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A B S T R A C T   

We describe a new satellite data validation facility located in a savannah biome at the International Livestock 
Research Institute (ILRI) Kapiti Research Station (Kenya). The facility is focused on satellite land surface tem-
perature (LST) and is equipped with multiple ground-viewing infrared radiometers across four sites. The in-situ 
LST observations are upscaled to match satellite LST products using a geometric illumination model. The in-situ 
sensor network represents a step-forward in LST validation in East Africa and savannah biomes. To our 
knowledge this is the first time that such an extensive network of LST radiometers and supporting measurements 
has been installed in sub-Saharan Africa, or a savannah. With this network we capture surface heterogeneity in a 
manner that has not previously been possible. The LST ground data from this station collected between October 
2018 and March 2019 is used to evaluate the new Land Surface Analysis Satellite Application Facility (LSA-SAF) 
all-sky LST product (MLST-AS) that blends clear-sky infrared-retrieved LSTs with LSTs derived from a land 
surface energy balance model to fill gaps due to cloudy conditions. Comparison against the in-situ LSTs indicates 
overall accuracy, precision, and root-mean-square error (RMSE) of MLST-AS to be 2.02 K, 1.38 K and 3.64 K 
respectively. The infrared-retrieved LST component of MLST-AS under clear skies has an accuracy, precision and 
RMSE of 1.16 K, 0.8 K and 3.16 K respectively. The energy balance model-based component of MLST-AS has 
performance statistics of 3.02 K, 1.38 K and 4.16 K. The MLST-AS energy balance model component is observed 
to perform worse when surface moisture is present, underestimating night-time and daily maximum tempera-
tures by between 2 and 4 K in the 24 h following surface water deposition as precipitation or dew.   

1. Introduction 

Land surface temperature (LST) is a key parameter of the land surface 
that determines energy exchanges at the land–atmosphere boundary. It 
is an essential variable for calculating surface fluxes and turbulence and 
consequently has multiple applications in areas including meteorology, 

climatology, and agricultural studies (Good et al., 2017; Vancutsem 
et al., 2010; Marques da Silva et al., 2015). LST is commonly derived 
from infrared observations made by several space-borne imaging radi-
ometers, for example from the polar-orbiting Moderate Resolution Im-
aging Spectroradiometer (MODIS) onboard the Terra and Aqua satellite 
platforms. However, by using data from geostationary sensors such as 
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the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard 
Meteosat Second Generation (MSG), a higher temporal resolution of LST 
retrieval can be achieved that covers the full diurnal cycle. This is a 
significant advantage for applications that require an accurate estimate 
of LST diurnal flux such as vegetation and agricultural applications (e.g., 
Anderson and Kustas, 2008, Chen et al., 2017). 

EUMETSAT’s Satellite Application Facility on Land Surface Analysis 
(LSA-SAF) have developed a long-standing Longwave Infrared (LWIR) 
LST algorithm applied to geostationary LWIR SEVIRI observations based 
on the generalised split-window (GSW) approach initially developed for 
the Advanced Very-High-Resolution Radiometer (AVHRR) and MODIS 
(Wan & Dozier, 1996). The reader is directed to Martins et al. (2018) for 
the implementation and calibration of the GSW as used in the SEVIRI 
product. Errors in the LST retrievals made via the GSW method depend 
on uncertainties in: (i) the surface emissivity assumed, (ii) the water 
vapour content of the atmosphere, and (iii) the satellite view angle 
(Trigo et al., 2008; Trigo et al, 2021). 

Specification of surface emissivity is a particular issue over struc-
tured heterogeneous landscapes such as the savannah biome because the 
anisotropy and variability of emissivity among pixels within these land 
cover types is not well captured in the emissivity maps used during LST 
retrieval (Sobrino et al., 2001). Furthermore, dry-season barren soils and 
sparse vegetation are characterized by relatively low emissivities and 
high uncertainties while wet-season vegetation are characterized by 
higher emissivities. Errors in surface emissivity estimation over 
savannah biomes are particularly acute when a strongly dichotic wet- 
dry season triggers rapid green up and therefore changes in emissivity 
that may not be immediately reflected in an assigned emissivity value 
(Guillevic et al., 2013; Chehbouni et al., 2001; Liu et al., 2020). In 
general, emissivity errors are also higher under dry atmospheric con-
ditions, further contributing to IR retrievals being particularly chal-
lenging over semi-arid and arid regions (Kim and Hogue, 2013). The LST 
errors that arise from these effects are a critical flaw that can limit the 
uptake of satellite LST data into both climate models (Reichle et al., 
2010) and agricultural monitoring (Jarvis et al., 2003). Consequently, 
there is a pressing need to establish the performance of LST retrievals in 
seasonally vegetated areas through validation stations that can capture 
the heterogeneity of said environments, whilst also providing sufficient 
contextual environmental data to allow for the identification of sources 
of error. 

However, Sub-Saharan Africa and the savannah biome that makes up 
almost half of the continent’s land cover (~8 million km) have no active 
ground-based (in-situ) stations for the validation of satellite LST prod-
ucts. Furthermore, most previous validation studies on the continent 
have focused on homogeneous desert and bare soil sites (Wan 2014, 
Göttsche et al., 2016). To our knowledge, there has only been one site on 
the African continent, located in Dahra (Senegal, West Africa), that was 
able to examine clear-sky LSTs in the context of savannah type vegeta-
tion (in this case, a tiger-bush biome) (Göttsche et al., 2016). Data from 
this station was used to validate the SEVIRI GSW-derived clear-sky LST 
product and identified that when data from the rainy season was 
removed, the highest mean root-mean-square error (RMSE) for SEVIRI 
LWIR observations was 1.6 K, with a mean absolute bias of 0.1 K. 
However, when data from the rainy season was included, the RMSE was 
found to vary between − 0.11 K and 7 K (Göttsche et al., 2016). This 
latter statistic is a significant margin of uncertainty, suggesting that the 
SEVIRI LST product does not sufficiently capture the strong seasonality 
of vegetation in response to wet-dry seasons. However, there were 
multiple data gaps in this study due to technical problems, theft, and 
cloud. Furthermore, their study relied upon a single mast in a pixel. 
While this is suitable for homogeneous regions such as deserts, it is not 
suitable for savannah environments where there is greater spatial vari-
ability of LSTs and increased surface anisotropy (Guillevic et al., 2012; 
Ermida et al., 2014). The lack of validation sites in savannah biomes and 
these findings from Göttsche et al. (2016) support the need for further 
investigation into the accuracy and precision of LST retrieval over such 

environments. 
The need for further testing of satellite LST products in the savannah 

environment is further supported by the work of Rasmussen et al. (2011) 
who used the afore-mentioned Dahra site of Göttsche et al. (2016) to 
investigate the impact of structured canopies on clear-sky SEVIRI LST 
accuracy. They found that the impact of tree canopy directional effects 
on LST accuracy was up to 2 K during the day and, most importantly, 
that diurnal timing and amplitude of the effect changes throughout the 
year. This is a clear signal that both the presence of isolated stands of 
trees and the existence of a wet-dry season are confounding factors in 
satellite LST determination over savannahs. Neither of these factors are 
currently considered in the operationally available LST products of 
SEVIRI, nor those of polar orbiters such as MODIS (Hulley et al., 2012) 
and Sentinel 3′s Sea and Land Surface Temperature Radiometer (SLSTR) 
(Remedios, 2012). Nor are such elements typically considered in the 
ground validation schema of said operational products (e.g., Hulley 
et al., 2021; Trigo et al, 2021). The preference instead is to use large- 
scale, homogenous, validation targets due to the difficulty of obtaining 
representative measurements at the scale of the satellite pixel, with 
multiple instruments of the same instrument type required to charac-
terize each component of the landscape in heterogeneous environments 
(Duan et al., 2019; Guillevic et al., 2012). 

Satellite-retrieved LSTs over tropical latitudes are further impacted 
by increased cloud cover over these regions. As clouds block the LWIR 
radiance emitted from the Earth’s surface from reaching the spaceborne 
sensor, the GSW approach to LST retrieval only works for clear sky 
pixels. If LWIR GSW observations are relied upon alone, there can 
therefore be large data gaps (Kerr et al., 1992). Such data gaps are a 
significant problem for downstream applications of LST (Li et al., 2018). 
To overcome this limitation, there have been many recent attempts to 
provide ‘all-weather’ LST products that fill any gaps due to cloud cover 
(e.g., Dash et al., 2002; Prigent et al., 2016; Duan et al., 2017). A 
common approach has been to use passive microwave (PM) radiation 
measurements that penetrate cloud cover (McFarland et al., 1990). 
However, PM radiometers exist only on polar-orbiting satellites, so 
coverage of the full LST diurnal cycle is not possible. Furthermore, the 
measurements are spatially coarse (more than 10 km) as compared to 
thermal sensors (30 m to 5 km). By contrast, MSG SEVIRI offers LWIR 
measurements at a spatial resolution of 3 km at nadir every 15 min. In 
addition to these differences, the penetration depth of PM radiation into 
the land surface is different to the skin temperatures obtained when 
using LWIR sensors which can lead to difficulties when blending the two 
types of products (Song et al., 2019). 

A suitable alternative approach to fill cloud gaps in LWIR-derived 
satellite LST products at an appropriate spatial and temporal resolu-
tion is using an energy balance model that enables calculation of the 
surface skin temperature (e.g., Fu et al., 2019). LSA-SAF run an energy 
balance model as part of their evapotranspiration product delivery chain 
(Ghilain et al., 2011). The model is based on the physics of the Tiled 
European Centre for Medium-Range Weather Forecasts (ECMWF) Sur-
face Scheme for Exchange Processes over Land (TESSEL; van den Hurk 
et al., 2000; Viterbo & Beljaars, 1995) and on H-TESSEL (Albergel et al., 
2012; Balsamo et al., 2009). The model runs every 30 minutes and uses 
the downwelling and upwelling surface radiative fluxes and surface al-
bedo as inputs, as well as vegetation parameters, soil moisture infor-
mation and a snow mask (Martins et al., 2018). The new LSA-SAF 
Meteosat Land Surface Temperature – All Sky (MLST-AS) product 
blends the skin temperatures coming from this energy balance model 
with LST data coming from the existing clear-sky SEVIRI LST product to 
fill cloud obscured pixels (Martins et al., 2018). In this way the product 
benefits from the advantages offered by the LWIR estimated LSTs at 
clear-sky pixels – which are independent of any model representation 
and remain driven by physical observations – whilst also providing 
complete data cover of the SEVIRI full disk image by filling cloudy pixels 
with skin temperatures derived from the energy balance model. The all- 
weather LST product is produced at the native SEVIRI pixel scale (~3 km 
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spatial sampling at nadir) every 30 minutes (Martins et al., 2018). 
Initial validation attempts of both the energy balance model and 

MLST-AS are promising although limited. Considering first the energy 
balance model validation, work on modelled skin temperatures (Trigo 
et al., 2015; Orth et al., 2017) has shown that the type of energy balance 
model used to generate the MLST-AS product tends to misrepresent the 
amplitude of the diurnal cycle of LST over arid and semi-arid regions. In 
addition, preliminary work by Ghilain (2018) demonstrated that in cases 
of no soil moisture availability and high incoming solar radiation, the 
uncertainty of the modelled outputs is increased. These findings indicate 
that any evaluation of the MLST-AS product should evaluate the LWIR 
and modelled portions of the MLST-AS product separately in order to 
identify if this is an issue over the savannah environment. 

The only validation studies of MLST-AS yet have been carried out by 
Martins et al. (2019) and Martins & Dutra (2020). Martins et al. (2019) 
tested against three LST ground observation stations – Evora (Mediter-
ranean, Portugal), Kalahari (Desert, Southern Africa) and Gobabeb 
(Steppe, Namibia) – for 10 days in January 2010 and 10 days in July 
2010. Component temperature measurements made in Evora were 
upscaled using the geometric upscaling model of Ermida et al. (2016) to 
account for heterogeneity at the pixel scale. No upscaling was carried 
out for the other two sites due to their relative homogeneity. Overall, the 
mean accuracy for the MLST-AS product was 0.1 K, with a precision of 
1.2 K and a root-mean squared difference (RMSD) of 2.7 K. The RMSDs 
for Evora, Kalahari and Gobabeb were 2.81, 3.09 and 2.23 K respec-
tively. Martins & Dutra (2020) compared data from MLST-AS against 
data from 33 in-situ stations between February and December 2018 and 
found an overall accuracy of 0.0 K and an RMSE of 2.9 K for MLST-AS. 
However, the authors of this study observed a distinct difference in the 
performance over more homogeneous surfaces (bare soil, crop and 
grassland) and the performance over any forested regions, with signif-
icantly decreased performance for the latter. These statistics are 
encouraging but given that the sites considered were either ‘simple’ in 
their composition or were subject to increased errors attributed to het-
erogeneity and all sites considered are not equivalent to the savannah 
landscape that had proven troublesome in the work of Göttsche et al. 
(2016), there is also a clear need for further validation of MLST-AS. 

In this paper, the establishment of a comprehensive LST validation 
site in the African savannah biome is first detailed. The site has multiple 
tower mounted LWIR radiometers on different masts within one SEVIRI 
pixel which are measuring different components of the landcover 
separately. The establishment of the site and the derivation of the 
ground truth in-situ LSTs using the data from the tower-based radiom-
eters follow the protocols set out in Guillevic et al. (2018), Göttsche et al. 
(2016) and GBOV (2018). The LWIR radiometers are supported by a full 
eddy-covariance and meteorology installation that provides vital 
contextual environmental information. The in-situ LST data from these 
radiometers are up-scaled to the scale of the SEVIRI pixel using the 
geometric illumination model of Ermida et al. (2014). Data from the site 
collected between October 2018 and March 2019 is then used in the first 
independent validation of the all-weather product MLST-AS. 

This work represents a significant step forward for in-situ and sat-
ellite LST retrieval over savannah type vegetation regions, the primary 
advantage of the site being the use of multiple radiometers on multiple 
masts which allows for a better representation of the satellite scale LST 
by the ground measurements. To our knowledge this is also the first time 
that such an extensive network of LST radiometers and supporting 
measurements has been installed in sub-Saharan Africa or a savannah, 
and the first time such an extensive network of in-situ LST instrumen-
tation has been used to upscale a heterogeneous target in a LST vali-
dation study. 

2. Site description 

The validation site is based at the Kapiti Research Station (owned 
and managed by the International Livestock Research Institute, ILRI) in 
Kenya. Figs. 1 and 2 illustrate the location of the site within ILRI Kapiti 
Wildlife Conservancy (-1.6083◦, 37.1327◦). Kapiti is situated 1650 m 
above sea level and experiences two rainy seasons annually, typically 
between March – May and October - December. The area is flat and 
homogenous in its assemblage of grassland with sparse tree and shrub 
cover. The LWIR radiometers are mounted on masts to observe the grass 
canopies, which are a mixture of dense grasses between 30 and 70 cm in 
height, and grazed grass-soil complexes where the canopy is typically 
5–30 cm in height. Four masts are spread over the northern area of 
Kapiti Ranch Wildlife Conservancy, with the sensor packages for each 
mast set out in Table 1. The eddy-covariance system is co-located with 
Mast 1. Masts 2, 3, and 4 are in flat areas which have less than 10% tree 
cover across the surrounding 5–10 km2. The tree canopy under obser-
vation by the infrared radiometer at Mast 3 is that of a mature Acacia. 
This tree species has small finely divided leaflets and long thorns in a 
dense crown canopy structure. At Mast 4 the surface has been over- 
grazed and there is little vertical canopy structure other than scattered 
and isolated clumps of invasive herbaceous species. During the dry 
season the grass canopies are completely senesced. Between the four 
masts we sample all three levels of grazing across the ranch; moderately 
grazed (Masts 1 and 2), lightly grazed (Mast 3) and over-grazed (Mast 4). 

Sensors were mounted 1 m from the top of the mast with the masts 
set to a height of 14.5 m. Instrumentation varied between the masts, 
with the minimum sensor package for each mast consisting of a vege-
tation monitoring camera (Canon 500D DSLR RGB), a surface-looking 
Heitronics KT15.85 IIP precision radiometer (9.6–11.5 μm) (Göttsche 
et al., 2016) and a surface-looking quasi-nulling Series 500 radiometer 
manufactured by NASA’s Jet Propulsion Laboratory (NASA-JPL) (8 – 14 
μm) (Hook et al., 2005; Hook et al., 2007; Donlon et al., 2014). Each LST 
mast was powered by one 12 V solar panel, feeding a 12 V marine-leisure 
battery housed in a fan-cooled fibreglass box along with the solar charge 
controller. The DSLR vegetation monitoring cameras were powered 
directly from the battery through a custom voltage regulator. Power was 
supplied and regulated to the radiometers by a Campbell CR300 logger, 
equipped with a 100 Ω resistor. The logger and all connections are 
located within a Campbell ENC14/16 enclosure for insulation and pro-
tection. Each NASA-JPL radiometer operates with an 18◦ half-angle field 
of view (FoV) and is calibrated by the manufacturer to an accuracy of 
±0.1 ◦C (Abrams et al., 1999). The commercial Heitronics KT15.85 IIP 
has reported absolute accuracy in the field of ±0.5 K plus 0.7% of the 
temperature difference between target and housing temperature. The 
FoV of the Heitronics radiometer is non-linear and thus FoV footprint is 
provided by the manufacturer via a proprietary tool. At each LST mast, 
the Heitronics radiometers look north whilst JPL radiometers look east. 
The co-mounted DSLR cameras allow for concordant monitoring of 
vegetation and canopy state whilst also allowing for the reconstruction 
of conditions in the event of an unknown sensor error. Fig. 3 summarises 
the observation angle, mounting height, sensor lens view angle and 
subsequent ground FoV of the two different types of LWIR radiometer. 

Due to non-unity emissivity of the surface, the downward pointing 
LWIR radiometric measurements contain a component of reflected 
downwelling LWIR radiance, which must be estimated in order to 
retrieve accurate LSTs from the radiometric measurements. Therefore, 
an additional Heitronics radiometer was installed on Mast 3 to observe 
the sky at 53◦ zenith angle, facing away from the sun, to measure the sky 
brightness temperature as a proxy for downwelling radiation (Kon-
dratyev, 1969; García-Santos et al., 2013). 
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Prior to deployment in the field all radiometers were calibrated using 
a NIST-traceable blackbody (Omega BB701) in an environmentally 
controlled chamber. The calibration relationships derived from this 
procedure were applied to all the in-situ radiometer measurements. 
Further detail on the calibration procedure and results is available in the 
supplementary material (see S-1). 

3. Data and methods 

The Python scripts used to implement the methods detailed below 
are available at: https://github.com/tpfd/LandSurfaceTemperature-at- 
Kapiti. The ground validation data and associated metadata as used in 
this paper are available from: https://doi.org/10.18742/17197814.v1. 

3.1. Satellite data 

The satellite product considered for validation is the LSA-SAF 
MLST-AS product described in Section 1. This dataset is available 
from: https://landsaf.ipma.pt/en/products/land-surface-temperature 
/mlstas/. We validate the full range of MLST-AS data between October 
2018 and March 2019, with one full disk of LST observations available 
every 30 min (see left-hand insert of Fig. 1, panel A for an example of the 
full disk). The ground resolution of each pixel varies non-linearly with 
latitude-longitude (Schmetz et al., 2002). Over the Kapiti site the area of 
response for each pixel is approximately 4.5 km in the x-axis and 4 km in 
the y-axis (Fig. 1, main panel B). A key motivation for the choice of a 
geostationary platform against which to validate with this new ground 
station is the high frequency of data available as compared to a polar 
orbiting satellite. By using a geostationary platform, we can validate 
against many thousands of observations of the same pixel rather than the 

Fig. 1. Location of Kapiti Research Ranch and the sensor masts across ILRI Kapiti Wildlife conservancy. Panel (A): Overview of the location of the Kapiti in the 
context of Kenya, including inset top left; SEVIRI MSG full disk all-weather LST example data (in Kelvin). Panel (B): Map of the northern half of ILRI Kapiti Wildlife 
conservancy, with LST measurement sites for both configurations and MSG SEVIRI approximate pixel response area. Landcover classification generated from Sentinel 
2 using manually generated training data and a Random Forest based classification (Gislason et al., 2006). 
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few hundred that a polar orbiter such as MODIS would provide over the 
same time period. 

3.2. In-situ LST determination 

As per Guillevic et al., (2018), in-situ LST can be derived from the 
radiance-equivalent of the LWIR radiometer brightness temperatures 
(BT) (eq. (1)):. 

LSTground = B− 1
λ

[
1
ελ

(
Lground,λ − (1 − ελ)Lsky,λ↓

)]

(1)  

where ελ is the surface spectral emissivity at wavelength λ, or repre-
sentative of the surface emissivity within the given spectral window that 
is centred on λ. B− 1

λ (L) is the inverse Planck function describing the BT 
equivalent to the black body radiance (L), Lground,λ is the observed ground 

surface radiance and Lsky,λ↓ is the downwelling radiance measured by 
the sky-viewing radiometer. 

The retrieval of each of these parameters and uncertainty derivation 
is detailed in Sections 3.2.1–3.2.4., with upscaling to satellite equivalent 
LSTs in Section 3.2.5. 

3.2.1. Radiometer brightness temperature to radiance 
The ground-based radiometers output BT values based on voltage 

measurements, via the calibration equation supplied by the manufac-
turer. These BT are processed to blackbody equivalent spectral radiances 
using the Planck function at the effective central wavelength (2): 

L(λ,T) =
C1

λ5
(

e
C2
λT − 1

) (2) 

Fig. 2. Overview of ground conditions and typical SEVIRI pixel composition at Kapiti. (A) Partially grazed grass canopy during the rainy season, viewed from a 
vegetation monitoring camera on Mast 1. (B) Heavily grazed grass canopy with significant invasive species penetration in the dry season viewed from Mast 2. (C) 
Acacia tree canopy at the start of the dry season viewed from Mast 3. (D) Over-grazed soil-grass complex a month intro the dry season at Mast 4. (E) Dense senesced 
grass canopy at Mast 3 observed from the ground at the height of the dry season. (F) General view of Mast 3 after a week of rains. 

T.P.F. Dowling et al.                                                                                                                                                                                                                           



ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 240–258

245

where L(λ,T) is the spectral radiance, C1 =2hc2, C2=
hc
k , λ = radiometer 

central wavelength (μm) and T = BT (K). The constants are: h = Planck 
constant (6.6260693× 10− 34Js), c = speed of light (2.99792458×

108ms− 1) and k = Stefan-Boltzman constant (1.380658×

10− 23W/m− 2K− 4). 
Given the approximately symmetric spectral response function of the 

Heitronics KT15.85 radiometer (see S-3 in the supplementary material), 
previous work has assumed a static central wavelength (λ) of 10.55 μm 
for Heitronics radiometers when calculating blackbody equivalent 
spectral radiances from BT observations (Göttsche et al., 2016). How-
ever, the potential errors from this assumption become larger when 
using radiometers with wider spectral windows, such as the NASA-JPL. 
This is especially true when using both a sky-pointing radiometer to 
retrieve downwelling radiance and a ground pointing radiometer, due to 
the varying relative response of the Planck function for clear sky and 
heated sub-tropical ground surface observations – two very different 
temperatures. We therefore calculate the effective central wavelength 
for each paired observation of the ground and sky. The method used to 
do this and the impact on observed LST is detailed in S-3 in the sup-
plementary material. 

3.2.2. Emissivity 
The emissivity of a target is the effectiveness of the target in emitting 

energy as thermal radiation. Estimation of the surface emissivity of an 
observed target is essential to deriving the correct surface temperature 
from the detected infrared brightness temperature or spectral radiance. 
However, it is difficult and unreliable to measure vegetation emissivity 
in the field (Langsdale et al., 2020) and there are many problems 
inherent in returning vegetation samples over long distances to suitable 
laboratory facilities (Rubio et al., 2003). Therefore, we take surface 
emissivity values generated concurrently with the satellite LST values 
from the LSA-SAF LST product. The LSA-SAF emissivity product (Trigo 
et al., 2008) uses a fractional vegetation cover (FVC) based method to 
calculate the per-pixel emissivity contributions from the vegetation and 
bare soil components. The land cover classes used are those from the 
International Geosphere–Biosphere Program database (Loveland et al., 
2000). The emissivity values used in the fraction calculation are from 
laboratory measurements of a variety of surface types and cover, pri-
marily sourced from the John Hopkins University Library (Meerdink 
et al., 2019a, 2019b). A benefit of using the satellite FVC based method 
to drive in-situ radiometer LST derivation is that it dynamically responds 
to changing vegetation states in a way that a time limited field campaign 
cannot. 

The Heitronics radiometer is a ‘narrow band’ sensor and therefore a 
single central wavelength emissivity value (at 10.8 μm) is sufficient for 
use in LST derivation. However, the JPL-Apogee based radiometer has a 
much wider spectral window. Therefore after Cheng et al. (2012) we 
calculate the hinge point emissivities for the relevant SEVIRI channels, 
convolved to the Apogee SI series spectral response function. These 
values are in turn used to calculate the broadband emissivity (BBE) in 
the spectral range of 8–14 μm (eq. (3)). 

BBE = 0.2229ε8.7 + 0.67ε10.8 − 0.0152ε12.0 + 0.1045 (3)  

Here ε8.7, ε10.8 and ε12.0 are the hinge point emissivities for the channels 
centred at 8.7, 10.8 and 12.0 μm respectively, provided by a LSA-SAF 
internal product derived from SEVIRI (available from lsa-saf.eumetsat. 
int). It is noted that although the same emissivity is used in the case of 
the in-situ and SEVIRI clear-sky LST data, sensitivity of the algorithms to 
emissivity errors is not the same. Generally, the GSW algorithm is about 
twice as sensitive to emissivity errors than a method based on the Planck 
function such as that used here to derive in-situ LSTs (eq. (1)). This is 
mainly due to the GSW dependence on the average and difference be-
tween ε10.8 and ε12.0 (Ermida et al., 2020). 

3.2.3. Downwelling correction for surface looking radiometers 
To convert the brightness temperature measurements made by the 

surface viewing radiometers to LST, it is essential to consider the re-
flected downwelling (full atmospheric path) LWIR component of the 
measured signal (Göttsche et al., 2016). Whilst a full hemispherical 
measurement would be the preferred option, a radiometer measurement 
made at a 53◦ view zenith angle has been shown to be an appropriate 
proxy and is easier to achieve in field conditions (Guillevic et al., 2018). 
This is normally done using a sky viewing LWIR radiometer with the 
same characteristics as the ground viewing sensor. However, due to an 
early sensor failure of an Apogee SI-121 radiometer (NASA-JPL radi-
ometer equivalent), until October 2019 only a Heitronics KT15.85 IIP on 
Mast 3 was observing the sky consistently. Therefore, an estimate of the 
dowelling radiance had to be obtained from the Heitronics KT15.85 IIP 
sky measurement that was appropriate to the NASA-JPL radiometers. To 
do this, 120 downwelling LWIR irradiance spectra were simulated using 
the radiative transfer model MODTRAN 5 (Berk et al., 2005). These 
spectra were then convolved to the spectral response functions of both 
the Heitronics and JPL radiometers to retrieve band-specific down-
welling irradiance (Wm− 2sr− 1μm− 1) values, before being converted to 
the equivalent sky brightness temperatures (K). The relationship be-
tween the Heitronics and Apogee convolved radiances and brightness 
temperatures were then obtained using linear regression (see S-2 in the 
supplementary material). Strong positive correlations, R2 = 0.99 and 
R2 = 0.99 respectively for radiance and BT, were determined for the 
downwelling observations. 

3.2.4. Ground observation uncertainty 
Uncertainties on the derived in-situ LSTs were calculated and prop-

agated following GBOV (2018). The uncertainty of any given LST value 
is a combination of the uncertainty inherent within the logging equip-
ment, the radiometer and the emissivity values applied during LST 
derivation. The uncertainty of the logging equipment (Uflogger) varies 
with the temperature of said equipment in terms of both the logger 
precision (Ufl a) and logger current resistance (Ufl r). For the CR300 
logger in temperatures below 40 ◦C the precision values are 0.04 and 
0.05 % respectively. For temperatures above 40 ◦C they are 0.1 and 0.06 
% respectively. In addition, the resistors used in the measurement circuit 
have an uncertainty of 0.001 % (Ufr). Therefore, the total fractional 
logging uncertainty is:. 

Uf logger =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Uf 2

l a + Uf 2
l r + Uf 2

r

)√

(4) 

The absolute logging uncertainty (Utlogger) in Kelvin is therefore:. 

Table 1 
Sensor package summary of the Kapiti LST monitoring site. NASA-JPL = quasi- 
nulling infrared radiometer, the measurement sequence is made every 5 minutes 
and takes 1 minute to complete. Heitronics (ground) = infrared radiation py-
rometer, model KT15.85-IIP. Measurement made every 5 minutes. Heitronics 
(sky) = measurement every 5 minutes. Field of views, look directions and view 
angles are presented in Fig. 3.  

Site Radiometers Cameras Other sensors Lat-Lon 

1 NASA-JPL 
Heitronics 
(ground) 

Vegetation 
RGB 

Eddy-covariance system and 
full meteorological station 

− 1.6029 
37.0932 

2 NASA-JPL 
Heitronics 
(ground) 

Vegetation 
RGB 

– − 1.5980 
37.1072 

3 NASA-JPL 
Heitronics 
(ground) 
Heitronics 
(sky) 

Vegetation 
RGB 
Sky RGB 

– − 1.6001 
37.1098 

4 NASA-JPL 
Heitronics 
(ground) 

Vegetation 
RGB 
Vegetation 
NIR 

– − 1.6127 
37.1314  
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Utlogger =

(
Ulogger

100

)

T (5)  

where T = the observed temperature in Kelvin andUfl a, Ufl r vary with 
logger temperature. 

Sensor uncertainty (Utsensor) is provided by both manufacturers. For 
the NASA-JPL radiometer the stated uncertainty of the sensor is ±0.1 K. 
For the Heitronics the sensor uncertainty is ±0.5 K plus 0.7% of the 
difference between the temperature of the sensor body and the tem-
perature of the observed target. 

The total observation uncertainty (UT↑/↓) in Kelvin is therefore:. 

UT↑/↓ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
U2

tlogger + U2
tsensor

)√

(6) 

The uncertainty of the emissivity is provided by LSA-SAF as part of 
the SEVIRI product on a per-band basis. Therefore, for the Heitronics 
sensors the uncertainty in emissivity (Uε) is the uncertainty of the 
emissivity for the 10.8 μm channel. However, the JPL radiometer 
emissivity is driven by multiple channels and therefore from error 
propagation, Uε for the NASA-JPL radiometers is:. 

Uε =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
0.2229Uε8.7

)2
+
(
0.67Uε10.8

)2
+
(
0.0152Uε12.0

)2
√

(7)  

where Uε8.7 , Uε10.8 and Uε12.0 are the uncertainties for the respective 
channel emissivities. 

Before we propagate these uncertainty values through the LST 
derivation method, the UT↑/↓ in Kelvin must be converted to radiance 
(UL↑/↓, Wm− 2 sr-1 μm− 1). To do this we differentiate the Planck equation 
(eq. (2)) with respect to T in order to calculate the equivalent radiance 
uncertainty for the temperature observation at the true central wave-
length for said observation (eq. (8)):. 

UL =

⃒
⃒
⃒
⃒
∂B
∂T

⃒
⃒
⃒
⃒UT (8)  

where UT = temperature uncertainty in Kelvin and UL = uncertainty in 
radiance (Wm− 2 sr-1 μm− 1) and ∂B

∂T the partial differential of the Planck 
function with respect to T such that: 

Fig. 3. Panel (A): Sensor FoV geometry 
for each LWIR radiometer at the given 
view angles, drawn at 1:4 scale with true 
angles. The grey box in the 10◦ JPL 
radiometer field of view is the region not 
grazed due to the presence of the fence 
around the base of the tower. No hard-
ware is present in this region other than 
the mast. The mast is mounted as far 
forward in the corner of the fencing as 
possible to avoid radiometers viewing 
this area. All digital cameras point 
north, the same look direction as the 
Heitronics radiometers. Panel (B): look 
direction of all sensor types. Panel (C): 
summary of view angle of all radiometer 
sensor and observation types.   
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∂B
∂T

=
C1C2e

C2
λT

λ6T2
(

e
C2
λT − 1

)2 (9)  

where T = temperature of the observation associated with the uncer-
tainty value (in Kelvin), and constants C1 andC2. With all uncertainty 
contributions accounted for, we can now propagate and find the un-
certainty of the land surface radiance (ULsurf ) with the equation supplied 
by GBOV (2018) (Eq. 8): 

ULsurf = Lsurf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U2
L↑ +

(

(1 − ε)L↓
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U2
ε

(1− ε)2 +
U2

L↓
L2

↓

√ )2

(L↑ − L↓(1 − ε) )2
+

U2
ε

ε2

√
√
√
√
√
√
√ (10) 

Finally, using the uncertainty of the surface radiance (ULsurf ), we 
calculate the absolute uncertainty of the given LST observation (GBOV 
(2018) eq. 9):. 

ULST = C2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1

(
ULsurf

λ5L2
surf

)

(

C1
Lsurf λ5 + 1

)

λ

(

ln C1
Lsurf λ5 + 1

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(11)  

where ULST is the uncertainty of a given LST observation given the 
equipment’s operating temperature. The resulting uncertainty for all 
LST observations at all sites is summarised in Table 2, with the median, 
minimum and maximum uncertainty values for each radiometer and its 
angle of observation through time reported. The median uncertainty 
through time for all radiometers varied between 0.79 and 0.95 K. 

3.2.5. Upscaling 
The satellite observed LST over any given pixel is a combination of 

landcover types, landcover structure, viewing angle and illumination 
angle. The LST observed from a single ground-based radiometer will not 
include all landcover components and be subject to less shadowing of 
the surface than the satellite view. Therefore, we upscale the observed 
LST from each mast to the SEVIRI satellite pixel scale in order to carry 
out evaluation of the satellite LST product. The workflow for this process 
as applied to the different illumination conditions is presented in Fig. 4. 

For illuminated (day) clear-sky scenes we upscale from ground LST 
to SEVIRI pixel LST with the Ermida et al. (2014) geometric model, using 
the observations of sun-lit ground and the tree canopy at Mast 3 as proxy 
for shadowed surface temperatures. The use of a tree canopy proxy for 
the shadowed fraction of a pixel follows the approach of Guillevic et al. 

(2013). S-4 in the supplementary material presents details of testing this 
method against an air temperature approach. The model requires an 
estimation of both total tree-cover and the general dimensions of the 
trees within the SEVIRI pixel. From manual sampling of aerial photos, 
we estimated crown horizontal radius to range between 3 and 5 m. Field 
observations indicated that tree heights ranged between 3 and 6 m. For 
estimating tree canopy cover extent across the site, we used all cloud- 
free surface reflectance data from the Sentinel-2 Multispectral Imager 
(MSI) from January and February 2018 over Kapiti Research Station to 
carry out a supervised classification with a Random Forest classifier. The 
results of this are presented in Table 3 and shown in Fig. 1. Sentinel-2 
MSI samples with a global revisit period of 5 days across 13 spectral 
bands from the visible to the shortwave infrared with spatial resolutions 
from 10 m to 60 m depending on the band. Given the relatively short 
period (six months) considered in this study, we did not update the 
landcover map through time. However, this would be a necessary step 
on an annual basis for future work. 

The Ermida et al. (2014) model is based on the geometrical optical 
module of the Geometrical-Optical Radiative Transfer (GORT) model of 
Ni et al. (1999). The key assumption of this model is that the radiance of 
a satellite pixel is a linear combination of the radiances from each of the 
scene components, with each contribution weighted by the respected 
fraction within the projected scene. It is also assumed that angular 
variation in observed radiance is solely due to changes of land cover 
component fractions within the pixel. Thus:. 

Bavg = Fsunlit*Bsunlight +Fshadow*Bshadow +Fcanopy*Bcanopy (12)  

where Bavg is a pixel’s radiance within the sensor field of view,Bsunlight , 
Bshadow and Bcanopy are the respective radiances for each component 
andFsunlit, Fshadow and Fcanopy are the corresponding component fractions 
as calculated from the landcover analysis and application of the model. 

Estimates of the fraction of each component are found using a 
Boolean Scene Model (Serra, 1982) that finds the gap probability be-
tween randomly distributed objects. The density of the object centres is 
estimated following Liu et al. (2004). Estimations of the fractions of each 
component are then determined by applying the Boolean scene model to 
the view and illumination angles of a given pixel on to a 0.01 m regular 
grid with an ellipsoidal tree. For full details of the model see Ermida 
et al. (2014). 

As we are using the tree canopy temperatures as a proxy for canopy 
shadow temperatures, the function to scale the ground observations 
becomes:. 

Bavg = Fsunlit*Bgrass +
(
Fshadow +Fcanopy

)
*Bcanopy (13)  

where Bgrass is the radiance from the radiometer observing the grass-soil 
surface at each mast. During the day, the fractions are driven by the 
modelled shadowed fraction to give Bavg. At night and under cloud cover 
there is no illumination of the scene and therefore the fractions are set to 
the estimated tree canopy cover (6%) and vegetation surface (94%) of 
the pixel in which the masts are located. Given that we are only looking 
at one full season, we do not update the landcover map during the course 
of this time period. Thus, the implementation for observations at night 
(Bnavg) is:. 

Bnavg = 0.94*Bgrass + 0.06*Bcanopy (14) 

Due to the location of Kapiti close to the equator, ‘Day’ is set to 0300 
– 1500 UTC and night vice versa. With the average brightness temper-
ature calculated, eq. (1) is applied to find the up-scaled ground valida-
tion LST temperature for the SEVIRI pixel in question. The upscaling of 
ground observations for the validation of MLST-AS is carried out for 
each individual mast, based on the SEVIRI view angle and azimuth for 
Kapiti. The final step is to then find the Kapiti site mean, which is the 
mean of all the time-matched mast upscaled observations that are ori-
ented in the same direction as the SEVIRI view angle (east). By taking 

Table 2 
Summary statistics for the calculated LST uncertainty values for each site and 
sensor/observation type. All values are in Kelvin.  

Site Radiometer observation Median Min Max 

1 Heitronics  0.79  0.50  1.78  
JPL 1  0.91  0.49  1.81  
JPL 2  0.91  0.47  1.80  
JPL 3  0.91  0.47  1.80 

2 Heitronics  0.81  0.50  1.49  
JPL 1  0.96  0.49  1.78  
JPL 2  0.95  0.47  1.78  
JPL 3  0.95  0.47  1.78 

3 Heitronics (tree)  0.88  0.50  1.82  
JPL 1  0.92  0.48  1.82  
JPL 2  0.92  0.47  1.85  
JPL 3  0.93  0.48  1.83 

4 Heitronics  0.91  0.50  1.84  
JPL 1  0.94  0.49  1.80  
JPL 2  0.94  0.47  1.80  
JPL 3  0.93  0.48  1.80  
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the mean ground observed LST across multiple masts we sample the 
impact of the three different grazing patterns across Kapiti by an equal 
amount. 

3.3. Validation metrics 

For clarity, the following definition of validation metrics are used 
throughout this work, adopted from Guillevic et al. (2018):.  

(5) Accuracy: the median error of the satellite product as compared 
to the ground truth provided by the Kapiti LST validation towers: 

Accuracy = median(|x − y| ) (15)  

where x is the observed ground LST value and y is the time-matched 
satellite LST value. 

(ii) Uncertainty: estimated by the RMSE:. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xi − yi)

2

√

(16)  

where n is the total number of observations, i is a whole positive integer 
that enumerates sum, x is the observed ground LST value and y is the 
time-matched satellite LST value. 

(iii) Precision: the median of the absolute deviation (MAD) of each 
measurement’s error from the median error of the whole dataset:. 

MAD = median(|zi=1 − z̃| ) (17)  

where z is the difference between x andy, i is a whole positive integer 
that enumerates the series of z and ̃z is the median of z. 

iv) Slope: a description of the direction and steepness of the linear 
best fit between the in-situ and satellite LST measurements as found 
using an ordinary least squares regression. It is a useful indicator of the 
general representativity of the whole range of satellite observed tem-
peratures with regards to the whole range of in-situ temperatures. 

4. Results 

4.1. In-situ data record 

Fig. 5 summarises the stable data record for site configuration 1. 
Some operational issues were encountered that affected the available 
record; Mast 2 had all power equipment stolen shortly after installation 
and Mast 3 was badly damaged by a curious giraffe. The outcome of this 

Fig. 4. Upscaling workflow for ground observations to the pixel resolution of SEVIRI MLST-AS. Day and cloud-free ground LST observations are upscaled using the 
geometric model. Night and cloud shadowed ground observations are upscaled using a simple landcover fraction-based combination of the tree canopy and grass/soil 
surface temperatures due to the lack of shadows. 

Table 3 
Summary table of average percent landcover within SEVIRI 
pixels undergoing LST comparison to Kapiti ground stations. 
Rand accuracy = 0.97, indicating that 97% of test pixels are 
classified correctly using the model found by the evaluation 
of the training pixels.  

Class Land cover (%) 

Tree canopy  6.0 
Other vegetation  82.6 
Surface water  0.2 
Exposed soil  11.2  
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is that in the first full year of operation, the instruments installed at 
Kapiti research station capture one full wet-dry seasonal cycle across 
three masts. This three mast timeseries suffers one data gap of approx-
imately seven days due to power failure at two of the masts. We there-
fore have a total observation period of ~6 months. A full record of the 
individual radiometer ground observations is presented in S-5 in the 
supplementary material. The ground LST value taken forward into the 
evaluation of MLSTS-AS is the Kapiti site mean (Fig. 5- last plot). Ob-
servations between the satellite and the ground are matched if they 
occurred within 30 seconds of one another. 

4.2. MLST-AS 

Fig. 6 demonstrates the performance of the all-weather MLST-AS 
product against Kapiti in-situ observations. Taken as a whole, the MSLT- 
AS has an accuracy of 2.02 K, precision of 1.38 K and an RMSE of 3.64 K, 
with a slope of 1 (Fig. 7-A). However, the two methods used to derive the 

all-weather MLST-AS product show different levels of performance and 
structure. The energy balance model (Fig. 6-B) component of the MLST- 
AS product shows a poorer performance, with an accuracy of 3.02 K and 
RMSE of 4.16 K, and there is a clear cold bias present in the primary 
cluster of values. Fig. 6-C demonstrates that the GSW-derived SEVIRI 
LWIR LST (also known as the MLST product) of the LSA-SAF product is 
generally accurate over the sparse canopies of the savannah, with the 
exception of a lower spur of cold-biased values. that are likely the result 
of small clouds missed by the cloud filter. 

To further investigate the difference in performance between the two 
contributing elements of MLSTS-AS, in Fig. 7 (panel A) we examine the 
daily bias and MAD values for the MLST-AS product against the up- 
scaled Kapiti in-situ LST with a rolling 7-day mean. In Fig. 7 panels 
(B) and (C) the data from the MLSTS-AS product is split into the two 
elements: first the observations from the clear sky LWIR SEVIRI and 
secondly those derived from the energy balance model at times of cloud. 
Both methods of LST derivation experience the occasional severe outlier 

Fig. 5. Summary of the available in-situ LST record 
(Kelvin) for Kapiti site configuration 1 and the pro-
cessed Kapiti-wide upscaled mean LST. Data is avail-
able from a mast when at least one ground observing 
radiometer is active and returning admissible data. 
The Kapiti Site mean is only available when at least 
three radiometer observations are available from two 
masts. The timeseries presented in the top four panels 
are the downwelling and emissivity corrected LST 
values for each mast upscaled to the SEVIRI pixel 
scale. The final timeseries is the Kapiti mean LST 
derived from all four sites and upscaled to the SEVIRI 
pixel scale. The data gap in late January 2019 at a 
number of sites is due to batteries failing from 
repeated charge/discharge cycles.   
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(errors greater than 4 K), with the energy balance approach suffering 
approximately double the number of these compared to clear sky GSW 
observations. An interesting difference between the MLST-AS pixels 
derived with the energy balance model (cloudy pixels) and those derived 
with the GSW (clear sky pixels) is the change in phase of the errors. The 
precision and bias are in phase throughout the wet and dry seasons for 
the surface temperatures derived using the energy balance model. 
However, the relationship between the bias and precision in the clear 
sky measurements switches to an anti-phase/neutral configuration 
following the end of the wet season. This suggests that the model 
response to surface water and vegetation cycling is different to that of 
the satellite LST observation derivation. 

To explore these discrepancies in detail, Fig. 8 examines MLST-AS for 
six days commencing 20th October 2018, presenting the daily LSTs from 
in-situ and MLST-AS observations in panel A and cloud conditions and 
meteorological measurements for dry/scattered cloud and full cloud 
cover in panels B and C respectively. If the surface temperatures were to 
be examined alone, this week might be thought to be the start of the 
rainy season as there are three days of increasingly cloudy conditions 
before the surface temperature drops on the 23rd and 24th October. 
Skies are clear at night in the build up to the drop, with progressively 
more cloud present in the day. As we get closer to the temperature shift, 
the LSTs derived using the LWIR observations of SEVIRI at times of cloud 
free skies become more infrequent and less accurate. From the 23rd 
onwards there are almost no clear sky observations, and the energy 
balance model becomes almost the sole provider of LST data within 
MLST-AS, with just one or two cloud-free points available in a 24-hour 
period. There is also a distinct difference between the performance of 
the MLST-AS product at the start of the week (clearer-sky conditions) 
and the end of the week (cloudy conditions). On the 20th and 21st 
October there is fairly good agreement between the in-situ LSTs and the 
MLST-AS product both in terms of diurnal pattern and bias, with the 
MLST-AS LSTs generally within 2 K of the in-situ upscaled LSTs. Some 
negative biases down to − 5 K and even − 10 K at 05:35 UTC on 20 
October 2021 suggest cloud contamination. From 08:00 UTC on the 
22nd of October, we see an immediate and large drop in MLST-AS 
performance (Fig. 8, panel A). There also emerges a consistent pattern 
of the MLST-AS having a positive bias during the day and large negative 
bias during the night when compared to the in-situ LSTs. Differences are 
maximal in the middle of the day and during the night, with differences 
peaking at + 6.5 K during the day and − 14 K during the night. 

This immediate and large drop in both in-situ and satellite LSTs from 
the morning of the 23rd October (Fig. 8, panel A) suggests that a key 
factor to influence the surface temperature in cloudy conditions is heavy 
dew formation in the mornings. Fig. 8C indicates that no precipitation is 
recorded, and relative humidity maintains a daily cycle that is in-sync 
with the surface temperature as it did a few days earlier during dry 
and cloudy conditions (Fig. 8B). However, Fig. 8C shows that on the 
23rd October the soil temperature drops away from surface tempera-
ture. When also considering the dew evident in the cloud camera im-
ages, these observations suggest heavy and persistent dew formation 
that changes the thermal properties of the surface in a way that cloud- 
cover alone cannot account for. The amount of dew is not sufficient to 
infiltrate the compacted upper surface of the soil nor is there enough to 
run off the surface and into the cracks to change the soil moisture levels. 

Fig. 9 shows similar data to Fig. 8, but for six days commencing 18th 
November 2018. In this week, the true onset of the rainy season is 
evident from a clear precipitation signal (Fig. 9- panel C) on 19th 
November. This rainfall is matched by strong evidence of infiltration 
into the soil immediately during and after the precipitation event, with 
rapid and large changes in both soil moisture and 5 cm soil temperature. 
Relative humidity and soil temperature follow the same pattern as in 
Fig. 8 as they are in-sync with the observed LST before water is on the 
land surface, followed by soil temperature dropping away once moisture 
is on the surface. As in Fig. 8, when water is on the land surface, MLST- 
AS modelled temperatures appear to overestimate daytime temperatures 

Fig. 6. Mean upscaled Kapiti in-situ LST against (A) the new SEVIRI all- 
weather MLST-AS product as a whole, (B) the energy balance model compo-
nent of the MLST-AS product (at times of cloud), and (C) the standard SEVIRI 
LST LWIR product. The colour bar in each panel is the number of observations 
located at that point in the 2D plain. The 1:1 line is shown in red on each plot, 
and the slope of the ordinary least squares line of best fit to the data is provided 
as one of the statistics. 
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and significantly underestimate night-time temperatures when 
compared with the in-situ measurements. MLST-AS temperatures then 
close in with the in-situ observations once surface water is no longer 
present, or soil moisture decreases below saturation levels. There is also 
a general pattern in this scenario of the night-time energy balance 
modelled temperature values being consistently offset from the in-situ 
observations. 

Fig. 10 shows the hourly (UTC) summary statistics for the upscaled 
in-situ measurements against the MLST-AS product, considering accu-
racy, precision, RMSE, and slope for each component of the MLST-AS 
product. Consideration of the whole MLST-AS product (Fig. 10- panels 

A, D, G) against the Kapiti upscaled mean indicates that the RMSE and 
precision error is lowest around dawn (03:00 UTC) and dusk (15:00 
UTC), with RMSE and precision both getting worse during the day to-
wards solar maximum (~10:00 UTC) before improving as dusk ap-
proaches. This pattern of changes in the magnitude of uncertainty and 
error over the 12-hour cycle between dawn and dusk is also observed 
during the night, albeit in both cases the decrease in RMSE and precision 
performance is less than during the day. 

The model component and the clear-sky component follow similar 
patterns of precision and RMSE to the whole MLST-AS product. How-
ever, while the model component has a similar distribution of poor slope 

Fig. 7. MLSTS-AS error statistics through time. Panel 
(A) daily mean bias (absolute) and precision with a 7- 
day rolling average applied, for the full MLST-AS 
product. (B) Daily mean bias (absolute) and precision 
with a 7-day rolling average applied, for the clear sky 
thermal infrared observations of SEVIRI within MLSTS- 
AS. (C) Daily mean bias (absolute) and precision with a 
7-day rolling average applied for the cloudy periods in 
which the MLST-AS product is providing LST values for 
Kapiti using an energy balance model. For all plots, the 
left axis is the absolute bias and precision in Kelvin. 
The right axis is the daily precipitation in mm. Dashed 
lines are daily mean bias/precision, the solid line is the 
7-day rolling mean of this daily bias/precision. Grey 
bars are the daily precipitation total, provided to 
indicate the wet season.   
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Fig. 8. (A) Time-series of LST data for October 2018, at the onset of dew formation. Blue = Kapiti upscaled mean in-situ LST. Red = MLST-AS product, with red 
triangles the LST values provided by the energy balance model. Black = MLSTS-AS LST from a clear sky observation of the ground by SEVIRI. A daily cloud camera 
image at 10:15 UTC is shown from the camera mounted on Mast 3, with cloud fraction indicated. (B) Hourly sky images from the afore-mentioned cloud camera and 
environmental parameter plots for a dry and cloudy day without dew formation (21/10/2018). In all plots the time is in UTC, the red line is the MLST-AS record, blue 
is the upscaled Kapiti ground observation (both on the left y-axis) and black is the given environmental parameter (right y-axis). (C) Hourly sky images and 
environmental parameter plots for a day with morning dew formation under heavy cloud (23/10/2018). The unit of soil moisture is the volumetric moisture 
content (VMC). 
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Fig. 9. (A) Time-series of LST data for November 2018, the start of the rainy season. Blue = Kapiti upscaled mean LST. Red = MLST-AS product, red triangles are the 
LST values from the energy balance model. Black = MLSTS-AS LST clear sky observation by SEVIRI. Similar to Fig. 8, a daily cloud camera image at 09:15 UTC is 
shown from the camera mounted on Mast 3, with cloud fraction indicated. (B) Hourly sky images and environmental parameter plots for a dry and lightly clouded 
day. In all plots, time is in UTC, the red line is the MLST-AS record, blue is the upscaled Kapiti ground observation (both on the left y-axis) and black is the given 
environmental parameter (right y-axis). (C) Hourly sky images and environmental parameter plots for first day of rains, which commence in the evening. The unit of 
soil moisture is the volumetric water content (VMC). 
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Fig. 10. Hourly (UTC) summary statistics for Kapiti mean vs. MLST-AS, from top to bottom; accuracy, precision, RMSE and slope. Blue plots (A, D, G, J) are for the 
whole product, red plots (B, E, H, K) are for the model component only and black plots (C, F, I, L) are for the LWIR component. The values given are the evaluating 
statistic for all values in the timeseries, for that given hour of the day. For local time, add three hours to the given UTC time. For the first three statistics the x-axis goes 
from 0 to 4 and is in Kelvin, for slope the x-axis is from 0 to 1. 
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fitting during the night to the clear-sky component, the overall fit is 
much poorer on an hourly basis as compared to the LWIR observations 
(Fig. 10- panel K and L). In addition, the accuracy of the model 
component is much worse than that of the clear-sky component and the 
whole MLST-AS product (Fig. 10, panels A – C), with the exception of the 
hours preceding the solar maximum (07:00 – 09:00 UTC). 

5. Discussion 

5.1. MLST-AS performance 

The overall results of the MLST-AS product (accuracy = 2.02 K, 
precision = 1.38 K and RMSE = 3.64 K) are close to the GCOS (2016) 
target of < 1 K accuracy and precision for LST products and consistent 
with the findings of Martins et al. (2019) and Martins & Dutra (2020). 
However, the results from the comparison presented in Section 4.2 
suggest a number of issues with the MLST-AS product. 

Firstly, there is clear evidence of cloud detection issues with the 
SEVIRI LST algorithm. The first evidence of this is the lower spur of cold- 
biased values observed in the GSW-derived LSTs (Fig. 6C), which are 
likely the result of small clouds missed by the cloud filter. Considering 
Fig. 8A and Fig. 9A, it can be seen that these large negative biases occur 
mostly during night-time when the cloud masking algorithm cannot rely 
on the visible channels, which makes the correct detection of clouds 
much more difficult. We can also see this clearly in Fig. 10- panel L 
where the slope of the fit between the SEVIRI LWIR and ground data 
drops suddenly from close to 1.0 at 4 PM UTC (nightfall) to less than 0.1 
by 12 AM (pre-dawn). Interestingly, as shown in Fig. 7, these occasional 
high biases and poor precision values are observed in both the model 
component and the clear-sky component. Cloud-detection errors for the 
LWIR observations likely are the cause of this, as the MLST-AS energy 
balance model is linked to the LWIR observations. 

However, cloud-detection errors alone do not account for the 
apparent underestimation of night-time temperatures observed consis-
tently in cloudy conditions when dependent on the model component 
alone (Figs. 8 and 9). Cloud-detection errors do also not explain the 
apparent overestimation of daytime temperatures in cloudy conditions 
as observed in Figs. 8 and 9. This pattern of underestimation at night and 
overestimation at day during cloudy conditions was similarly observed 
by Martins & Dutra (2020). An alternative explanation for these errors is 
likely insufficient characterization of soil moisture, which is known to be 
an issue for the MLST-AS energy balance model due to a lag in the soil 
moisture data that feeds surface temperature derivation (Ermida & 
Trigo, pers. comm.). This is supported by the fact that the model response 
to surface water and vegetation cycling was observed in Fig. 7 to be 
different to that of the satellite LST observation derivation. Based on this 
and the ground data shown in Figs. 8 and 9, we therefore suggest that if 
soil moisture comes to strongly control surface temperatures and there 
are few clear sky LWIR observations to correct the model, the model fails 
to represent the diurnal cycle well. 

These issues around the energy balance model capturing soil and 
surface moisture conditions could also be the cause of the diurnal 
changes in the magnitude of uncertainty and error observed in Fig. 10 
(panels B, E and H) and presented in Section 4.2. However, this is 
thought to be unlikely as both elements of MLST-AS experience the same 
pattern of warmer surface temperatures leading to a performance 
against the ground stations that is 1–2 K worse than in the morning or 
night (Fig. 10- panels A to I). Therefore, it is suggested that there are two 
elements of the savannah biome that both the energy balance model and 
SEVIRI LWIR observations are struggling to deal with: 1) surface water 
deposition and subsequent soil moisture levels and 2) higher surface 
temperatures (>300 K (Fig. 6)). 

Surface water could drive errors in the MLST-AS LST due to changes 
that it may cause on land surface emissivity (LSE) as observed by both 
the satellite and the radiometer (Mira et al., 2007). The FVC derived 
emissivity of the LSA-SAF product will not capture the impact of 

saturated soils nor a film of water on said LSE. The effect could be the 
same for both the in-situ radiometers and the satellite, but due to the 
difference in scale it is more likely to be a differential influence. The 
differential in the effective LSE experienced by each sensor would occur 
as water will gather in discrete locations (the dry stream beds and wa-
tering holes) at the larger landscape scale, whereas in the view of the 
radiometers it is much more likely to be present as a film through which 
vegetation is still visible. This generates a different LSE through both the 
type of material observed (water vs. mixed water and vegetation) and 
differences in surface roughness. However, Hulley et al. (2010) found in 
laboratory experiments that LSE returned to the dry equilibrium state 
just an hour after wetting. They also found minimal impacts of anom-
alous wetting events over desert environments, particularly when the 
split-window algorithm is used and LSE forced to a pre-determined 
constant for the observed landcover (Hulley et al., 2010). Further-
more, given that we see the large bias over the whole course of a night 
with a far more minimal difference than in the day, it is unlikely that a 
surface water driven change in LSE is the primary cause of the general 
error and highly unlikely to be the cause of the night-time bias. This is 
because if it was an LSE driven bias, we would expect the same bias to be 
present in the day as at night, given that the emissivity of a surface is 
independent of solar illumination and that the angle of observation re-
mains constant for both the satellite and the radiometer (Li et al., 2013). 

5.2. Limitations and future work 

There are three areas in which this study has limitations that require 
further study: i) emissivity, ii) upscaling evaluation and iii) grazing 
representativity. 

Emissivity remains the most difficult element of the LST validation 
process to constrain. By using the FVC derived emissivity that is part of 
the SEVIRI LST product we do, to some degree, neutralise it as a source 
of comparative error between the satellite and ground observations. 
However, as explored in Section 5.1 this means that we cannot give a 
definitive answer as to the mechanism of the role that surface water has 
in the observed cold bias of MLST-AS. This is because we have no 
measure of the ‘true’ emissivity as experienced by the ground radiom-
eters when the ground is wetted as compared to when it is not. Some 
work was carried during the course of this project with the box method 
of Rubio et al. (2003) to rectify this but the approach was found not to be 
suitable for the savannah environment (Langsdale et al., 2020). Future 
work should include a concerted field campaign with instruments such 
as the Cimel 312 as used by Payan and Royer (2004), to build a spectral 
library of the savannah biome through both the wet and dry seasons. 
This would be logistically difficult but allow the potential source of error 
to be identified and quantified should it be emissivity based. 

In addition to measurements of emissivity through time, another 
limitation of this work is the evaluation of emissivity at different scales. 
To paraphrase Zhang et al. (2004): “the concept of scale in thermal 
measurements is a purely human construct due to the limitations of 
measurement capabilities, in the natural world heterogeneity is absolute 
throughout the scale continuum”. This said, scale is still an issue that 
must be tackled given that the difference between our sensors is so large: 
a 4000 m measurement for SEVIRI vs. 3 m in the case of the Heitronics. 
We mitigate this scale difference somewhat by measuring each compo-
nent of the landscape on the ground with multiple radiometers, rather 
than the whole landscape with one radiometer. But there is still a 
challenge around the respective contribution of each landscape element 
to the emissivity of the observed surface. For example, we do not provide 
a different emissivity for the tree canopy as compared to the grass 
canopy in the radiometer LST derivation. Nor are we able to define the 
relative proportion of soil to grass that is visible in the FoV of each 
radiometer that is looking at the grassland. Both of these factors could 
have an impact on the true emissivity that should be used with the 
ground radiometers, albeit research indicates that trees are graybodies 
once they reach a sufficient total canopy depth and leaf density 
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(Meerdink et al., 2019a, 2019b). As with the problem of surface water, a 
concerted yearlong ground campaign would do much to answer these 
questions. A fuller answer could be gained by a campaign of robust, 
ground emissivity measurements that is then combined to machine 
learning based quantification of the soil-grass component balance via 
the vegetation monitoring DSLRs. 

The second limitation of this work is the lack of an evaluation of the 
upscaling effectiveness. The Ermida et al. (2014) model has been widely 
used and is the same as that used at the Evora site. However, as with 
emissivity we lack an objective ‘truth’ against which to test the perfor-
mance of the model in upscaling our component temperature observa-
tions to the satellite scale. There are two possible approaches that could 
be applied in the future to rectify this. Firstly, the use of intermediate 
scale sensors to provide check points against which to compare the 
scaling effort and secondly through a further modelling step. In the first 
instance this could take the form of two intermediate scale datasets from 
a drone mounted sensor (e.g., Desai et al., 2021) and then the 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Sta-
tion (ECOSTRESS) sensor (Hulley et al., 2021). In the second case, the 
approach of Li et al. (2019) would provide a powerful tool for the 
evaluation of both upscaling effectiveness and the general representa-
tively of our component temperature measuring effort. However, further 
sensor installations would be required, and the aforementioned emis-
sivity evaluation field campaign conducted in order for this to work. 

The upscaling does also not take into account discrepancies in cloud 
cover between the different ground stations and the satellite scale. It is 
possible that small clouds generate local drops in temperature of 
different magnitudes at different masts that are not representative of the 
satellite scale, and in some cases so small as to not even be detected by 
the cloud-detection algorithm within the LWIR product. A first step to-
wards understanding these disparities would be to add cloud monitoring 
cameras to all masts. 

Finally, whilst we do capture some of the impact of the different 
grazing patterns across the SEVIRI pixel through our placement of masts 
in locations that capture the primary three grazing levels, we assume 
that all three are present in equal amounts. This is quite a broad 
assumption given the mixture of both managed and wild animal grazing 
that occurs across the whole ranch. In order to resolve this, we would 
need to create a detailed and dynamic grazing map of the SEVIRI pixel. 
This is possible through a combination of field surveys, drone surveys 
and automated classification tools. Such a survey would also allow the 
creation of a higher resolution landcover map than is currently avail-
able, which would also greatly enhance the upscaling effort. 

6. Conclusions 

In this paper we have described a new satellite LST product valida-
tion facility located at ILRI’s Kapiti Research Station (Kenya). The sta-
tion is the first of its kind in East Africa and it possesses sufficient 
infrared radiometers to be confident of capturing surface LST hetero-
geneity in a savannah biome. The site also benefits from contextual 
environmental sensors in the form of vegetation monitoring cameras 
and an eddy-covariance-meteorology station to aid in the identification 
of sources of error. To our knowledge, this is the first time this has been 
achieved for an African savannah in the context of LST validation. The 
evaluation of satellite LST products made with data from this new sta-
tion represents a step-forward in terms of LST product validation for East 
Africa and for surface temperatures strongly influenced by sparse sea-
sonal vegetation canopies. 

We use the ground data from Kapiti site to evaluate the new all- 
weather MLST-AS product. The key findings of this validation effort are:  

• The new MLST-AS, an all-weather LST product for the full disk, has 
an overall accuracy of 2.02 K.  

• MLST-AS suffers from a previously unidentified night-time cold bias 
when surface water from dew formation or rainfall is present. 

In detail, the LSA-SAF all-weather product (MLST-AS) has a precision 
of 1.38 K, a RMSE of 3.64 K and a slope of 1.0. The LWIR derived LST of 
the SEVIRI sensor onboard MSG has accuracy of 1.16 K, RMSE of 3.16 K 
and a precision of 0.8 K with a slope of 1.0. The performance of the 
energy balance model component of MLST-AS is found to be not as good, 
with an accuracy of 3.02 K, an RMSE of 4.16 K, precision of 1.25 K and a 
slope of 1.01. The cold bias (typically 3–4 K) identified in night-time 
temperatures, occurs when surface water is present. This is probably 
because of difficulties posed to a model by the presence of a thin film of 
water that acts as an insulator between the air and land surface, but 
which is not easily detectable or modelled. There are also clear issues 
with the cloud-masking algorithm, with cloud contamination resulting 
in cold biases in the clear-sky product. 

The work done here does not answer the question of what is the most 
appropriate surface emissivity to assume in LST retrievals for the type of 
vegetation canopy-soil complex present at Kapiti. Nor were we able to 
tackle the impact of canopy density and senescence cycling on LST 
validation in terms of either observation angle or emissivity. These are 
the greatest weakness of the current LST validation approach as a whole 
and should be the focus of future work. In addition, better constraints 
need to be placed on the bare soil component when upscaling ground 
radiometer observations to the satellite scale. 
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