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Abstract
The degree to which elevated CO2 concentrations (e[CO2]) increase the amount of 
carbon (C) assimilated by vegetation plays a key role in climate change. However, due 
to the short- term nature of CO2 enrichment experiments and the lack of reconciliation 
between different ecological scales, the effect of e[CO2] on plant biomass stocks 
remains a major uncertainty in future climate projections. Here, we review the effect 
of e[CO2] on plant biomass across multiple levels of ecological organization, scaling 
from physiological responses to changes in population- , community- , ecosystem- , 
and global- scale dynamics. We find that evidence for a sustained biomass response 
to e[CO2] varies across ecological scales, leading to diverging conclusions about the 
responses of individuals, populations, communities, and ecosystems. While the distinct 
focus of every scale reveals new mechanisms driving biomass accumulation under 
e[CO2], none of them provides a full picture of all relevant processes. For example, 
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1  |  INTRODUC TION

Global atmospheric CO2 concentrations ([CO2]) have risen from 
~275 ppm (MacFarling Meure et al., 2006) to ~415 ppm (National 
Oceanic and Atmospheric Administration (NOAA), 2021) since pre-
industrial times and are projected to continue increasing over the 
rest of this century (Prentice et al., 2001). Despite the direct im-
pacts of elevated CO2 concentrations (e[CO2]) on the global climate 
(IPCC, 2014), rising concentrations might indirectly feedback to the 
climate system by stimulating plant productivity (Farquhar, 1997; 
Jarvis, 1995). Yet, the effect of e[CO2] on plant biomass is one of 
the largest uncertainties in terrestrial biogeochemical models 
(Huntzinger et al., 2017). Specifically, despite the shared recognition 
that e[CO2] increases local plant productivity in the short term, there 
is considerable disagreement about the magnitude of this effect at 
a global scale (Ciais et al., 2013; Terrer et al., 2019). Across nine ter-
restrial carbon (C) cycle models, the estimated increase in biomass 
for the period 1980– 2010 ranged from 5% to 27% per 100 ppm 
CO2 (Terrer et al., 2019). However, an emerging body of evidence 
also suggests that these increases in plant biomass may potentially 
be more transient than previously expected, and that the plant 
response to e[CO2] may be limited by physiological, population- , 
community- , and ecosystem- level dynamics under future [CO2] 
(Bugmann & Bigler, 2011; Körner, 2004; Norby et al., 2010). Given 
the importance of the plant biomass response to e[CO2] for future 
climate projections, determining the magnitude and duration of this 
potential C cycle feedback is critical for improving the accuracy of 
future climate change scenarios (Andresen et al., 2016).

To date, most of our understanding of the e[CO2] effect stems 
from short- term studies of only a few years. Due to the high costs 
associated with CO2 enrichment studies, only a few of them offer 

insights into the effect of e[CO2] on plants after a decade or more 
(Liebermann et al., 2019; McCarthy et al., 2010; Reich et al., 2018; 
Schneider et al., 2004; Talhelm et al., 2014). Relying on short- term 
CO2 experiments to project climate– vegetation feedbacks, Earth sys-
tem models (ESMs) predict that e[CO2] stimulate plant productivity 
(and associated C stocks) and thereby counteract future increases 
in atmospheric [CO2] (Huntingford et al., 2013; Sitch et al., 2008). 
However, these inferences from short- term studies do not necessarily 
capture some of the changes in plant physiology (e.g., acclimation), 
population (e.g., mortality), community (e.g., competition patterns), 
and ecosystem ecology (e.g., soil nutrient dynamics) that have the po-
tential to constrain the effect of e[CO2] on plant biomass over time 
(Walker et al., 2021). Using short- term responses to infer long- term 
outcomes under e[CO2] may be particularly misleading for ecosys-
tems with long- lived species with slow generational turnover, in which 
it can take decades to reach new equilibrium dynamics following envi-
ronmental change. The lack of reconciliation of research across differ-
ent levels of ecological organization, which ranges from leaf- level gas 
exchange measurements to global- scale modeling studies, represents 
a major hurdle for our confidence in C cycle projections.

Here, we review the current state of knowledge of the direct 
effects of e[CO2] on plant biomass accumulation to synthesize and 
compare insights across the different levels of ecological orga-
nization, scaling from (i) physiological responses to changes in (ii) 
population, (iii) community, (iv) and ecosystem responses (Figure 1). 
We then consider these mechanisms in the context of global- scale 
observations. Although e[CO2] influences plant biomass in concert 
with other changes in climate and atmospheric composition, this re-
view primarily focuses on direct consequences of e[CO2] on plants, 
that is, topics like the effects of global warming due to e[CO2] are 
not discussed. Within each section of the review, we highlight when 

while physiological evidence suggests a possible long- term basis for increased biomass 
accumulation under e[CO2] through sustained photosynthetic stimulation, population- 
scale evidence indicates that a possible e[CO2]- induced increase in mortality rates 
might potentially outweigh the effect of increases in plant growth rates on biomass 
levels. Evidence at the global scale may indicate that e[CO2] has contributed to 
increased biomass cover over recent decades, but due to the difficulty to disentangle 
the effect of e[CO2] from a variety of climatic and land- use- related drivers of plant 
biomass stocks, it remains unclear whether nutrient limitations or other ecological 
mechanisms operating at finer scales will dampen the e[CO2] effect over time. By 
exploring these discrepancies, we identify key research gaps in our understanding of 
the effect of e[CO2] on plant biomass and highlight the need to integrate knowledge 
across scales of ecological organization so that large- scale modeling can represent the 
finer- scale mechanisms needed to constrain our understanding of future terrestrial C 
storage.

K E Y W O R D S
carbon dioxide, carbon turnover, CO2 fertilization, free- air CO2 enrichment (FACE), global 
carbon cycle, plant demography, terrestrial carbon storage
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responses observed in short- term studies may not necessarily trans-
late to long- term outcomes. To do this, we compare insights from 
CO2 enrichment experiments, natural CO2 springs, tree ring obser-
vational studies as well as satellite imagery and discuss implications 
for global biochemical modeling and C cycle projections. Previous 
work has highlighted the ecological mechanisms governing the ef-
fect of e[CO2] on plant biomass (Walker et al., 2021). We build on 
this work by exploring how evidence for plant biomass responses 
to e[CO2] varies across different levels of ecological organization 
across individuals, populations, communities, and ecosystems. This 
systematic approach allows us to identify the mechanisms where we 
have high confidence, and those that require further research atten-
tion. By highlighting commonalities and discrepancies among these 
ecological scales, we aim to motivate efforts to align perspectives in 
order to improve the accuracy of future climate change projections.

2  |  PHYSIOLOGY

Plant C assimilation is a fundamental flux in the C cycle, which is 
why an e[CO2]- induced stimulation of photosynthesis can create 
a powerful negative climate feedback with plant C. In this section, 
we discuss the mechanisms by which e[CO2] can improve both 
water-  and nutrient- use efficiency as well as the consequences for 
photosynthesis. In addition, we outline the perspective for a long- 
term effect of e[CO2] on plant C assimilation in natural, commonly 
nutrient- limited ecosystems.

2.1  |  Elevated [CO2] increase water- use 
efficiency and carboxylation rates

Rising atmospheric [CO2] have the potential to increase photosyn-
thetic rates. Whether this translates to higher plant growth depends 

on the extent to which the additional C is used for respiration and 
biomass production. At higher [CO2], there is a lower chance of the 
energetically costly process of photorespiration in C3 plants, which 
occurs when Rubisco uses O2 instead of CO2 as a substrate (Drake 
et al., 1997; Long et al., 2004). As the O2 affinity of Rubisco increases 
with rising temperatures, e[CO2] might have a particular strong effect 
on C3 plants in warm climates (Jordan & Ogren, 1984). In addition to 
decreasing photorespiration, e[CO2] alleviates substrate limitation 
of Rubisco at current [CO2], which causes higher carboxylation rates 
(Drake et al., 1997; Long et al., 2004). Yet, with increasing [CO2], C3 
plants seem to shift from being mainly Rubisco- limited (Vcmax- limited) 
toward being mainly limited by the capacity for the regeneration of 
Rubisco's acceptor molecule ribulose- 1,5- bisphosphate (Jmax limita-
tion) (Ainsworth & Rogers, 2007; Long & Bernacchi, 2003). This sug-
gests that the effect of higher carboxylation rates might decrease at 
high [CO2], and further increases in [CO2] should eventually lead to 
a saturation of the photosynthetic response to e[CO2] (Ainsworth 
& Rogers, 2007; Long & Bernacchi, 2003). Yet, while this saturation 
point remains unclear, increases in [CO2] in the magnitude projected 
for the next decades to centuries can be expected to translate to 
higher photosynthesis unless other key resources needed to main-
tain C fixation and plant growth become limiting.

The effects of e[CO2] on photosynthesis stem from the 
change in operational capacity of the photosynthetic enzyme 
Rubisco and a change in stomatal conductance. In a trade- off 
between reducing water loss and absorbing CO2 for photosyn-
thesis, plants regulate the openness of their stomata. As atmo-
spheric [CO2] rise, increased stomatal closure allows plants to 
maintain the same rate of C absorption at a lower water loss. 
In line with this, decreased stomatal conductance has been re-
ported from both short-  and long- term Free- Air CO2- enrichment 
(FACE) studies, as well as observations at natural CO2 springs, 
which indicates that the effect of e[CO2] on stomatal conduc-
tance may persist over time (Ainsworth & Rogers, 2007; Pastore 

F I G U R E  1  Conceptual diagram of the effects of e[CO2] on plant biomass accumulation across scales as discussed in this review. The 
directionality of effects is indicated by the color of arrows (green = positive, red = negative, yellow = unclear). The confidence in this 
direction is indicated by line type (solid = high confidence, dashed = low confidence). As global- scale ecology is based on the extrapolation 
or observation of smaller- scale processes, we excluded it from this figure.
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et al., 2019; Saban et al., 2019). The resulting positive effect 
of e[CO2] on leaf- level water- use efficiency and/or intrinsic 
water- use efficiency (hereafter: WUE) is widely acknowledged 
(Ainsworth & Rogers, 2007) and in line with evidence from 
eddy- covariance and observational tree ring research. These 
studies have shown positive correlations between increased 
WUE and rising [CO2] over the past decades to 150 years 
(Dekker et al., 2016; Keenan et al., 2013; Mastrotheodoros 
et al., 2017; Peñuelas et al., 2011; Silva & Anand, 2013; van der 
Sleen et al., 2014), yet with very different magnitudes in their 
estimates (Lavergne et al., 2019) as also discussed by Walker 
et al. (2021). Together, this suggests that e[CO2] might sup-
port higher plant growth rates in water- limited ecosystems 
(Blumenthal et al., 2013) and shift species composition toward a 
higher abundance of more water- demanding species relative to 
more drought- resistant species (Körner, 2003).

2.2  |  Carbon source– sink dynamics limit the 
photosynthetic response to e[CO2]

The positive effect of e[CO2] on photosynthesis can decrease 
through a progressive downregulation of photosynthetic capacity 
(photosynthetic acclimation). In CO2 enrichment studies (Ainsworth 
& Long, 2004), this manifests in a decrease in the maximum car-
boxylation rate (Vcmax) and the maximum rate of electron transport 
(Jmax), which are the two main proxies of photosynthetic capacity. 
Therefore, despite the fact that e[CO2] of ~565 ppm are commonly 
observed to lead to an instantaneous increase in net photosynthesis 
of ~40% to ~65% in C3 species (Bader et al., 2010; Ellsworth, 1999; 
Lee et al., 2001), acclimation often causes photosynthetic stimula-
tion to drop below the immediate response, to long- term increases 
ranging from close to zero to ~45% relative to ambient conditions 
(Ainsworth & Long, 2004; Bader et al., 2010; Pastore et al., 2019; 
Saban et al., 2019; Warren et al., 2015).

While there is ample evidence for this progressive photosyn-
thetic acclimation, which may happen within a few months (Lee 
et al., 2001) or develop gradually over the course of years (Norby 
et al., 2010), and persist for decades (Pastore et al., 2019), the mech-
anisms responsible for this dampening of the photosynthetic re-
sponse are not well understood. However, acclimation is commonly 
assumed to be driven by a gradual build- up of C sink limitations 
whereby, upon a lack of plant growth- limiting non- C resources, the 
demand for C compounds from photosynthesis decreases relative 
to the supply (C sink limitation). In this context, the build- up of pho-
tosynthates can lead to a reduction in the levels of the nitrogen- 
rich photosynthetic enzyme Rubisco (Ainsworth & Long, 2004; 
Ainsworth & Rogers, 2007). While the decrease in nitrogen (N) 
levels has traditionally been seen as a primarily limitation- driven 
dilution effect (Stitt & Krapp, 1999), more recent research sug-
gests that acclimation may be a result of altered trait investment 
under resource limitation (Smith & Keenan, 2020). In response to 
altered environmental conditions (e.g., e[CO2]), plants may adjust 

their photosynthetic machinery over time to maintain the highest 
rate of C fixation in a given environment at the lowest possible 
cost (resource- use optimization; Smith & Keenan, 2020; Wright 
et al., 2003). In line with this, lower Rubisco levels may create the 
opportunity for trait investment to optimize the use efficiency of 
other productivity- limiting resources, thereby potentially allevi-
ating C sink limitations (Smith & Keenan, 2020). However, lower 
Rubisco levels can also dampen the e[CO2]- induced photosynthetic 
stimulation. Whether or not this affects C assimilation depends 
on the degree of enzyme reduction as well as if the plant's photo-
synthesis is limited by Rubisco or the regeneration of the Rubisco 
acceptor molecule at e[CO2] (Ainsworth & Rogers, 2007; Smith & 
Keenan, 2020).

Within the e[CO2] literature, a low availability of soil N and 
the immobilization of N in a larger body of standing biomass (pro-
gressive nitrogen limitation, PNL; Comins & McMurtrie, 1993; 
Luo et al., 2004) are by far the most commonly discussed con-
straint on photosynthetic stimulation and plant growth (Ainsworth 
& Long, 2004; Kirschbaum, 2011; Stitt & Krapp, 1999; Wang & 
Wang, 2021). While other resources limiting photosynthesis and 
plant growth might also cause photosynthetic acclimation to e[CO2], 
they have received much less attention. For example, phosphorus 
(P) has not been a strong research focus in the past, and CO2 en-
richment studies have rarely manipulated soil P levels and are scarce 
in P- limited, tropical ecosystems (Du et al., 2020). Yet, there seems 
to be an increasing awareness of the relevance of P for the effect 
of e[CO2] on plant biomass (Ellsworth et al., 2017; Jiang, Caldararu, 
et al., 2020; Jiang, Medlyn, et al., 2020; Tissue et al., 2010) and it can 
be expected that a wider focus on other plant resources will under-
line the importance of different non- N resources for photosynthetic 
acclimation to e[CO2].

In addition to resource limitations, e[CO2] can induce shifts 
in C source– sink dynamics that can affect the duration of plant C 
assimilation activity throughout the growing season and the tim-
ing of autumn leaf senescence. In herbaceous plants, a decrease 
in the C sink through nutrient depletion or a prevention of seed 
formation has been linked to earlier leaf senescence (Guitman 
et al., 1991; Kumar et al., 2019). While the relationship of tree C 
source– sink dynamics and leaf senescence has received less atten-
tion than herbaceous plants, there are indications that a higher C 
source activity in trees (e.g., due to more leaves or earlier leaf- out) 
can be followed by earlier autumn leaf senescence (Fu et al., 2014; 
Zani et al., 2020). However, delayed or unchanged senescence 
under e[CO2] from multiple CO2 enrichment studies (Herrick & 
Thomas, 2003; Norby et al., 2003; Taylor et al., 2008) provides 
alternative expectations (Norby, 2021; Zani et al., 2021). If the 
C source– sink balance proves to be a general driver of autumnal 
leaf senescence, it will be even more important for calculations 
of future terrestrial C fluxes to not only consider exogenous fac-
tors like nutrient or water availability. In addition, the inclusion 
of plant- internal determinants of C sink capacity, such as the life 
stage, could add important information for improving the accuracy 
of model predictions (Zani et al., 2020).
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3  |  POPUL ATION ECOLOGY

Higher photosynthetic rates in plants under e[CO2] can increase plant 
growth if the availability of non-C resources permits. However, stim-
ulated plant growth and increased resource demands can also induce 
trade- offs in the allocation of limiting resources needed to maintain 
vital rates, that is, survival, growth, and reproduction (Stearns, 1989). 
In addition to these life- history trade- offs, self- thinning is ex-
pected to affect population growth dynamics in natural ecosystems 
(Reineke, 1933). In this section, we discuss how plant growth under 
e[CO2] and possibly associated changes in resource allocation can 
influence plant population dynamics in a high CO2 environment.

3.1  |  Plant growth response to e[CO2] depends 
on non- C resources

The increase in realized photosynthesis under e[CO2] provides 
a base for potential plant growth stimulation. However, the fact 
that photosynthesis of most plants acclimates to e[CO2], which is 
frequently assumed to be a consequence of N limitations, indicates 
that non- C resource limitations might dampen e[CO2]- induced plant 
growth stimulation over time. Indeed, while CO2 enrichment studies 
commonly show an increase in plant growth rates under e[CO2] 
(Gebauer et al., 1996; Kimball et al., 2007; Norby et al., 1995; Peltola 
et al., 2002; Wang & Wang, 2021), there are also indications from 
such experiments that that the positive effect of e[CO2] might not 
persist over time in low N (Gebauer et al., 1996; Norby et al., 2010; 
Peltola et al., 2002) and P conditions (Ellsworth et al., 2017). Also, 
while the vast majority of CO2 enrichment tree studies focuses 
on young individuals in their most productive and responsive 
demographic phase, the effect of e[CO2] on plant growth rates is less 
clear for later life stages (Bader et al., 2010; Ellsworth et al., 2017). 
In observational tree ring studies (Battipaglia et al., 2015; Giguère-
Croteau et al., 2019; Peñuelas et al., 2011; Silva & Anand, 2013; van 
der Sleen et al., 2014), estimates of plant growth rates varied greatly, 
with many studies even showing negative trends under historical 

increases in [CO2]. This argues against e[CO2] as a driver of increased 
tree growth or for an offset of a positive effect of e[CO2] through 
counteracting factors like increases in temperature (Battipaglia 
et al., 2015; Silva & Anand, 2013) or nutrient limitation (Giguère- 
Croteau et al., 2019; Peñuelas et al., 2011; Silva & Anand, 2013 ). 
Therefore, evidence from both tree ring and CO2 enrichment studies 
indicates that e[CO2]- induced plant growth stimulation might 
dampen over time due to resource limitations.

3.2  |  Plant survival rates may decrease under e[CO2]

Global models differ considerably in their incorporation of mortality 
(Pugh et al., 2020), explaining why model uncertainties around plant C 
residence time are bigger than those around NPP projections (Friend 
et al., 2014). The observed increase in plant growth rates under 
e[CO2] does not necessarily alter long- term C storage in plant biomass 
if increased plant growth under e[CO2] is counterbalanced by reduced 
survival and plant longevity (Figure 2; Körner, 2017). Unfortunately, 
CO2 enrichment studies with perennial species have not continued 
long enough to capture changes in survival patterns across all life 
stages which is why our understanding of the effects of e[CO2] on 
survival is primarily limited to early life stages. In agricultural CO2 en-
richment studies, annual crops showed earlier leaf senescence under 
e[CO2] (Kimball et al., 1995; Sakai et al., 2001), but this might merely 
be a result of earlier C sink exhaustion under e[CO2] and not be an in-
dication of decreased longevity in perennial species (see Section 2.2).

The anticipated negative effect of e[CO2] on plant survival is based 
on the widely established concept of interspecific survival– growth 
trade- offs (Bigler & Veblen, 2009; Brienen et al., 2020; Bugmann & 
Bigler, 2011). Since survival– growth trade- offs may also occur at the 
intraspecific level (Brienen et al., 2020; Negreiros et al., 2014; Russo 
et al., 2021; Seiwa, 2007), theory suggests that higher plant growth 
rates under e[CO2] should go hand in hand with a higher mortal-
ity risk (McDowell et al., 2018, 2020). There are various intrinsic and 
extrinsic mechanisms that might interactively drive this negative 
correlation between growth and survival, including increased rates 

F I G U R E  2  Conceptual diagram of the effects of increased tree growth rates on tree survival. There are four possible scenarios with 
varying consequences for C sequestration in tree biomass. (a) Tree death occurs at a fixed age while tree size is capped, (b) death at fixed age 
but tree size is flexible, (c) death at fixed size but age is flexible, (d) death at flexible age and size. The blue (solid) and yellow (dashed) curves 
depict biomass under e[CO2] and ambient [CO2]. The red lines (dotted) and text indicate consequences for C sequestration at the time of 
tree death. Figure redrawn and modified from Büntgen et al. (2019).
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of wind damage as a result of reductions in wood density and me-
chanical strength, and a lower investment in antiherbivore defenses  
(Barnett & Jeronimidis, 2003; Bugmann & Bigler, 2011; Coley et al., 1985; 
King et al., 2005; Larson, 2001). In addition, irrespective of the mech-
anisms driving survival– growth trade- offs, a larger plant body can also 
translate to a higher susceptibility to environmentally induced risk fac-
tors, for example, through an increased risk for hydraulic failure as well 
as fewer options for downregulation in times of stress (Arendt, 2010; 
Bigler & Veblen, 2009; McDowell et al., 2008). In line with this, a model-
ing study using observational survival– growth relationships from tree- 
ring data suggested that tree growth rate stimulations in the magnitude 
of those observed under e[CO2] are associated with a reduction in lon-
gevity, which might ultimately bring the net effect of e[CO2] on stand-
ing biomass close to zero (Bugmann & Bigler, 2011). This suggests that 
e[CO2]- induced increases in plant growth might be counterbalanced by 
reduced survival and plant longevity (i.e., faster cohort turnover).

Unrelated to survival– growth trade- offs, increased plant growth 
under e[CO2] can intensify the extent of competitive exclusion among 
plants as they develop. Ultimately, because there is a finite amount of 
resources (including space, light, nutrients, etc.) in any location, it is 
necessary that the number of plants falls as the size of those plants 
increases (Reineke, 1933). Given this negative relationship, e[CO2]- 
induced increases in plant growth can intensify competition for lim-
iting resources. If the shape of the negative proportional relationship 
between plant number and plant volume (self- thinning curve) is unaf-
fected by e[CO2], the final stand volume resulting from both slow and 
fast growth will be identical, even though e[CO2]- induced faster plant 
growth can speed up the rate by which this final state is reached. 
Experiments have shown that site quality can affect self- thinning 
curves (Ge et al., 2017) and e[CO2] could improve site quality via ef-
fects on resource- use efficiency or resource availability. For example, 
e[CO2] has a positive effect on both WUE (Ainsworth & Rogers, 2007; 
Pastore et al., 2019; see Section 2.1) and N- use efficiency (Drake 
et al., 1997; Stitt & Krapp, 1999), which implies that e[CO2] might 
change self- thinning curves. Supporting evidence comes from the 
only study we found that investigated this matter directly, which sug-
gests that e[CO2] might be able to sustain a higher stand basal area at 
an equivalent tree number per area (Kubiske et al., 2019). Therefore, 
it is possible that changing self- thinning curves under e[CO2] allow for 
a higher stand volume and accordingly higher plant biomass levels in 
the long term, yet more research is needed. In general, it seems that 
inferring long- term standing biomass merely from e[CO2]- induced 
increases in (short term) plant growth rates is problematic, particu-
larly for long- lived species with slow generational turnover, and the 
consideration of self- thinning dynamics is essential for a meaningful 
estimate of vegetation levels under e[CO2].

3.3  |  Faster growth under e[CO2] seems to be 
associated with earlier reproductive maturity

Apart from the impacts of e[CO2] on survival and growth, the effect 
of e[CO2] on plant populations is shaped by reproduction dynamics. 

As e[CO2] increases the C source, more C should be available not 
only for plant growth but also for energetically costly reproduction 
(Taiz & Zeiger, 2010), leading to the expectation that absolute C in-
vestment in reproduction increases under e[CO2]. Indeed, evidence 
from a meta- analysis suggests that herbaceous plants and shrubs 
under e[CO2] might have a higher number of flowers, fruits, and 
seeds as well as greater individual and total seed mass (Jablonski 
et al., 2002). Those few tree studies that captured the mature life 
stage showed that trees under e[CO2] also had more or heavier 
seeds, cones, or flowers (Darbah et al., 2008; LaDeau & Clark, 2006; 
Stiling et al., 2004), higher germination rates (Darbah et al., 2008), 
and reached maturity earlier (LaDeau & Clark, 2001). The fact that 
observed increases in reproductive output at e[CO2] coincided with 
an overall increase in plant growth rates (Darbah et al., 2008; Stiling 
et al., 2004) implies that these trends might have been the result of 
a faster lifecycle under e[CO2], in which case a plant's cumulative 
reproductive output over its lifespan may not change.

While higher C fixation under e[CO2] increases the absolute 
amount of energy that can be invested in reproduction, it is unclear 
whether and how the investment of C in reproduction relative to veg-
etative growth is affected. If reproductive allocation changes under 
e[CO2], this could affect the total reproductive output of a plant over 
its lifetime. The only study we found that measured reproductive al-
location in trees under e[CO2] reported that trees reached maturity 
at a smaller size and had a higher proportional allocation to repro-
duction (LaDeau & Clark, 2001; Way et al., 2010). This suggests that 
more freely available C might enable young trees to invest more in 
energetically costly reproduction. However, in a meta- analysis with 
herbaceous plants, e[CO2] was not found to increase overall repro-
ductive allocation. Upon differentiation by reproductive strategies 
and functional groups, no effect of e[CO2] on reproductive invest-
ment was found for perennial wild species, annual or biennial plants, 
while perennial crops under e[CO2] showed a significant increase in 
reproductive allocation (Wang et al., 2015). Yet, this effect was likely 
caused by the fact that the reproductive structures of the specific 
crop species had been bred to a large size and thereby constituted 
strong C sinks (Wang et al., 2015). Therefore, it seems that the re-
productive investment of herbaceous species in natural ecosystems 
might not be affected by e[CO2]. However, there is a need for more 
research that links lifecycle dynamics of other plant types in natural 
ecosystems, particularly trees, to examine reproductive allocation 
patterns across all life stages.

3.4  |  Effect of e[CO2] on population fitness is  
uncertain

Research on e[CO2]- induced changes in plant performance suggests 
highly uncertain effects of e[CO2] on plant survival, growth, and re-
production rates (McDowell et al., 2020). As e[CO2]- induced changes 
in each vital rate can have counteracting effects on plant population 
growth, it is critical to incorporate these complexities when evaluat-
ing the magnitude of e[CO2]- driven plant biomass accumulation over 
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time. To our knowledge, only one study has examined the effects of 
e[CO2] on all vital rates and resulting changes in population growth. 
Interestingly, this study reports that e[CO2] had pronounced, and 
often opposing, effects on the survival, growth, and reproduction 
of four grassland species (Williams et al., 2007). The effect of these 
changes in plant vital rates on population fitness (i.e., population 
growth) ranged from positive to negative (Williams et al., 2007). 
These findings illustrate that caution should be taken when using 
isolated components of plant performance (e.g., plant growth) to 
infer the effects of e[CO2] on long- term population growth and C 
sequestration. Opposite effects of e[CO2] on vital rates can cancel 
each other out, resulting in a faster cohort turnover but no change in 
species abundance and thereby C storage over time.

4  |  COMMUNIT Y ECOLOGY

Interspecific variability in the responsiveness to e[CO2] can influ-
ence species competition and shift the equilibrium toward more 
responsive species (Blumenthal et al., 2013). This can have impor-
tant implications for the residence time of C within a community as 
different functional types and species vary in their growth, C stor-
age, and nutrient dynamics (Körner, 2017; Ruesch & Gibbs, 2008). In 
the following section, we discuss how community dynamics might 
change under e[CO2] and how the resulting species and functional 
type compositions may affect the magnitude and duration of vegeta-
tion C storage.

4.1  |  Access to non- C resources affects plant 
biomass responses to e[CO2]

As plants under e[CO2] become increasingly limited by non- C 
 resources, species that are the most successful at harvesting such 
resources are expected to grow faster and accumulate the most 
biomass, thereby outcompeting other plants and eventually becom-
ing more dominant. Since N is considered one of the most limiting 
non- C resources in natural environments (Du et al., 2020; LeBauer 
& Treseder, 2008), N availability is expected to be a primary factor 
determining the effect of e[CO2] on plant biomass levels over time. 
Consistent with this expectation, we found that the positive effect 
of e[CO2] on standing plant biomass was only sustained under high 
N across six non- tree FACE studies over a span of 18 years (Figure 3). 
In two FACE studies with trees, N availability was either found to be 
a strong determinant of the spatial variation in productivity patterns 
(McCarthy et al., 2010), or N limitation emerged as the most likely 
reason for a strong decrease in e[CO2]- induced NPP enhancements 
over time (Norby et al., 2010). Alongside other evidence (Wang & 
Wang, 2021), these findings underline the high importance of N 
availability for the response of plant biomass to e[CO2], thereby sug-
gesting that any factor that increases the availability or uptake of N 
has the potential to impact species biomass accumulation and com-
petitive ability under e[CO2].

One factor that has received a lot of attention in altering plant 
resource uptake and competitive ability under e[CO2] is the associ-
ation of plants with nutritional fungal symbionts. Experimental evi-
dence suggests that ectomycorrhizal fungi (EMF) can increase soil N 
availability and plant N uptake, for example, through the production 
of extracellular enzymes degrading organic N compounds in the soil 
(Abuzinadah & Read, 1986; Bending & Read, 1995), while arbuscular 
mycorrhizal fungi (AMF) have been shown to alleviate plant P lim-
itation (Johnson et al., 2015; Mei et al., 2019). In line with the ex-
pectation that N- limited plants should benefit from an association 
with EMF, a meta- analysis of 83 CO2 enrichment studies has shown 
that e[CO2] stimulated biomass accumulation only in EMF-  but not 
AMF- associated plants under N limitation (Terrer et al., 2016). These 
results suggest that mycorrhizal associations are an important factor 
governing plant biomass responses to e[CO2] and therefore affect 
competitive structures in mixed communities. Because of the shift 
from relative P to N limitation toward cold regions (Du et al., 2020), 
EMF- associated plants might have a competitive advantage in high- 
latitude areas, whereas AMF- associated plants may be favored in 
the tropics.

Besides mycorrhizal associations, there are other symbioses that 
can help plants acquire nutrients. For example, a bacterial symbiosis 

F I G U R E  3  Effect of N treatment on the plant biomass response 
to e[CO2] over time. Plant biomass response to e[CO2] is defined as 
ln(aboveground standing biomass under e[CO2])−ln(aboveground 
standing biomass under ambient [CO2]) in six non- tree FACE 
studies. We added predictions and approximated 95% confidence 
intervals from model- based bootstrapping for a linear mixed- effects  
model of the plant biomass response to e[CO2]. The main effects 
(time2, a nitrogen integer multiplied by time2) in the model were 
significant at the 5% level. For details on model structure, model 
diagnostics and data structure, we refer to Methods S1 and 
Supplementary Figures. Data (Maschler et al., 2022) adapted from 
Andresen et al. (2016).
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makes the growth of N- fixing plants less dependent on soil N avail-
ability (Ainsworth & Long, 2004; Mohan et al., 2007) and, accord-
ingly, e[CO2] strongly stimulated aboveground dry matter production 
of FACE legumes (20%; Ainsworth & Long, 2004). Furthermore, CO2 
enrichment has been observed to increase the dominance of N fix-
ers in a mixed forest understory community (Norby & Zak, 2011) 
as well as in two grassland systems (Lüscher et al., 2004; Newton 
et al., 2010). The positive effect of e[CO2] on the growth of N fix-
ers can benefit the whole ecosystem. N fixation rates are strongly 
stimulated under e[CO2] (Liang et al., 2016), which was reported to 
increase soil N availability and N levels in surrounding non- N fixers 
(Lee et al., 2003; Zanetti et al., 1996). If e[CO2]- induced changes in 
N dynamics increase the productivity of non- N fixers in the ecosys-
tem (Brookshire et al., 2019), this might increase overall vegetation 
levels. Aside from temperate forests and wet savannas, it is unpro-
ductive ecosystems like arid shrublands and tropical savannas where 
N fixation is most common (Cleveland et al., 1999), which implies 
that these regions might show particularly strong relative biomass 
responses to e[CO2].

4.2  |  Woody plants may benefit the most from 
e[CO2]

Plant functional types differ considerably in their C storage capacity 
and duration. Therefore, it is key to incorporate any e[CO2]- induced 
changes in functional group composition into global biogeochemi-
cal model predictions that focus on plant C storage dynamics. For 
example, the benefits of C4 photosynthesis in warm and arid en-
vironments, which enables C4 plants to actively concentrate CO2 
around Rubisco, overlap with those resulting from e[CO2]. This ex-
plains why photosynthesis of C3 plants commonly responds more 
strongly to e[CO2] compared to C4 plants (Ainsworth & Long, 2004; 
Wang et al., 2012) and indicates reduced competitiveness of C4 
photosynthesis under e[CO2] (Scott & Smith, 2022). Similarly, CO2 
enrichment studies commonly show that C3 plant biomass responds 
more to e[CO2] than C4 biomass does (Ainsworth & Long, 2004; 
Curtis et al., 1999). Interestingly, recent evidence from monocul-
tures and mixed communities suggests that progressive N shortage 
may potentially reverse these expected patterns of higher biomass 
responses in C3 versus C4 plants after years or even decades (Reich 
et al., 2018), but the generalizability of this phenomenon across dif-
ferent ecosystem types remains unclear.

Besides possible differences in the effect of e[CO2] on C3 ver-
sus C4 plants, the responsiveness of different plant functional types 
might also vary. For example, trees grown under e[CO2] in CO2 
enrichment studies tend to show the strongest photosynthetic re-
sponse to e[CO2] relative to other plant functional groups (Ainsworth 
& Rogers, 2007). Similar to photosynthetic patterns, trees tend to 
show a higher increase in aboveground plant biomass than other 
functional groups under e[CO2] (Ainsworth & Long, 2004; Terrer 
et al., 2019). Modeling how the functional type controls the effect 
of e[CO2] on aboveground plant biomass in eight FACE studies, 

we found that the effect of e[CO2] was higher in tree vs non- tree 
studies (p = .051; Figure 4). These physiological responses are sup-
ported by an 11- year community- level study, which found that 
e[CO2] accelerated the successional development of an understory 
plant community (Souza et al., 2010). While under ambient condi-
tions, herbaceous species consistently contributed the most to 
total understory biomass, there was a shift under e[CO2] toward 
a community where woody species contributed the most (Souza 
et al., 2010). As woody tissues have a longer C turnover time than 
non- woody plant tissues, such changes could affect community  
C turnover dynamics. However, the importance of such trends in 
forest FACE studies might decline once canopy closure occurs in 
the (usually) young study systems and the amount of total under-
story biomass decreases (Bandeff et al., 2006). Also, evidence from 
 (short- term) CO2 enrichment studies with trees should be inter-
preted with caution because the long lifespans of trees mean that 
most studies have focused on early life stages that tend to be more 
responsive, productive, and mainly shaped by only one vital rate 
(plant growth), whereas this is not the case for studies using grasses 
or forbs.

F I G U R E  4  Effect of functional type on the plant biomass 
response to e[CO2] over time. Plant biomass response to e[CO2] is 
defined as ln(aboveground biomass under e[CO2])−ln(aboveground 
biomass under ambient [CO2]), where aboveground biomass is 
aboveground standing biomass for non- trees and a measure of 
annual aboveground biomass increment for trees in eight FACE 
studies. We added predictions and approximated 95% confidence 
intervals for a linear mixed- effects model of the plant biomass 
response to e[CO2]. Two of the three main effects (time, time2) 
were significant at the 5% level, while functional type was 
marginally significant (p = .051). For details on model structure, 
model diagnostics and data structure, we refer to Methods S1 and 
Supplementary Figures. Data (Maschler et al., 2022) adapted from 
Andresen et al. (2016).
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There is some evidence that increases in [CO2] over the past de-
cades might already have induced a shift toward woodier plant com-
munities. For example, satellite imagery showed that woody cover 
over sub- Saharan Africa increased by 8% between 1986 and 2016 
(Venter et al., 2018) and, indeed, evidence based on experimental 
and observational data suggests that e[CO2] might have contributed 
to woody encroachment into water- limited savanna ecosystems in 
Africa and Australia (Buitenwerf et al., 2012; Stevens et al., 2017). 
This is in line with the expectation that the higher biomass accu-
mulation rates of young savanna trees (C3) can decrease the time it 
takes to reach a large enough size to withstand fire damage (Higgins 
& Scheiter, 2012), while C4 grass biomass might not respond con-
siderably to e[CO2] (Ainsworth & Long, 2004; Curtis et al., 1999). In 
addition, higher WUE under e[CO2] is commonly assumed to benefit 
water- demanding species (Stevens et al., 2017). Yet, other observa-
tional data from African savannas suggest that increased abundance 
of woody species are within their historic ranges (Zhou et al., 2021). 
This geographic constraint suggests that e[CO2] may not increase 
WUE to a degree where it underpins woody encroachment trends 
(Zhou et al., 2021). Instead, land- use changes (Van Langevelde 
et al., 2003; Zhou et al., 2021) and other global change factors, such 
as N deposition (Köchy & Wilson, 2001; Wigley et al., 2010), have 
been suggested as additional or alternative drivers of woody en-
croachment into grasslands. An integration of such disagreements 
between observational studies could be facilitated by strongly 
needed evidence from experiments with an explicit focus on com-
petitive patterns within mixed communities of woody C3 and non- 
woody C4 species under e[CO2]. Since the C turnover time is longer 
in woody vs non- woody biomass, a shift in community composition 
toward C3 species could benefit C sequestration irrespective of total 
plant biomass trends in savanna ecosystems. Given that savannas 
contribute approximately a third of terrestrial NPP (Grace et al., 
2006), such changes in vegetation cover could have pronounced ef-
fects on the residence time of plant C at the global scale.

4.3  |  Effect of species diversity on biomass 
accumulation under e[CO2] is unclear

The magnitude of e[CO2]- induced plant biomass accumulation 
at the community level is highly dependent on how efficient the 
community members are at harvesting non- C resources. In line 
with the higher niche differentiation in multi-  compared to single- 
species communities, species and functional group richness 
increased e[CO2]- induced biomass accumulation at the plot level 
in a grassland study (Reich et al., 2001, 2004). However, a meta- 
analysis using ~1700 and ~500 observations of single-  and multi- 
species assemblages suggests that this intuitive assumption might 
neglect other important factors. Surprisingly, the average e[CO2]- 
induced increase in total plant biomass was only 13% in studies 
with multiple species compared to 30% in single- species setups 
(Wang, 2007). The authors suggested that this unexpected result 
could have been caused by high size heterogeneity in mixed- species 

communities and resource usurpation by large individuals with a 
weak growth response to e[CO2]. Alternative possible explanations 
include an uneven representation of early- stage versus mature 
growth responses, higher average [CO2] for the eCO2 treatment in 
single- species studies, or the fact that species with different traits 
might have been selected for each study. Interestingly, in the meta- 
analysis, e[CO2]- induced biomass accumulation in single-  compared 
to multi- species setups was only significantly different when N was 
added. This finding indicates that a possibly negative effect of species 
diversity on e[CO2]- induced biomass accumulation is mediated by 
N availability (Reich et al., 2001, 2004). Therefore, mixed results 
among niche differentiation studies under e[CO2] highlight the 
need for future research to not only focus on the effect of species 
richness on the plant biomass response to e[CO2], but also on how 
this relationship is mediated by resource availability. Once we have 
more knowledge about the mechanism behind the interplay of these 
factors, the incorporation of the relationship between community 
diversity and plant biomass responses to e[CO2] could improve how 
ESMs capture regional differences in biomass trends under e[CO2].

5  |  ECOSYSTEM ECOLOGY

The availability of resources and thereby the ability of plants to ac-
cumulate additional biomass under e[CO2] is dependent on a variety 
of fluxes and pools within natural ecosystems. In the following sec-
tion, we highlight the interactions and trade- offs between ecosys-
tem cycles. Specifically, we discuss the potential for e[CO2]- induced 
changes in N availability, increases in site carrying capacity, trade- 
offs between plant biomass and soil organic matter accumulation, 
and changes in the longevity of dead plant C stocks.

5.1  |  Trends in C residence time in dead plant 
biomass are mixed under e[CO2]

The residence time of dead plant C constitutes a major determinant of 
ecosystem C fluxes (Raich & Schlesinger, 1992). Not only does it de-
termine how fast C is released from dead plant biomass, it also defines 
how long nutrients are locked away in organic tissues and unavailable 
to plants (Adams et al., 1970). If e[CO2]- induced increases in plant bio-
mass production are coupled with decreased or unchanged decom-
position rates, dead plant biomass can be expected to accumulate, 
retaining both C and nutrients. In contrast, if decomposition rates in-
crease, increased biomass production under e[CO2] might correspond 
to a faster turnover of dead plant C and nutrients. For a full perspec-
tive on both terrestrial C sequestration and vegetation trends under 
e[CO2], it is therefore crucial to consider all drivers of C residence time 
in dead plant biomass. There are several mechanisms by which e[CO2] 
might directly affect decomposition rates of dead organic plant mate-
rial, including the composition of plant functional types within a com-
munity, C allocation patterns within the plant body, and the structural 
and chemical composition (recalcitrance) of the tissue.
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There is considerable variation in the decomposition rates of 
different plant tissues. In general, non- woody plant organs decom-
pose faster than woody plant organs (Koehler & Tranvik, 2015; See 
et al., 2019). Therefore, both a shift in community composition to-
ward woody plant functional types and a change in C allocation 
patterns toward less readily decomposable plant organs could 
decrease decomposition rates under e[CO2]. The indications of a 
higher prevalence of woody plant functional types in vegetation 
communities under e[CO2] point toward possible community com-
position shifts that could decrease ecosystem- level decomposition 
rates of dead plant biomass in a high CO2 world (see Section 4.2). At 
the individual plant level, there is contrasting evidence for trends 
in plant biomass decomposition rates under e[CO2]. While older 
meta- analyses provide no significant evidence for an increase in 
root/shoot ratios or higher C allocation to less degradable organs 
under e[CO2] (Curtis & Wang, 1998; Luo et al., 2006), more recent 
evidence is in line with the expectation that e[CO2] aggravates soil 
resource limitations. Specifically, e[CO2] seems to be associated 
with a considerable increase in root/shoot ratios, with indications of 
a small increase in the ratio of fine to coarse roots (Nie et al., 2013; 
Song et al., 2019). As decomposition rates of fine roots are highly 
variable under different conditions (Berg & McClaugherty, 2008; 
Zhang & Wang, 2015), it does not seem straightforward how a 
shift toward higher (fine) root biomass might affect the average 
C residence time in dead plant tissue under e[CO2]. Yet, a higher 
standing crop of (fine) root biomass in combination with the short 
lifespan of individual fine roots might cause an increase of C inputs 
to the soil under e[CO2] (Tingey et al., 2000).

Besides a change in C allocation patterns between different 
tissue types, a change in the chemical composition of plant tissues 
can also affect decomposition rates of dead plant material. Elevated 
[CO2] generally decrease leaf litter N concentrations and increase 
levels of leaf litter lignin (Norby et al., 2001), which is indicative of 
slower decomposition rates (Edmonds & Thomas, 1995). Indeed, 
leaf litter grown under e[CO2] was found to have lower decomposi-
tion rates than the control (Norby et al., 2001). However, this trend 
was driven by low decomposition rates under a single specific CO2- 
exposure system and turned out to be insignificant without the data 
from this CO2- exposure system (Norby et al., 2001). In contrast, for 
root and shoot litter, there were no signs of e[CO2]- induced changes 
in decomposition rates and— based on three observations only— the 
same was true for wood litter (Norby et al., 2001). This contradicts 
observations that wood and roots grown at e[CO2] have higher 
lignin/N and C/N ratios (Cotrufo & Ineson, 2000; Hättenschwiler 
et al., 1996; Nie et al., 2013), predicting lower decomposition rates 
(Melillo et al., 1982; Taylor et al., 1989). As similar changes in lignin 
and N levels were found for leaves without apparent changes in de-
composition rates (Norby et al., 2001), this suggests that important 
mechanisms remain unknown.

While it is often assumed that e[CO2]- induced chemical changes 
in plant tissue could slow down decomposition rates, emerging re-
search suggests that decomposition under e[CO2] might actually be 

accelerated. In a recent meta- analysis, the stocks of plant- derived 
soil inputs accumulating in mineral soil under e[CO2] were found to 
be stable despite higher soil C inputs as a consequence of e[CO2]- 
induced increases in biomass production (van Groenigen et al., 2017). 
Possibly, the higher supply of labile C from root exudates (Phillips 
et al., 2011) as well as higher soil moisture (Blumenthal et al., 2013; 
Drake et al., 1997; McCarthy et al., 2010) under e[CO2] increased de-
composition rates of new soil C (van Groenigen et al., 2017). Overall, 
the contrasting evidence about rates of plant litter decomposition 
under e[CO2] underscores the need for more long- term studies. 
Together with changes in lifecycle dynamics, shifts in tissue decom-
position rates underpin how long not only C but also nutrients are 
stored in the vegetation pool, which emphasizes the importance of 
quantifying shifts in decomposition rates for evaluating the plant 
biomass accumulation potential under e[CO2].

5.2  |  Plants under e[CO2] mine soil organic matter 
for resources needed for increased growth

Community- level evidence suggests that plants associating with spe-
cific mycorrhiza might be able to sustain e[CO2]- induced plant growth 
stimulation under N- limited conditions. In this context, EMF have 
been shown to alleviate N limitations in their symbiotic plant hosts 
by acquiring additional nutrients from the soil (Terrer et al., 2016; see 
Section 4.1). This sets up the expectation for a trade- off between 
the plant and soil pool in nutrient- limited ecosystems under e[CO2]. 
Yet, this is in direct conflict with the common assumption that in-
creased inputs of dead plant tissue to the soil resulting from higher 
plant growth rates under e[CO2] will increase the soil organic C (SOC) 
pool. This relationship is a primary assumption embedded in most 
ESMs (Todd- Brown et al., 2014). However, a recent meta- analysis 
(Terrer et al., 2021) of temperate- zone CO2 experiments reported a 
negative relationship between plant biomass and SOC accumulation 
under e[CO2], whereby SOC increased slightly when e[CO2] caused 
a weak plant biomass increase but decreased when e[CO2] strongly 
stimulated plant biomass accumulation (Figure 5). This trend was 
only significant in non- fertilized but not in N- fertilized systems. In 
unfertilized systems, SOC losses coupled with strong biomass gains 
were usually measured for species associated with EMF. This sug-
gests that the observed effect might be driven by nutrient acquisi-
tion processes such as priming (Kuzyakov, 2002), where N- limited 
plants afford biomass production by actively stimulating microbial 
decomposition via ectomycorrhizal symbioses (Terrer et al., 2021). 
In contrast, AMF- associated plants in unfertilized systems did not 
show a strong biomass response to e[CO2] while SOC was stimulated 
(Terrer et al., 2021), likely due to increased C inputs through higher 
fine root production and rhizodeposition (Nie et al., 2013). This evi-
dence from temperate ecosystems for a trade- off between plant and 
soil C suggests that mycorrhizal associations of certain plant func-
tional types and species can help to sustain e[CO2]- induced plant 
biomass accumulation even under N limitation.
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5.3  |  N cycle adaptations under e[CO2] might 
slightly alleviate progressive N limitation

Multiple studies have indicated the need for incorporating N limita-
tion of the plant biomass response to e[CO2] in global vegetation 
models (Davies- Barnard et al., 2020; Wieder et al., 2015). Indeed, at 
each level of ecological scale highlighted in this review, we find com-
pelling evidence that the degree of C uptake and plant growth under 
e[CO2] is strongly dependent on ecosystem N fluxes. While many 
CO2 enrichment studies have focused on different plant traits and 
strategies to either mine N or cope with N limitation under e[CO2], 
there is less commonly a focus on variations in N availability under 
changing [CO2]. However, while an increase in standing biomass also 
increases the amount of N that is locked up in biomass (PNL; Comins 
& McMurtrie, 1993; Luo et al., 2004), e[CO2] may also influence N 
retention over time. The amount of plant- available N is determined 
both by the input and output of N in an ecosystem as well as the 
mineralization of the given N stocks. It could be expected that N 
mineralization increases under e[CO2] because of e[CO2]- induced in-
creases in soil moisture (Blumenthal et al., 2013; Drake et al., 1997; 
McCarthy et al., 2010) and the amount of C entering the soil (Finzi 
et al., 2007; Norby et al., 2004). However, there is consistent evi-
dence from multiple meta- analyses that neither gross nor net N min-
eralization rates are sensitive to e[CO2] (de Graaff et al., 2006; Liang 
et al., 2016; Rütting & Andresen, 2015). Yet, the finding that e[CO2] 

stimulates gross N mineralization in N-  but not P- limited ecosys-
tems implies that N- limited ecosystems might be less prone to PNL 
than currently assumed (Rütting & Andresen, 2015), which could be 
studied through ecosystem- specific analyses of net N mineralization 
rates.

Apart from changes in N mineralization rates, changes in N avail-
ability could occur through changes in the ecosystem balance of N 
inputs and outputs. Higher N input through biological fixation would 
be intuitive under e[CO2] as plants that have access to more N could 
have a competitive advantage (see Section 4.1). Indeed, there is an 
increase in N fixation under e[CO2] (Liang et al., 2016), possibly due 
to both higher activity of N- fixing bacteria (Hoque et al., 2001) and 
competitive selection for N- fixing species (Batterman et al., 2013). 
This increase in NH4

+ input is accompanied by decreased leaching 
under e[CO2] (Liang et al., 2016), likely as a result of lower levels 
of NO3

- , which is the form of N most prone to leaching (Barnard 
et al., 2005), and higher root biomass under e[CO2] (Liang et al., 2016; 
Nie et al., 2013; Song et al., 2019). By contrast, increases in N losses 
(N2O) were less pronounced and only occurred in studies with N ad-
dition or upland soils (Liang et al., 2016; van Groenigen et al., 2011). 
Together with increases in N fixation and lower leaching, there may 
thus be an alleviation of PNL under e[CO2] in many ecosystems. 
While it is unlikely that these N cycle adaptations can prevent N lim-
itation under e[CO2] (Norby et al., 2010; Reich & Hobbie, 2013; see 
Figure 3), even small changes in N dynamics can have a considerable 
impact at the large scale and should therefore be considered in ESMs.

5.4  |  Trends in site carrying capacity under 
e[CO2] are unclear

Every ecosystem can only sustain a certain amount of biomass 
due to a limited availability of resources such as light, space, nutri-
ents, and water. However, this does not necessarily mean that the 
maximum amount of plant biomass in an ecosystem is a constant. 
Climate- driven shifts in the composition or traits of plants in a com-
munity can drastically alter carrying capacities, especially if they 
are associated with major functional group shifts. However, along 
with shifts from non- woody to woody functional groups, shifts 
within functional groups can also increase C storage potential and 
the residence time of nutrients in plant biomass. In the only study 
we found on this topic in the context of plant biomass responses to 
e[CO2], a North American temperate broadleaf ecosystem growing 
under e[CO2] followed self- thinning curves of stands with a higher 
site carrying capacity (Kubiske et al., 2019). The authors suggest 
that this result might be owed to increased resource- use efficiency 
or resource availability under e[CO2], both of which we have previ-
ously discussed (see Sections 2.1, 4.1, 5.3). Yet, emerging evidence 
across multiple ecological scales suggests that biomass responses to 
e[CO2] might dampen over time (see Sections 3.1, 3.2, 4.1). These 
mixed results may indicate that the effect of e[CO2] on site carrying 
capacity might be context- dependent and more, long- term research 
is required.

F I G U R E  5  Scatterplot of the e[CO2] effect on plant biomass 
C (%) versus soil organic C (%) in non- fertilized and N- fertilized 
plots. The regression lines are based on a quadratic mixed effects 
meta- regression model (non- fertilized [blue color]: p < .0001, 
R2 = .67; fertilized [red]: p = .34), in which individual experiments 
(dots) were weighted differently. The upper and lower limits of 
the 95% confidence interval are indicated by the light ribbons. 
Data extracted from Terrer et al. (2021) using WebPlotDigitizer 
(Rohatgi, 2021).
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6  |  GLOBAL ECOLOGY

Global- scale studies provide the opportunity to map the effects 
of rising [CO2] over the past decades and extrapolate results from 
predominantly short- term physiological-  to community- scale stud-
ies to project the long- term impacts of e[CO2] on global vegetation 
biomass. While this large- scale view provides insight to the potential 
effects of e[CO2] at the global scale, it also glosses over many of 
the details discussed in previous sections. Below we summarize the 
key findings from global satellite imagery and extrapolations from 
CO2 enrichment studies. We highlight commonalities and discrep-
ancies between global- scale patterns and lower levels of ecological 
organization (physiology to ecosystem scale), with the explicit aim of 
motivating future research that is needed to improve the accuracy of 
future climate change projections.

6.1  |  Global greening trend over last decades might 
have weakened

Since atmospheric [CO2] have been increasing since the beginning 
of industrialization, the analysis of historic satellite imagery pro-
vides an opportunity to evaluate the effect of e[CO2] on plant bio-
mass from another angle than CO2 enrichment studies. As e[CO2] 
increases plant WUE, warm and arid ecosystems are expected to 
show the strongest plant response to e[CO2] (see Section 2.1). 
Indeed, between 1982 and 2010, green foliage cover (measured 
as normalized difference vegetation index) in such ecosystems 

has increased by 11% and gas exchange theory suggests that this 
trend was largely driven by e[CO2] (Donohue et al., 2013). Multiple 
satellite studies have reported global greening since the 1980s, 
namely an increase in tree cover (7.1%; Song et al., 2018), higher 
leaf area index (LAI; 2.3% dec−1: Chen et al., 2019; 0.068 m2 m−2 
year−1: Zhu, Piao, et al., 2016) and/or less bare ground cover (−3.1%; 
Song et al., 2018). Yet, as multiple parameters have changed over 
the last decades, the effect of e[CO2] needs to be disentangled 
from those of changes in precipitation, temperature, or N depo-
sition. While one of the mentioned greening studies (Zhu, Piao, 
et al., 2016) estimates that 70% of the observed increase in LAI 
can be attributed to increasing [CO2], more recent findings sug-
gest that e[CO2] might not be a dominant driver of greening in 
many ecosystems (Winkler et al., 2021). While the effect of e[CO2] 
on plant biomass emerged as the main driver of greening in some 
biomes (temperate forests, cool grasslands, likely also Australian 
shrublands), the greening and browning (decrease in vegetation 
cover) trends of many other regions seemed to be linked to cli-
mate change, primarily warming and drying (Winkler et al., 2021). 
In general, there are indications that the widely observed green-
ing trend might be slowing down and more areas seem to show 
decreases in LAI, possibly resulting in a negative global biomass 
trend for the period 2000– 2017/2018/2019 (Winkler et al., 2021; 
Figure 6). These findings might either suggest that the effect of 
e[CO2] on plant biomass is dampening or that it is weighed out by 
other global trends. Recent evidence supports the first of these 
two options by suggesting that satellite data estimates of e[CO2]- 
induced photosynthetic stimulation since the 1980s have declined 

F I G U R E  6  Global leaf area trends in six different remote sensing datasets. Displayed are the average changes (% decade−1) during 1982– 
2017/2018 (a) and 2000– 2017/2018/2019 (b). Data extracted from Winkler et al. (2021) using WebPlotDigitizer (Rohatgi, 2021).
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at considerably higher rates relative to estimates from terrestrial 
C cycle models (0.92% vs 0.12% per 100 ppm CO2), potentially due 
to model algorithms not adequately considering emerging nutrient 
limitation constraints and the effect of changing water availability 
on the plant response to e[CO2] (Wang et al., 2020). Yet, these 
results have been questioned due to the selection and process-
ing of the datasets (Frankenberg et al., 2021; Sang et al., 2021; 
Wang et al., 2021; Zhu et al., 2021). Conclusively, the presented 
evidence underlines the difficulty of isolating the effect of e[CO2] 
from long- term observational data, and while there seems to be 
agreement of global- scale studies on e[CO2]- induced biomass ac-
cumulation, evidence may or may not suggest a dampening of the 
effect of e[CO2] on plant biomass over the last decades.

6.2  |  Extrapolation of CO2 enrichment studies 
suggests e[CO2]- induced biomass increases

The average effect size in CO2 enrichment studies might not be a 
good proxy for the global biomass response to e[CO2] due to the 
fact that experiments in Northern Hemisphere ecosystems with 
relatively fertile soils are overrepresented (Terrer et al., 2019). 
Therefore, an extrapolation approach considering the global pat-
terns of drivers of the plant biomass response to e[CO2] is the most 
direct way to use CO2 enrichment studies for a global estimate of 
vegetation responses to e[CO2]. Such an analysis using global layers 
of soil C:N, P, and mycorrhizal type suggests that an increase in the 
current [CO2] by 250 ppm as expected for 2100 will enhance global 
plant biomass by 12%, which corresponds to 5% per 100 ppm CO2 
(Terrer et al., 2019). A comparison with the more than three times 
higher average estimate of nine terrestrial C cycle models for the 
period of 1980– 2010 (18% per 100 ppm CO2) indicates a decrease in 
the effect of e[CO2] on plant biomass over time (Terrer et al., 2019). 
With the effect of possible changes in lifecycles of perennial plants 
widely excluded due to the short duration of most CO2 enrichment 
studies, this result is consistent with the expectation that the deple-
tion of soil resources might prevent a widespread sustained stimula-
tion of biomass under e[CO2] over time.

7  |  CONCLUSIONS AND 
RECOMMENDATIONS

The effect of e[CO2] on plant biomass stocks is shaped by processes 
that occur across all scales from cells to ecosystems. Adding to a 
traditional focus on e[CO2]- induced stimulations of photosynthesis 
and plant growth, recent work reveals a suite of mechanisms 
operating at the level of individuals, populations, communities, 
and ecosystems that are expected to drive vegetation trends in a 
high- CO2 environment. Yet, before this can most effectively inform 
ESMs, a reconciliation of evidence from the different scales is 
needed. While there might be considerable cross- scale interactive 
modulation of e[CO2] impacts by climate change itself (i.e., amount 

and timing of changes in temperature, precipitation, etc.; Reich 
et al., 2020; Yuan et al., 2018; Zhu, Chiariello, et al., 2016), which is 
beyond the scope of this review, the presented evidence on direct 
effects of e[CO2] on plant biomass offers important indications for 
the expected response of terrestrial ecosystems to global change.

We find that the evidence for a sustained biomass response 
to e[CO2] varies across ecological scales. At the level of physiology, 
e[CO2]- driven increases in WUE and the operational capacity of 
Rubisco are expected to drive a long- term stimulation of photosynthe-
sis under e[CO2] despite photosynthetic acclimation. At the popula-
tion level, evidence suggests that plant growth increases under e[CO2] 
may dampen over time in low N and P conditions and that earlier 
life stages may be more responsive than later life stages. In addition, 
there remains considerable uncertainty around changes in other de-
mographic processes, specifically mortality, that have the potential to 
counterbalance the effect of plant growth rate increases and lead to a 
dampening effect of e[CO2] on plant biomass accumulation over time. 
Evidence at the scale of community ecology suggests that e[CO2] can 
alter competitive dynamics among species within plant communities. 
For example, if different plant responses to e[CO2] lead to the en-
croachment of woody plants relative to herbaceous species, this could 
lead to increases in ecosystem carrying capacity and total C storage. 
At the ecosystem- scale, there might be indications for e[CO2]- driven 
changes in resource pools and fluxes, which might potentially support 
increased plant growth rates under e[CO2]. Yet, possible trade- offs be-
tween plant and soil C might suggest that a sustained effect of e[CO2] 
on plant biomass levels might not necessarily equate with an increase 
in long- term C sequestration at the entire ecosystem scale. At the 
global scale, global greening might suggest that the aggregate of all 
of the finer- scale mechanisms tends toward increasing plant C levels 
under e[CO2]. Yet, the fact that this trend might dampen and the low 
signal to noise ratio introduces further uncertainty that restricts con-
fidence in future projections. Since the research focus varies across 
different ecological scales, it becomes evident that only an integration 
of research across ecological scales can yield a complete picture of the 
potential plant biomass responses to e[CO2].

To improve the accuracy of global C cycle predictions, it becomes 
increasingly clear that research must focus on integrating the key 
mechanisms that occur across all ecological scales to facilitate the 
projection of short- term results into the future. Given a vast array 
of different mechanisms operating within individual plants, popula-
tions, communities, and ecosystems, modeling efforts will require 
considerable sensitivity testing to identify which processes are most 
important to represent. In addition, it is crucial to consider the con-
nectedness of the plant biomass pool with other biotic and abiotic 
pools of C and nutrients. By applying this wide focus in models and 
experiments about the effect of e[CO2] on plant biomass and C se-
questration, we can move forward across scales to narrow this key 
uncertainty in our understanding of climate change.
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