu messen. Der Verdünnungsfaktor ist bei der Berechnung zu berücksichtigen.
- Die Retentionszeit für SO₄²⁻ sinkt mit zunehmendem Alter der Säule von 8.3 Min. auf unter 6. Jedoch sollte die Peakfläche konstant bleiben.
- Folgende Symptome deuten auf die Notwendigkeit einer Säulenreinigung: kürzere Retentionszeit (<6 Min), breitere und/oder asymmetrische Peaks. Zur Reinigung der erwähnten Säulen wird die Vorsäule AG4A-SC hinter die Trennsäule AS4A-SC montiert und der Suppressor abgehängt. Nun wird nacheinander Wasser, 1 M HCl, Wasser, 0.2 M NaOH, Wasser, 90% Acetonitril und wieder Wasser durchgespült (siehe Geräteanleitung). Bringt die Reinigung keinen Erfolg, sind die Säulen zu ersetzen.
- Beim Autosampler AS40 werden die Extrakte durch einen 20 µm-Membranfilter im Deckel des Proberöhrchens injiziert. Bei anderen Probengebern kann es für die Lebensdauer der teuren Säulen vorteilhaft sein, die Extrakte noch mittels Membranfiltration zu reinigen.
- Wenn der Rückdruck des Systems verglichen mit den Erfahrungswerten zu hoch ist, muss der Eingangsfilter der Vorsäule ersetzt werden.
- Vorsicht: Bei ASRS nie mit abgeschaltetem Suppressor Eluent durchpumpen. Sollte dies mal passiert sein, sind die Peakflächen während Tagen zu klein, ausser man regeneriert den Suppressor mit H₂SO₄ (siehe Geräteanleitung).
- Die Retentionszeit nimmt bei steigender Sulfat-Konzentration um ein paar Sekunden zu. Verglichen mit rein wässrigen Standards erhöht das CaCl₂ die Retentionszeit um ca. 0.1 Min.

3/6 Smin Version 1.1 (2020)

3. Berechnung

mg SO₄-S/kg Boden-TS

a mg SO₄-S/L Extrakt. Konzentration von SO_4^2 -S im Extrakt, geliefert von der Geräte-Software. TS kg Boden-TS/kg feldfrische Erde/TS% = TS * 100%

mg SO₄-S/kg Boden-TS = a [mg SO₄-S/L Extrakt] * 0.6 [L]/0.15 [kg]/TS = a * 4/TS

 S_{min}

Für die Umrechnung zu S_{min} in kg SO₄-S werden folgende Parameter verwendet:

B mg SO₄-S/kg Boden-TS

TRG Trockenraumgewicht in kg pro Liter

Trockenraumgewichte (c) des Bodens in Abhängigkeit der Entnahmetiefe und des Humusgehaltes

Entnahmetiefe	Humusgehalt	Trockenraumgewicht
(cm)	(%)	(kg/L)
0-30	0-10	1.25
	10-20	1.00
	20-40	0.85
	40-60	0.65
	> 60	0.50
30-60	0-10	1.30
	10-20	1.25
	20-40	0.85
	40-60	0.65
	> 60	0.50
60-90	0-20	1.35
	20-40	0.85
	40-60	0.65
	> 60	0.50

Dicke Mächtigkeit der untersuchten Schicht

Skelett Skelettgehalt (>2 mm) in Volumen-% (durch den Probenehmer auf dem Feld zu schätzen)

kg S/ha = b [mg S/kg TS] * TRG [kg/dm3] * Dicke [dm]/106 [mg/kg] * 106 [dm2/ha] * (100-Skelett)/100

4. Resultatangabe

mg SO₄-S/kg Boden-TS; 1 Dezimalstelle kg SO₄-S/ha; keine Dezimalstelle

5. Bemerkung

Bezüglich S_{min} sind die Extrakte einige Tage bei Raumtemperatur stabil.

6. Validierung

Instrumentelles

Die Validierung wurde mit einem Dionex Chromatographiemodul LC20 mit Pumpe GP50, Leitfähigkeitsdetektor ED40, Suppressor ASRS Ultra und Autosampler AS40 durchgeführt. Steuerung und Auswertung mit Chromeleon Software.

Die Säulen AG4A-SC + AS4A-SC geben mit dem CO₃²-/HCO₃-Eluenten folgende approximative Retentionszeiten: 1.5 Min für Chlorid, 3.1 Min für Nitrat, 5.2 Min für Phosphat und 7 Min für Sulfat.

4/6 Smin Version 1.1 (2020)

Bei der Messung in 0.01 M CaCl₂ erreicht der grosse Chlorid-Peak erst kurz vor dem Nitrat-Peak wieder die Grundlinie.

Die Retentionszeiten variieren stark mit dem Alter der Säule. Hingegen sind Peakflächen ziemlich konstant (Variationskoeffizient über 4 Jahre: 2%).

Kalibration

Mit den Säulen AG4A-SC + AS4A-SC und dem CO₃²-/HCO₃-Eluenten kann auf die Matrixangleichung der Standards verzichtet werden: Die Peakflächen unterscheiden sich nur um etwa 0.5%, wenn die Standards in Wasser statt Extraktionslösung zubereitet werden.

Präzision

Aufeinander folgende 10fach-Bestimmungen von 5 Proben mit Gehalten von 0.18 bis 6.8 mg S/L zeigten eine durchschnittliche Standardabweichung von 0.01 mg S/L resp. Variationskoeffizient von 0.7%).

Bei 14 nicht direkt nacheinander durchgeführten Doppelbestimmungen im Gehaltsbereich von 0.08 bis 16 mg S/L betrug der durchschnittliche Variationskoeffizient 0.9%.

Stabilität der Extrakte

48 Extrakte, die in verschlossenen Plastikflaschen bei Raumtemperatur aufbewahrt wurden, zeigten bei Nachmessung nach einer Woche dieselbe SO₄-Konzentration (Abweichung 0% ±1%), nach zwei Monaten eine leichte Abnahme (-3% ±3%).

Umrechnung auf Smin

Um die Validierungs-Parameter im agronomischen Kontext zu beurteilen, benötigt man die Werte S_{min} in kg S/ha. Die folgenden Abschätzungen wurden für einen Boden aus der Schicht 0-30 cm mit <10% Humus (Trockenraumgewicht 1.25 kg/L), 10% Skelettanteil und 82% TS gemacht, für den 1 mg S/L einem S_{min} von 16.5 kg S/ha entspricht.

Arbeitsbereich

Die Standardabweichungen von Blindwert und 2 Proben mit <0.2 mg S/L betragen ±0.002 bis ±0.004 mg/L (N>8). Daraus berechnen sich die Nachweisgrenze = 0.01 mg S/L und Bestimmungsgrenze = 0.02 mg S/L.

Mit dem erwähnten durchschnittlichen Umrechnungsfaktor entspricht der Arbeitsbereich S_{min}-Gehalten von 0.4 bis 320 kg/ha. Höhere Gehalte bedingen einen zusätzlichen Verdünnungsschritt.

Der Vergleich mit dem S-Entzug - 20 kg/ha (Getreide) bis 80 kg/ha (Raps) [GRUDAF] - zeigt, dass die lonenchromatographie den agronomischen Ansprüchen vollauf genügt. (Es sei erwähnt, dass Skelettgehalt und Trockenraumgewicht Schätzgrössen sind, deren prozentuale Unsicherheiten ein Vielfaches der Präzision der Ionenchromatographie betragen und die sich direkt auf die prozentuale Unsicherheit von S_{min} fortpflanzen.)

Weiterer Anwendungsbereich

Diese ionenchromatographische Bestimmung kann auch eingesetzt werden für die Bestimmung von SO_4^{2-} in 1:5-Extrakten mit 0.025 M KCl, wie sie in der Westschweiz verwendet wurde.

NO₃-N

Aus denselben Chromatogrammen kann NO₃-N von N_{min} bestimmt werden. Hierzu muss den Kalibrationslösungen (5a-f) HNO₃ beigegeben werden, wobei man dieselben molaren Konzentrationen

wie Sulfat verwendet. Dies ergibt einen Arbeitsbereich von 0.03 bis 8.4 mg NO₃-N pro Liter. Die Präzision ist ähnlich jener für SO₄-S, jedoch können Doppelbestimmungen nach einem Tag wegen der Instabilität der N-Verbindungen differieren.

Bei einer Serie von 162 Proben lagen 16 Proben, die mit Ionenchromatographie 0.06-0.17 mg N pro Liter zeigten, unterhalb der Erfassungsgrenze der Fliessinjektionsanalyse. Für die 146 restlichen Proben ergab die Fliessinjektion 105% ±10% verglichen mit Ionenchromatographie.

Richtigkeit

Gelöster Schwefel kann auch mittels ICP-AES bestimmt werden. Für 162 Proben betrug die Differenz zur IC 1% \pm 19 %. Werden nur Proben mit S_{min} >5 kg/ha verglichen, verbessert sich der Vergleich auf 0% \pm 10 %. [Mit ICP-AES lag die Bestimmungsgrenze für S_{min} (2 kg/ha) deutlich höher als mit Ionen-chromatographie (0.3 kg/ha), ebenso die Standardabweichung von zwei 10fach-Bestimmungen.]

Die gute Übereinstimmung mit einer vollständig unterschiedlichen Methode ist ein Hinweis auf die Richtigkeit. Allerdings garantiert nur die Ionenchromatographie, dass ausschliesslich der mineralisierte Schwefel (Sulfat) bestimmt wird und nicht noch andere gelöste S-Spezies.

7. Literatur:

Sinaj, S. et al. 2017 8/Düngung von Ackerkulturen. In: Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017) (Ed. W. Richner & S. Sinaj). Agrarforschung Schweiz 8 (6), Spezialpublikationen, 8/1 – 8/46.

8. Historie

Version	Art der Änderung	neu	bisher
Version 1 (2008)	Erstellung Methode		
Version 1.1 (2020)	Änderung Status	Referenzmethode	Forschungsmethode
	Erweiterung Einsatzbereich	Gültig für Ackerkulturen und Grasland sowie Gemüsebau	Nur gültig für Ackerkulturen und Grasland
	editorisch	Elektronische Veröffentlichung mit geändertem Layout	

Impressum

Herausgeber	Agroscope	
Tioladogosol	Reckenholzstrasse 191	
	8046 Zürich	
	www.agroscope.ch/referenzmethoden	
Auskünfte	Diane Bürge	
Copyright	© Agroscope 2020	