Expert workshop on re-evaluating the potential nitrogen recovery of different manure categories

Workshop summary

Table of Contents

Objectives of the workshop	2
Workshop topic blocks	2
Conclusions	5
The workshop as a starting point for a scientific review paper	6
List of keynote and short-input talks	6
Presentations of keynote and short-input talks	8

Workshop structure: via keynotes, short-inputs and group works we followed the different nitrogen forms along the manure cascade and after application.

A key information the farmer needs to know for fertiliser planning is, how much of the total nitrogen (N) excreted and transformed into organic fertilizers can potentially be taken up by the crops. This requires bundling the available scientific knowledge on animal nutrition, the potential N losses along the manure cascade, i.e. from excretion to and including application, and the potential long-term N recovery after field application. During the expert workshop Re-evaluating the potential nitrogen recovery of different manure categories, held on 4 – 6 May 2022 at Agroscope in Switzerland, we identified ranges of reactive N losses reduction potentials along the manure cascade, which can be achieved through the implementation of specific agricultural practices. Subsequently, we discussed possible strategies to assess the potential N recovery after application of manure in the field (Fig. 1). Thanks to the different perspectives, based on country and specialisation, we were able to collect a broad spectrum of knowledge. Additional to this workshop summary, an in-depth review on the potential of N recovery of selected manure categories in livestock systems will be prepared in a follow up.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER **Agroscope**

Authors Carole A. Epper Frank Liebisch

Jochen Mayer

Objectives of the workshop

The main objective of the workshop was to re-evaluate the N recovery concepts and assessment strategies along the manure cascade from animal excretion to crop N recovery.

Four main thematic blocks were discussed:

- 1. <u>Defining the manure quality according to livestock and manure management choices along the manure cascade</u>: Drivers and levers to reduce ammonia (NH₃) and nitrous oxide (N₂O) emissions and nitrate (NO₃.) leaching.
- 2. <u>Manure treatment strategies</u>: potentials to reduce NH₃ and N₂O emissions and NO₃- leaching and effects on manure characteristics and scaling potentials.
- 3. <u>Assessing the potential manure N recovery after application</u>: current knowledge and challenges of the N dynamic assessment in the soil.
- 4. <u>Regulatory fertilisation measures in selected countries</u>: Obstacles and opportunities of fertilisation laws adaptations on manure management strategies.

The current knowledge was retrieved from nine keynote (KN) and 12 short-input (SI) talks (List at page 6) and complemented with plenary and additional notes. The first three topics were associated with a particular location along the manure cascade.

Workshop topic blocks

Animal nutrition

While the specific subject of animal nutrition was excluded from the workshop program, it entails a very important information for the assessment of the overall system efficiency. It was mentioned as highly important by several participants and was introduced in the short-inputs on animal housing and pasture. A balanced energy-protein feed ration markedly decreases the potential N emissions (SI1_A, slides 13-14: Schrade), as less N, with a lower ammonium: total N (Ntot) ratio is included in the system from the start. Achieving this is particularly complicated within part time grazing systems (example on feeding with grazing in SI1_B, slide 9-14: Ammann).

Animal housing

Animal housing, slurry/manure storage and slurry application are key contributors to ammonia (NH3) emissions at the farm level (KN1_1: Kupper). The presentation in the workshop focused on mitigation measures investigated in the experimental dairy housing for emission measurements (SI1_A: Schrade). Further measures and other animal categories (pigs, poultry or small ruminants) were not mentioned. Preliminary results from the experimental dairy housing for emissions by 23-37% compared to solid floors with 3% gradient and urine-collecting gutter cleaning reduces the NH₃ emissions by 23-37% compared to solid floors without slope (SI1_A, slides 5-6: Schrade). Furthermore, first results of feeding stalls (i.e. raised standing surface with partitions) were presented and showed 8-16% NH₃ reduction compared to a housing system without feeding stalls (SI1_A, slides 7-8: Schrade). However, animal housing facilities last for several decades, which means that adaptations at the housing level are less rapidly implemented.

Manure storage

Livestock category, diet, livestock holding system and dilution are important factors influencing manure quality (SI2_B, slide 3: Williams) and subsequently the potential for gaseous losses from manure in form of NH₃ and/or N2O. While the effects of manure quality changes on NH₃ storage emissions can be predicted fairly well, potential changes in N₂O volatilisation and total denitrification to di- N (N₂) are more difficult to quantify, because in this case there are several processes involved (KN2_1, slide 11, Velthof). Measures to reduce N losses at the storage level can roughly be divided in construction measures and manure treatment strategies. Through both, building measures and treatment the manure properties are changed, which can potentially change the N dynamics during and after application, causing pollution shifts (e.g. decreased NH₃ emissions during storage, and then increased NH₃ emissions

during application when using a broadcast slurry spreader). During the workshop, the presenters focused on the following measures at the storage level: slurry tank coverage, crust formation (SI2_A, slides 3 - 7: Kupper), anaerobic digestion (SI2_A, slide 8: Kupper), solid-liquid separation (SI2_A, slide 8: Kupper; SI2_B, slide 7: Williams), and slurry acidification prior or during field application (see section application; SI2_A, slide 8: Kupper, SI2_B, slide 9: Williams; SI2_C, slide 11: Krol, WS2_Notes_Plenum, slide 11: Krol).

Impermeable structural covers can reduce the NH₃-Emissions by approximatively 80%, impermeable synthetic floating covers by approximatively 48% and natural crust by approx. 43% (SI2_A, slides 4 - 5: Kupper). In contrast, N₂O emissions tend to increase with structural changes. However, particularly for N₂O, robust experimental data are somewhat sparse, particularly depending on slurry type (pig vs. cattle) and construction measure (SI2_A, slide 4: Kupper). Therefore, the results must be treated with caution and need further evaluation.

Based on the available experimental data, anaerobic digestion, solid-liquid separation and dilution have the opposite effect than construction measures, i.e. tendency to increase the potential NH₃ emissions and decrease N₂O emissions (SI2_A, slide 8: Kupper), which is caused by the changes in slurry quality. The solid-liquid separation enables a more targeted and precise application of different plant nutrients (SI2_B, slide 7: Williams). The liquid fraction has a similar fertiliser N recovery as the original slurry, while the solid fraction can be used as soil conditioner (organic fraction) with a similar N effect as solid manures (KN2_2: Möller). Still, reduction of N losses, from the remaining N in the solid fraction is a major challenge. The fertiliser N recovery is significantly higher in a crop with a long crop cycle (maize) than in spring wheat with a short growth cycle. Transportation volumes and weight can be reduced and through the utilisation as substrate for digestion in biogas plants energy can be obtained (KN2_1, slide 5: Velthof). Even though N₂ itself is harmless, considerable N₂ losses may be produced from solid manure or farmyard manure, but are difficult to quantify, because they cannot be measured directly.

Manure application

The dilemma of pollution shifts is also evident at the application stage. Numerous factors influence NH₃ emissions during field application, and include manure and soil properties, meteorological conditions, method and rate of application as well as crop structure (SI2_C, slide 2: Krol). Initial direct NH₃ emissions can be markedly reduced through the utilisation of low-emission application techniques (e.g. trailing hose, injection; SI2 C, slide 5: Krol), even though the NH₃ emissions differences with the splash-plate seem to be reduced over time (SI2 C, slide 6: Krol). A reduction of the NH₃ emissions during application simultaneously leads to reduced indirect N₂O emissions, as less N derived from NH₃ is translocated and deposited on land (SI2_D, slide 8: Richards). However, through improved manure management and treatment at the storage level, highly concentrated slurry applications through injection may cause a hotspot for increased N₂O emissions (KN2_1, slide 19, Velthof). The N₂O emissions hotspot is by trend lower compared to the reduced indirect N₂O emissions, but may lead to increased NO₃ leaching even though detailed evidence was not identified during the workshop. In order to counteract the N₂O emissions from slurry application in the field, soil liming represents a possible soil management opportunity (SI2 D, slide 6: Richards), which however leads to potentially increased NH₃ emissions (SI2 C, slide 11: Krol). Another, somewhat disputed measure to decrease N₂O emissions is through addition of nitrification inhibitors. This addition may simultaneously increase NH₃ emissions and needs accurate handling in practice (SI2_D, slide 5: Richards). Moreover, its long-term effects on soil biology are still unclear.

Slurry acidification is a known slurry treatment procedure, which can reduce the risk of NH₃ losses by over 70% (SI2_B, slide 9: Williams; SI2_C, slide 11: Krol). Slurry acidification requires specific knowledge on concentrated acid handling, and has to be maintained by specialists (WS2_Notes_plenum, slide 5). Acidification can be applied in the midterm storage of the barn or the seasonal storage capacities. However, due to high buffer capacities of the manure that requires much larger acid quantities than acidification prior to application.

On arable land the total potential N emissions reduction is mostly based on a meticulous fertilisation plan, including low-emission application techniques, split fertilisation (where possible) and a crop rotation including cover crops. Fertilisation planning should integrate local conditions such as yield expectations, climate, growing patterns of crops and their N response and particularly the release of N from plant residues, soil and different fertiliser types (SI1_D_Knigge-Sievers, KN1_2_Frick). Especially on sandy soils, NO₃- leaching, as well as N₂O emissions, are clearly linked to fertilisation exceeding the actual plant uptake. On clay-rich soils these effects can be masked by

immobilisation, but nevertheless, contribute strongly to leaching by subsequent release, if the inputs repeatedly exceed the crop requirements.

Pasture and permanent grassland

The small surface exposure, as well as the fast urine penetration, which reduces it's contact with air before contact with the urease enzyme and urea hydrolysis, lead to a reduction of NH₃ emissions during grazing (SI1_B, slide 8: Ammann). At the same time, the heterogeneous and preferential spatial distribution leads to low N recovery potentials of the excreta (SI1_B, slide 8: Ammann), because the crops cannot take up the high amounts of N. Between regions (country) and farms we find diverging pasture management and fertilisation strategies (notes from final plenary discussion), which is reflected in the broad ranges of NH₃ emission amounts in literature (between 2.7 – 23% of excreted total ammoniacal N; SI1_B, slide 8: Ammann). This also means that the risk of N₂O emissions and NO₃-leaching under urine patches is not necessarily the same for each region and differences also exist among farms (notes from final plenary discussion). A particular knowledge gap in pasture systems remains in the N₂ losses. Available results can therefore only partially be scaled or applied to other pasture management systems.

Permanent grasslands can be managed at different intensities, and through fertilisation after each forage cut, crop nutrient requirements and availability can be better synchronized. Through the establishment of multispecies swards, including grass, clover and herbs, a deep rooting system can be developed and consequently the NO₃₋ leaching potential reduced. This can potentially also lead to an overall decrease of N₂O emissions (SI2_D, slide 4: Richards).

Long-term manure nitrogen recovery

In most cases, manure is applied repeatedly, year by year, on the field. A series of factors influence the potential N losses during the year of application as well as the soil biological activity, and therefore how much of the N applied can potentially be recovered during the year of application, and thereafter. The long-term N recovery is usually estimated by long term field experiments or through scientific models. Essential model inputs include manure properties (dry matter, total N content, C:N-ratio, type of C molecules), soil characteristics (type and particularly clay content, moisture, pH, SOM content, C:N-ratio), climate (temperature fluctuations, rainfall, evapotranspiration), soil management practice (tillage, manure application method, incorporation method, mechanical weed control, time of application, fertilising history), as well as crop type (annual or permanent as well as legumes or non-legumes) (compiled from different slides of KN3 2 Sørensen, KN3 1 Epper, SI3 A: Thuriès, SI3 B: Zavattaro, SI3 C: Bhogal, SI3 D: Cavalli). This extensive list of parameters highlights the difficulty of uniquely defining the potential N recovery. Indeed, in literature we find tailored definitions, based on the study aim and the available information. In this case, the potential N recovery is defined as the sum of readily plant available N and N mineralized from the organic N fraction, assuming a steady state after repeated, regular application and spreading according to best agricultural practice, over a period of time. In other instances it is defined as a mineral fertiliser equivalent, i.e. the sum of N taken up by the plant from the applied organic fertiliser compared to the sum of N taken up by the plant from applied inorganic fertiliser.

The MANNER-NPK tool, for instance, uses a series of influential manure characteristics (nutrients and dry matter content), management practices (application and incorporation method, including timing), soil characteristics (volumetric moisture content) and climate data (rainfall) to estimate the crop available nutrient supply for the year of application and the following year (SI3_C, slides 9 – 12: Bhogal). This tool represents an excellent example of how scientific knowledge can be brought into practice. It focusses on the application year and the following year, which seem to correspond to the highest N mineralisation period (SI3_C, slide 7: Bhogal), while it might still neglect part of the overall N recovery. The evaluation of long-term experiments and the calculation of specific indicators highlighted that particular climatic and soil conditions promote N mineralisation of the applied organic fertiliser, and play an important role in yield and N uptake (SI3_B: Zavattaro; KN_3_2: Sørensen). Therefore, by combining short- and long-term N recovery potentials, the overall N recovery can be estimated.

Laboratory and incubation data can be used to calculate manure characteristics indicators and typologies, to better estimate the N dynamics in the soil (e.g. potential N mineralisation rate based on the Carbon speciation abundance; SI3_A, slide 4: Thuriès). The utilisation of manure subgroups to calibrate N dynamic models is, however, not always applicable. Manures of the same group can differ in characterisation (SI3_A, slides 10 - 11: Thuriès), which is influenced amongst others by different feeding and manure management strategies. Therefore, laboratory analysis

and incubation experiments can give useful insights on the initial manure N dynamics after application, but should ideally be used individually for model calibration (SI3_A, slide 13: Thuriès). Additionally, because of the reactive nature of N, it remains difficult to precisely assess the N contents in manures under farm conditions (e.g. sensitivity to gaseous losses; SI3_A, slide 21: Thuriès).

Implementation in practice and at the policy level

Farmers need robust estimates of how much of the N applied in the manure is potentially available for crops to ensure productivity. Legal enforcement needs robust evidence in combination with controllable information to maintain or regain environmental quality or services. Decision support tools are often based on scientific models or real farm data and play an important role in mediating the complex knowledge between farmers and legislation. Making local and timely information available for fertiliser planning, decision making and prognosis are key elements to increase acceptance and implementation in practice and to support environmental monitoring as well as legal enforcement reports (SI3_D_Cavalli, and discussion). However, whatever tools are used, they should be accompanied by measures of knowledge transfer and by extension services helping the farmers to access the latest information and adopt new farm management measures and methods. Additionally, methods of precision farming using sensors or remote sensing may be implemented in such tools and further increase their reliability with respect to local adaptation of crop production and fertilisation efficiency (SI3 D Cavalli and discussion/notes).

In the workshop, three examples of policy frameworks were presented including their basis, main problems and advantages, as well as possible future development of the legal enforcement. Keynote 4_1 "The current fertilizer regulatory system in Switzerland: strengths, weaknesses and future adaptations" highlighted that current numbers used for nutrient balancing and the paper-based accounting system are insufficient to fulfil the current demand for legal nutrient enforcement (KN4_1: Hunkeler). The vision of a national digital farm-based accounting system for nutrients was presented in "The Regulatory framework in Denmark, - Successes & challenges of the Danish fertilization reports" (KN4_2: Christel). The Danish nutrient accounting system is based on the relative utilization of manure N compared to using mineral N fertilisers (low ammonia emission N fertiliser as reference) and having norms for mineral N fertiliser application for each crop type. Decades of feedback driven adaptation of the regulatory system lead to the main drivers being efficient for nutrient surplus and loss reduction on national scale. Finally, the German contribution "Dealing with NO₃- vulnerable zones: regulatory tools to complement the general fertilizer decree" showed the actual regulation in the Nitrate vulnerable zones, their development and integration in the European nitrate directive (KN4_3: Hofmeier). From the talks and the plenum discussion important parameters that should be part of a successful regulatory framework reducing N and phosphorus surplus and losses were derived as follows:

- obligatory and digital field scale fertilizer plan and accounting (eventually accompanied by a farm nutrient balance),
- up to date and strict fertilisation standards (reflecting best practice to foster innovation),
- restrictions and bans during certain periods of time or conditions of land (winter, frozen or saturated soil etc.),
- obligatory use of catch crops and buffer strips,
- regulations for infrastructure (sufficient storage volume) and
- regulations for machinery (e.g. no broad spread tech for slurry).

These measures should be accompanied by a clear and consistent communication integrating all stakeholders from farmers, farm advisory and extension services, water suppliers and managers to federal decision makers.

Conclusions

The workshop highlighted possible ranges of action based on different measures to reduce the N losses along the manure cascade. It also emphasised trade-offs between different N forms and their loss potentials, which have to be kept at the back of one's mind when implementing a new reduction measure. Therefore, when assessing the potential N recovery of manure, there is no 'one value fits all'. The aim should rather be to give a set of tools, which farmers can implement and the legislation should promote, in order to reduce the N losses to the environment. Additionally, the country specific regulatory frameworks underlined different approaches in accounting for N in fertilisers, and

serve as inspiration for further development of the Swiss regulatory framework and to foster future exchange between farmers, extension, regulatory authorities and research.

The workshop as a starting point for a scientific review paper

National regulations and reduction measures are ultimately implemented at farm level. The final workshop synthesis session highlighted differences among countries regarding the regulations along the feed, manure to crop cascade. Participants integrated their knowledge on the potential to improve N recovery along the manure cascade for different animal and manure categories. At each level of the manure cascade, we can define a 'solution space', which describes the potential to improve the N recovery at the respective level.

For the review, we thus aim to first summarise and visualise the different 'solution spaces' along the manure cascade from animal nutrition to long-term recovery based on results available from literature, as well as for already implemented values in different countries at the legislation level. This way we want to make a dual comparison, among regions / countries and their actual potential to improve N recovery. Another important output of the review is aimed to be the comparison and critical discussion of well-established and new techniques to reduce N losses, and particularly on the influence on the long-term N recovery of the new methods, which will be related to the amount of reduction of N losses in the long term.

In order to assess the overall N recovery of organic fertilisers, and therefore to be able to advice farmers, we follow a system approach, where animal nutrition, housing and manure management are optimised and integrated with the scientific findings on long-term N recovery after manure application. When combining the different 'solution spaces', we obtain a farm-level apparent N recovery, which varies among farms implementation of 'bad' to 'best' agricultural practice. This final result will help us discussing the overall action potential at the farm level to reduce N losses and simultaneously increase the overall farm N use efficiency.

In the review, we will also comment on the added soil fertility value that can be achieved by the regular application of organic fertilisers, as well as highlight the limitations of manure N cycling assessment (e.g. total denitrification, inclusion of additional parameters). Finally, we will contextualise the results at the legislation (What is achievable?) and farm implementation level (e.g. consideration of site specific characteristics, fertilisation history, increase acceptance and implementation in practice).

Keynote / short-input abbreviation	Talk title (link to the presentation)	Presenter	Affiliation
KN1_1	Ammonia and nitrous oxide emissions along the manure cascade	T. Kupper	Department of Agronomy, School of Agricultural, Forest and Food Sciences (HAFL), Switzerland
KN1_2	Nitrate leaching after continuous manure application	H. Frick	Agroscope and FiBL, Switzerland
KN2_1	Effects of manure treatment on ammonia and nitrous oxide emissions	G. Velthof	Sustainable Soil Research, Wageningen University, The Netherlands
KN2_2	Potentials of manure treatment technologies on nitrogen availability and plant uptake	K. Möller	Agricultural Technology Centre, Augustenberg / Fertilization and soil matter dynamics, University of Hohenheim, Germany
KN3_1	Nitrogen recovery after manure application: concepts, challenges and modelling approach	C. Epper	Agroscope, Switzerland
KN3_2	Long-term manure N dynamics in the soil: long-term field trials as information base	P. Sørensen	Department of Agroecology - Soil fertility, Aarhus University (AU), Denmark

List of keynote and short-input talks

6

KN4_1	The current fertilizer regulatory system in Switzerland: strengths, weaknesses and future adaptations	J. Hunkeler	Department of Direct Payment Programmes, Federal Office for Agriculture, Switzerland
KN4_2	Regulatory framework in Denmark: Successes and challenges of the Danish fertilization reports	W. Christel	Ministry of Food, Agriculture and Fisheries of Denmark, Denmark
KN4_3	Dealing with nitrate vulnerable zones: regulatory tools to complement the general fertilizer decree	M. Hofmeier	German Environmental Agency, Germany
SI1_A	Ammonia emissions from naturally ventilated dairy housings and mitigation measures	S. Schrade	Agroscope, Switzerland
SI1_B	Ammonia emissions on pasture	C. Ammann	Agroscope, Switzerland
SI1_C	Quantity and drivers of nitrous oxide emissions during storage (or application)	D. Bretscher	Agroscope, Switzerland
SI1_D	Strategies to minimise nitrate leaching in vulnerable zones: N-Fertilisation and Intercropping:Effects on Nitrat Leaching, Results of field trials in Lower –Saxony	A. Knigge- Sievers	Chamber of Agriculture Lower Saxony, Germany
SI2_A	Strategies and technologies to reduce volatilisation during manure storage	T. Kupper	Department of Agronomy, School of Agricultural, Forest and Food Sciences (HAFL), Switzerland
SI2_B	How do we maximise nutrient value of manures	J. Williams	ADAS Helsby, United Kingdom
SI2_C	Strategies and technologies to reduce volatilisation during manure application	D. Krol	Department of Crops, Environment & Land Use, Teagasc, Ireland
SI2_D	Technologies to reduce ammonia and nitrous oxide emissions on pasture and grassland	K. Richards	Department of Crops, Environment & Land Use, Teagasc, Ireland
SI3_A	Estimation of manure N recovery based on measurable & affordable characteristics for model parameterization: field and lab data	L. Thuriès	Departement Persyst, The French agricultural research and international cooperation organization(cirad), France
SI3_B	Influence of external factors on manure N recovery	L. Zavattaro	Department of Veterinary sciences, University of Turin, Italy
SI3_C	Predicting manure N availability	A. Bhogal	ADAS Helsby, United Kingdom
SI3_D	Implementation of manure N use efficiency for farmers	D. Cavalli	Ministry of Agricultural, Food and Forestry Policies / Department of Agricultural and Environmental Sciences, University of Milan, Italy

Imprint

Publisher	Agroscope
	Reckenholzstrasse 191
	8046 Zürich
	www.agroscope.ch
Information	Frank.liebisch@agroscope.admin.ch
Photos	Carole Epper
Copyright	© Agroscope 2023
ISSN	2296-729X
DOI	https://doi.org/10.34776/as157e

Disclaimer

Agroscope disclaims all liability in connection with the implementation of the information contained herein. Current Swiss jurisprudence is applicable.

Expert Workshop on Nitrogen recovery in manure 4 - 6 May 2022

Ammonia and nitrous oxide emissions along the manure cascade

Thomas Kupper

Hochschule f
ür Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Overview

- Introduction manure cascade/mass flow model
- Use and outcome of mass flow models exemplified by the Agrammon model
- Principles and bases of mass flow models: critical evaluation
- Emission mitigation / achievable emission reduction at individual farms
- Conclusions
- Focus on ammonia

Manure cascade: Individual farm level or region/country level

Introduction

- Ceilings on the annual NH₃ emissions included in the Gothenburg Protocol United Nations Convention on Long-Range Transboundary Air Pollution
- Member states are obliged to regularly report emissions and achieve emission goals

Introduction

It is impractical to measure emissions from all the sources that, together, comprise an emission inventory.

→Thus, model calculations are applied by combining information on human activity (called activity data, AD) with coefficients that quantify the emissions per unit activity (denoted emission factors, EF).

Emissions = $AD \times EF$

→Mass flow model

Emission calculations

- State of the art for emission reporting: Mass flow models using a tier 1, 2 or 3 level approach
- Tier 1 methods apply a simple linear relationship between activity data and emission factors
- Tier 2 methods use the same or similar activity data to Tier 1 methods, but apply country-specific emission factors
- Tier 3 methods go beyond tier 2; these may include using facility level data and/or sophisticated models

EEA. 2019. EMEP/EEA air pollutant emission inventory guidebook 2019. Technical guidance to prepare national emission inventories. Luxembourg: European Environment Agency. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 2022/04/25)

Tier 3 model to calculate ammonia emissions Agrammon (Switzerland)

Principles of the Agrammon model

- Excretion of livestock animals, emission factors, correcting factors (in total approx. 200 parameters):
 - Based on data obtained from experiments under farmscale conditions, farm-scale measurements in Switzerland wherever possible.
 - If not available, such data from other countries are used.
 - Where appropriate they are matched with UNECE (United Nations Economic Commission for Europe)* recommended values.
 - Data from other countries are, where necessary, adapted to suit conditions in Switzerland.
 - Where specific information was not available from the literature, expert judgement is used.

*UNECE. 2014. Guidance document for preventing and abating ammonia emissions from agricultural sources. Paper ECE/EB.AIR/120, February 7, 2014. Geneva, Switzerland: United Nations Economic Commission for Europe (UNECE).

Bases of the Agrammon model

Access to the Agrammon model

The structure and usage of the models are similar. However, the *Regional Model and the Single Farm Model with Cantonal Adaptions* include additional functionalities compared to the *Single Farm Model*. Please consult the respective manuals.

https://agrammon.ch/en/agrammon-model/

Agrammon model output for an individual farm

Agramm	Input Parameter	Click to edit	Unit	Help	Comment
E Livesto	Animal category	Dairy cows	-	8	+
	Number of animals	30	2	0	+
	Number of available animal places	30		8	+
Stall Milchku	N excretion for dairy cows		kg N/year	E	+
B O OtherCattle	TAN fraction of N excretion	Standard		1	+
	Milk yield per dairy cow		kg/year	8	+
Stall Aufzuchtrinder 1- bis	Proportion of animals receiving hay in summer		%	Ð	+
Stall Aufzuchtrinder über	Proportion of animals receiving maize silage in summer		%	B	+
Stall Aufzuchtrinder unter	Proportion of animals receiving maize pellets in summer		96	8	+
 Stall Autzuchtninder unter 	Proportion of animals receiving maize silage in winter		%	8	+
O Pig	Proportion of animals receiving grass slage in winter		%	E	+
O FatteningPigs	Proportion of animals receiving maize pellets in winter		%	63	+
ASSOCIATION AND A MARKA	Proportion of animals receiving potatoes in winter		*	8	+
O Poultry	Proportion of animals receiving beets in winter		%		*
O Equides	Amount of concentrates per animal and per day in summer		kg/day	B	+
O SmallRumina	Amount of concentrates per animal and per day in winter	A STATE OF A STAT	kg/day	8	+
	Housing system	loose housing slurry		8	+
O RoughageConsumi	Mitigation options for loose housing systems	none	-	8	
Storage	Additional emission mitigation measure for the housing (see column Help)		%	B	
SolidManu	Duration of access to exercise yard over the year	available; roughage is not supplied in the exercise yard	days/year	8	
1	Exercise yard	solid floor		8	
🗟 🔍 Slur	Type of exercise yard Additional emission mitigation measure for the exercise yard		-	8	
Güllelag	Grazing days per year		days/year	8	
A sulling to	Grazing hours per day		hours/day	B	1
Applicati	Grazing hours per day	0,3	nours/oay		
Slur.	1 of 25 rows				
SolidManu	Result				
PlantProduction	summary				
MineralFertilis	Module	Variable	Value	Unit	
RecyclingFertilis	Livestock				
		Grazing	- 44	kg N/year	
		Housing and Yard	400	kg N/year	
		Storage		kg N/year	
		Application		kg N/year	
		Total	1160	kg N/year	
	Plant production				
		Mineral fertiliser		kg N/year	
		Recycling fertilise		kg N/year	
		Total	8	kg N/year	
	Total				
		Total	1168	kg N/year	

Agrammon model output: emissions of NH₃ (N₂O, NO, N₂), flows of N, TAN

Why focus on ammonia emissions?

 Emissions of reactive nitrogen species and flow of N₂ from agriculture in Switzerland (2005)

	Amount in kt N	Proportion of N	Proportion of Nr
Ammonia	47	41%	54%
Nitrate	34	30%	40%
Nitrous oxide	4	3%	5%
Nitrogen oxides	1	1%	2%
Diatomic nitrogen N ₂	28	25%	
Total nitrogen (N)	114		
Total reactive nitrogen (Nr)	86		

Emissions of ammonia:

approx. 25% of the total N in manure, recycling- and mineral fertilizer used in agriculture.

Agrammon model: output for Switzerland

Percentage contributions of the main livestock categories, crop production and non-agricultural emissions to the total ammonia emissions in Switzerland for 2020

Kupper, T., Häni, C., Bretscher, D., Zaucker, F. 2022. Ammoniakemissionen der schweizerischen Landwirtschaft 1990 bis 2020. Berner Fachhochschule. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften, Zollikofen.

Agrammon model: output for Switzerland

Percentage contributions of the main livestock categories to the livestock emissions, and (b) percentage contributions of the different emission stages to the livestock emissions in Switzerland for 2020

Agrammon model: output for Switzerland

Evolution of the ammonia emissions from livestock production between 1990 and 2020 from the emission stages grazing, housing/exercise yard, manure storage and manure spreading in kt NH_3 -N

Kupper, T., Häni, C., Bretscher, D., Zaucker, F. 2022. Ammoniakemissionen der schweizerischen Landwirtschaft 1990 bis 2020. Berner Fachhochschule. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften, Zollikofen.

Agrammon model: accuracy of the output

Evolution of ambient ammonia concentrations derived from measurement data from a monitoring network based on passive samplers and modeled emissions in Switzerland between 2000 and 2020

Kupper, T., Häni, C., Bretscher, D., Zaucker, F. 2022. Ammoniakemissionen der schweizerischen Landwirtschaft 1990 bis 2020. Berner Fachhochschule. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften, Zollikofen.

Agrammon model: accuracy of the output

Peaks of ambient ammonia concentrations are due to high annual temperatures which are not seen in emission data (addition of a correction in Agrammon would be possible but not intended for emission inventories)

Kupper, T., Häni, C., Bretscher, D., Zaucker, F. 2022. Ammoniakemissionen der schweizerischen Landwirtschaft 1990 bis 2020. Berner Fachhochschule. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften, Zollikofen.

Principles of the Agrammon model

- The application of Agrammon has been expanded in recent years beyond emission inventory reporting:
 - Building permits
 - Agri-environmental monitoring
 - Manure nitrogen recovery assessment for application at the legislation level
- Different requirements according to the scope:
 - Emission inventory reporting: consistency (e.g. preferably no changes of model parameters over time)
 - Other applications: continuous adaptation of model parameters according to the state of the art

Bases of the Agrammon model (examples)

	Emission	factors	at the	housing	level	for d	airy cows	
--	----------	---------	--------	---------	-------	-------	-----------	--

I				· · ·				
	Winter	Spring/fall	Summer	Average	over year			
		kg NH ₃ -N cow	% TAN					
Tied housing (literature)*								
n	2 5 8 15							
Average	2	3	5	<mark>4</mark>	<mark>7%</mark>			
Median	2	2	5	3	5%			
Min	2	2	2	2	2%			
Max	3	4	10	10	17%			
		Loose housing (iterature)*					
n	15	61	34	110				
Average	10	14	18	<mark>15</mark>	<mark>24%</mark>			
Median	7	12	12	12	19%			
Min	2	1	0.5	0.5	1%			
Max	34	56	75	75	121%			
	Data from	EVS Tänikon (data fr	om Agroscop	e and HAFL)			
1	14	15	16	15	24%			
2	10	12	18	13	21%			
3	8	13	17	13	21%			
4	7	12	-	-	-			
		Tied housing Agra	mmon model					
					<mark>6.7%</mark>			
		Loose housing Agra	ammon mode					
Modeled	value			<mark>13.5</mark>	<mark>23%</mark>			

*Mostly based on Poteko, J., Zähner, M., Schrade, S. 2019. Effects of housing system, floor type and temperature on ammonia and methane emissions from dairy farming: A meta-analysis. Biosyst. Eng. 182: 16-28.

Bases of the Agrammon model (examples)

 Emission factors for slurry storage tanks (untreated slurry stored uncovered)

Slurry	Study type	n	Avg	195	u95	Reference		Agrammon
type						values*	values**	
Kupper et al. (202								
						g NH ₃ m ⁻² l	h-1	
	Farm-scale	11	0.09	0.05	0.13	0.11***		
Cattle	Pilot-scale	34	0.08	0.07	0.09			
	Baseline	45	<mark>0.08</mark>	0.07	0.09	0.11-0.19	0.20	<mark>0.30</mark>
	Farm-scale	8	0.23	0.13	0.37	0.40	0.30	
Pig	Pilot-scale	15	0.24	0.15	0.38			
	Baseline	23	<mark>0.24</mark>	0.17	0.34	0.12-0.40	0.11-0.30	<mark>0.40</mark>

Kupper, T., Häni, C., Neftel, A., Kincaid, C., Bühler, M., Amon, B., VanderZaag, A.C. 2020. Ammonia and greenhouse gas emissions from slurry storage - a review. Agr. Ecosyst. Environ. 300(106963): 1-18.

^{*}VanderZaag A., Amon B., Bittman S., Kuczynski T., 2015. Ammonia abatement with manure storage and processing techniques, in: Reis, S., Howard, C., Sutton, M.A. (Eds.), Costs of ammonia abatement and the climate co-benefits. Springer Netherlands, pp. 75-112.

^{**}Sommer S.G., Zhang G.Q., Bannink A., Chadwick D., Misselbrook T., Harrison R., Hutchings N.J., Menzi H., Monteny G.J., Ni J.Q., Oenema O., Webb J., 2006. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores. Advances in Agronomy 89, 261-335.

^{***}for a crusted slurry surface

Bases of the Agrammon model (examples)

Emission factor (EF) implemented in Agrammon for slurry application based on the model of Menzi et al. (1998):

- Average temperature from March to November: 12°C (Data SMA Station Bern Liebefeld 1993-2002)
- TAN content slurry: 1.15 kg/m³ (cattle slurry, dilution 1:1)
- Relative humidity: 70%
- Application rate: 30 m³/ha

→Calculated EF: 50.6% TAN

Menzi, H., Katz, P.E., Fahrni, M., Neftel, A., Frick, R. 1998. A simple empirical model based on regression analysis to estimate ammonia emissions after manure application. Atmos. Environ. 32(3): 301-307.

Bases of the Agrammon model (examples)

Emission factor (EF) for slurry application:

- "Are ammonia emissions from field-applied slurry substantially overestimated in European emission inventories?" (Sintermann et al., 2012)
- ALFAM2 project:
 - Collecting emission data from field-applied slurry from many studies conducted over the last decades and organizing them in the ALFAM2 database (most complete database worldwide on this topic)
 - Building a semi-empirical dynamic model for predicting ammonia volatilization from field-applied slurry
 - ALFAM2 model: large data set of emission measurements using micrometeorological (i.e. non-intrusive) methods from cattle and pig slurry application (490 field plots in 6 countries from the ALFAM2 database)

Hafner, S.D., Pacholski, A., Bittman, S., Burchill, W., Bussink, W., Chantigny, M., Carozzi, M., Genermont, S., Häni, C., Hansen, M.N., Huijsmans, J., Hunt, D., Kupper, T., Lanigan, G., Loubet, B., Misselbrook, T., Meisinger, J.J., Neftel, A., Nyord, T., Pedersen, S.V., Rochette, P., Sintermann, J., Vermeulen, B., Vestergaard, A., Voylokov, P., Williams, J.R., Sommer, S.G. 2018. The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis. Agric. For. Meteorol. 258: 66-78.Hafner, S.D., Pacholski, A., Bittman, S., Carozzi, M., Chantigny, M., Genermont, S., Häni, C., Hansen, M.N., Huijsmans, J., Kupper, T., Misselbrook,

Hafner, S.D., Pacholski, A., Bittman, S., Carozzi, M., Chantigny, M., Genermont, S., Häni, C., Hansen, M.N., Huijsmans, J., Kupper, T., Misselbrook, T., Neftel, A., Nyord, T., Sommer, S.G. 2019. A flexible semi-empirical model for estimating ammonia volatilization from field-applied slurry. Atmos. Environ. 199: 474-484.

Sintermann, J., Neftel, A., Ammann, C., Häni, C., Hensen, A., Loubet, B., Flechard, C.R. 2012. Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories? Biogeosciences 9(11): 1611-1632.

Bases of the Agrammon model (examples)

Emission factor (EF) for slurry application based on the ALFAM2 model (Hafner et al., 2019):

 Emission estimate with the same parameters used on the previous slide

→Calculated EF: 23.5% TAN

Actual state of the art

Hafner, S.D., Pacholski, A., Bittman, S., Carozzi, M., Chantigny, M., Genermont, S., Häni, C., Hansen, M.N., Huijsmans, J., Kupper, T., Misselbrook, T., Neftel, A., Nyord, T., Sommer, S.G. 2019. A flexible semi-empirical model for estimating ammonia volatilization from fieldapplied slurry. Atmos. Environ. 199: 474-484.

How to cope with differing model parameters?

 Swiss ammonia emission inventory calculated with actual and revised EFs for slurry storage and application: the emissions trend remains almost unchanged

How to cope with differing model parameters?

 Swiss ammonia emission inventory: the emissions trend remains almost unchanged

→If negative impacts for natural ecosystems due to high N deposition an emission reduction is required whatever method for emission reporting is used

Relationship between basal area growth and N deposition for beech and Norway spruce

Braun, S., Schindler, C., Rihm, B. 2017. Growth trends of beech and Norway spruce in Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate. Sci. Total Environ. 599: 637-646.

Relationship between ectomycorrhizal (EMF) species richness on root tips and N deposition

de Witte, L.C., Rosenstock, N.P., van der Linde, S., Braun, S. 2017. Nitrogen deposition changes ectomycorrhizal communities in Swiss beech forests. Sci. Total Environ. 605: 1083-1096.

How to cope with differing model parameters?

If absolute numbers are relevant, e.g. for manure nitrogen recovery assessment, differing model parameters such as emission factors matter

Where to implement emission mitigation techniques?

- At emission stages with high emissions: housing/exercise yard; manure application
- At emission stages with high emissions high emission reductions can be achieved: e.g. slurry storage
- Tradeoffs with other issues, e.g. increase of greenhouse gas emissions, must be avoided

Achievable emission reductions for NH₃ based on readily applicable techniques

For higher emission reductions: more sophisticated techniques are required

Achieved modeled emission reduction for NH₃

Farm with 40 dairy cows plus heifers, loose housing, covered slurry storage, slurry application with trailing hose As Initial situation As Emission but further emission reduction 1 but mitigation less N-excretion techniques for due to optimized housing and feeding slurry application

	Initial situation Emission in kg N	Emission reduction 1	Emission reduction 2
Grazing	33	0%	-8%
Housing and Yard	689	-17%	-28%
Storage	494	0%	0%
Application	724	-23%	-34%
Total farm	1619	-18%	-27%
Excretion	3116	0%	-1 3%
Into pasture	402	0%	-8%
Into housing/exercise yard	2714	0%	-14%
Into storage	2025	6%	-9%
Into application	1960	6%	-9%
Input soil from application	1174	24%	6%
Input soil from grazing	350	0%	-8%
Input soil total	1524	1 9%	3%

How to link achieved (modeled) emission reductions to nitrogen recovery in manure?

Conclusions

- A mass flow model representing the manure cascade is a valuable tool to estimate emissions as a basis for
 - Reporting/monitoring of emissions
 - Implementation of measures to reduce emissions
 - Demonstrating the potential to mitigate emissions along the manure cascade
 - Optimize the use of N included in manure
- Challenges due to differing requirements of the various applications of the model
- Link between modeled emissions and nitrogen recovery in manure
- Model bases need to be improved and more detailed model parameters based on experimental data/in the model integrated sub-models
- Improvement of model bases require knowhow in emission measurement methods/modeling and funding of the appropriate activities

Nitrate leaching after manure application

Hanna Frick^{1,2,(*)}, Else Bünemann¹ Manure Workshop, Agroscope, 4th of May 2022 (*)<u>hanna.frick@agroscope.admin.ch</u>

¹Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), CH-Frick ²Water Protection and Substance Flows, Agroscope, CH-Zürich

Groundwater nitrate levels in EU

NITRATES DIRECTIVE EU-28 REPORTING PERIOD 2012-2015

EU28

GROUND WATER AVERAGE NITRATE CONCENTRATIONS Ground water >= 50 NO3 mg/l

20 400 Conness. Inser I DG INV, Nender Base reports an Nämbe Deutite Implementation offens Reference Spaties. TO 2008 Lander L Annual Base Area a surve: 1500 - Extend Its regress company methatistics feasibilities: C Excellengeaghter.

... and Switzerland

Nitrate leaching losses are a function of...

Drainage

- Precipitation (amount & distribution)
- Evapotranspiration (weather & crop)
- Water holding capacity of soil

Mineral N in soil

- Plant N uptake
- Mineralization of SOM (SOC content, tillage)
- Fertilization (amount, timing & type)

N losses upon and after manure application

Fate of cattle slurry N after application to soil – A case study from Switzerland

6

Aim: full balance of cattle slurry N during 3-year crop sequence under field conditions

Treatments: Control (**Con**), ¹⁵N mineral fertilizer (**Min**), ¹⁵N cattle slurry (**Slu**); same rate of **mineral N** (**Min 37**; **Slu 60** [kg Ntot ha⁻¹ application⁻¹])

Installation of SIAs in the field

Fate of N from fertilizer (Frick et al., 2022; Frick et al., under revision) (Frick et al., 2022; Frick et al., 202; Frick et al., 2022; Frick et al., 202;		
<pre>issing the second second</pre>	Fate of N from fertilizer	(Frick et al., 2022; Frick et al., under revision)
Ntot 150 (244) 148 kg 0.2 149 kg 0.2 100 ut 73 (55) Input 73 (55) Input 14.00 Input 15.00 Input 17.00 Input 10.2 Input	• 55	
Fertilizer N uptake by crop Min > Slu, although both applied at same rate of mineral N	Ntot	
<pre></pre>	<u> </u>	
Ntot 73 (55) Input 73 (55) Iminiput Iminiput Miniput Miniput Microbial immobilization Slu > Miniput	► 70	
$\begin{array}{c} \begin{array}{c} & & & & & & & \\ \hline M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & A & S & O & N & D & J & F & M & A & M & J & J \\ \hline M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & A & S & O & N & D & J & F & M & A & M & J & J \\ \hline M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & J \\ \hline M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & J \\ \hline M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & A & S & O & N & D & J & F & M & A & M & J & J & J & J & A & S & O & N & D & J & F & M & A & M & J & J & J & J & J & J & J & J & J$	Ntot	
<pre>crop 1</pre>	Min 🔝	
net mineralization rate plant uptake NO3 ⁻ leaching 15N in soil (measured values) NH3 volatilization Fertilizer N uptake by crop Min > Slu, although both applied at same rate of mineral N → NH3 emissions Slu > Min → Microbial immobilization Slu > Min	crop 1	[kg N ha ⁻¹]
 Fertilizer N uptake by crop Min > Slu, although both applied at same rate of mineral N → NH₃ emissions Slu > Min → Microbial immobilization Slu > Min 	M J J A S O N D J F M A M J J	A S O N D J F M A M J J
→ NH_3 emissions Slu > Min → Microbial immobilization Slu > Min	net mineralization rate plant uptake NO3 ⁻ leachin	g 15N in soil (measured values) NH ₃ volatilization
\rightarrow Microbial immobilization Slu > Min	Fertilizer N uptake by crop Min > Slu, although b	oth applied at same rate of mineral N
	\rightarrow NH ₃ emissions Slu > Min	
	\rightarrow Microbial immobilization Slu > Min	12

Residual N effect, but also **nitrate leaching**, Slu > Min

Most fertilizer N in the **non-microbial organic N pool** in spring after application

How much nitrate is leached from manure?

Soil N mineralization is also the main source for plant N uptake

14

Trade-off between soil fertility and nitrate leaching?

However, **SOM stocks** under cultivated land show **declining trend**

(Charles et al. 2018)

15

How does soil texture influence nitrate leaching?

How does soil texture influence nitrate leaching from manure?

90 10	L
90 20	d
5 60 Clay 30 0 12	
and	
10 Clay loam Silty clay 70	
20 Sandy loam Loam Silt loam 80	
10 Loamy Sandy Sand Sand	10
100 90 80 70 60 50 40 30 20 10	
Percent sand	

Loam: **3 %** of cattle slurry-N leached during 2.5 years (Frick et al., under revision)

Silt loam: 3-5 % of pig manure-N leached during 2 years Sandy loam: 8-15 % (Jayasundara et al. 2009)

Loamy sand: **13-21 %** of FYM-N leached during 3 years (strong influence of application timing!) (Thomsen 2005)

Silt [%]	Sand [%]
43	33
Silt [%]	Sand [%]
46	42
36	49
	[%] 43 Silt [%] 46

Clay	Silt	Sand
[%]	[%]	[%]
9	11	80

Soil texture influences

- → water drainage
- \rightarrow N cycling and retention

17

Soil texture influence N cycling and retention in soil on multiple levels – physical, biological, chemical

	C% (fresh)	N immobilization (% of fertil. dose)	
		Sand	Loess
Slurry	4.4	24	44
Slurry	2.0	16	34
Slurry	0.6	13	30
CAN	-	7	13

(Gutser & Dosch 1996)

Immobilization higher in fine textured soil than in coarse soil (Gutser & Dosch 1996)

Remineralization rate lowest in soil that contained most clay (Sørensen & Amato 2002)

→ N retention and accumulation highest in fine textured soil

What does that mean for nitrate leaching? Protection or time bomb?

How does land-use influence nitrate leaching from manure?

(permanent) grassland

Arable land

Effect of land-use on nitrate leaching from manure

Nitrate leaching is influenced by crop sequence

7 year lysimeter trial; **min vs. org-min vs. org** (Spiess et al. 2011)

No effect of fertilization on nitrate leaching

Strong effect of **crop**sequence (Stauffer & Spiess 2001)

SM=silage maize; WW=winter wheat; CC=cover crop; SB=sugar beet; PEA=pea; WB=winter barley; GC=grass-clover

Grass-clover termination is a «hot moment»

- High accumulation of SOM during grass-clover cultivation (high inputs + BNF)
- Mineralization «boost» upon/after termination of grass-clover

Maize after grass specifically risky (Børgesen et al. 2022)

Grass-clover termination causes **prolonged mineralization (>2 years)** (e.g. Helfrich et al. 2020)

Management **after** grass-clover termination important (e.g. Kayser et al. 2008)

→ Cover crops/perennials!

[kg nitrate-N ha⁻¹ a⁻¹]

-EACH

Composition and origin of manure – does it matter?

Yes and No!

Manure composition is relevant in the **short-term**; increased leaching risk for manure with **high NH**₄ **to total N ratio**; importance of

- > Application rate (e.g. Goulding et al. 2000)
- Timing (e.g. Webb et al. 2013)

Most manure N rapidly **incorporated into SOM by microbes** \rightarrow further mineralization is little affected by original composition.

BUT: mineralization of (undigested) **organic manure N** differs between animal categories (monogastric vs. ruminant)

How much N is lost from animal manure via nitrate leaching?

Clear quanitification is challenging:

- Most manure N is not leached directly, but incorporated in SOM from where it can get leached (or taken up by crops) over a long time
- Several (interlinked) factors influence the amount of nitrate leached
- In general: asynchrony between plant N uptake and mineral N release from soil/manure makes N prone to leaching

How much?

Nitrate leaching from mineral fertilizer continues over decades

¹⁵N tracer study on two lysimeters with arable crop rotation

(Sebilo et al. 2013) ²⁵

Understanding and predicting **mineralization of residual manure N** over years – decades is key

Assessing «only» long-term supply to plants, disregards **nitrate leaching!**

Reference list (1)

BAFU 2019. Zustand und Entwicklung Grundwasser Schweiz. Ergebnisse der Nationalen Grundwasserbeobachtung NAQUA, Stand 2016. Bern: Bundesamt für Umwelt.

BØRGESEN, C. D., PULLENS, J. W., ZHAO, J., BLICHER-MATHIESEN, G., SØRENSEN, P., & OLESEN, J. E. 2022. NLES5–An empirical model for estimating nitrate leaching from the root zone of agricultural land. European Journal of Agronomy, *134*, 126465.

CHADWICK, D., JOHN, F., PAIN, B., CHAMBERS, B. & WILLIAMS, J. 2000. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment. The Journal of Agricultural Science, 134, 159-168.

CHARLES, R., WENDLING, M. & BURGOS, S. 2018. Boden und Nahrungsmittelproduktion. Thematische Synthese TS1 des Nationalen Forschungsprogramms «Nachhaltige Nutzung der Ressource Boden» (nfp 68). Bern.

EDER, G., 2001. Stickstoff-, Phosphor- und Kaliumauswaschung bei Wirtschaftsdüngeranwendung im Grün- und Ackerland. 9. Gumpensteiner Lysimetertagung. BAL Gumpenstein, Irdning, pp. 61-66.

FRICK, H., OBERSON, A., CORMANN, M., WETTSTEIN, H. R., FROSSARD, E. & BÜNEMANN, E. 2022. Similar distribution of 15N labelled cattle slurry and mineral fertilizer in soil N after one year. Nutrient Cycling in Agroecosystems.

FRICK, H., OBERSON, A., FROSSARD, E. & BÜNEMANN, E. K. under revision. Leached nitrate under loamy soil originates mostly from soil organic N with minor contributions from recent fertilizer additions. Agriculture, Ecosystems & Environment.

GOULDING, K. 2000. Nitrate leaching from arable and horticultural land. Soil use and management, 16, 145-151.

GOULDING, K., POULTON, P., WEBSTER, C. & HOWE, M. 2000. Nitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weather. Soil use and management, 16, 244-250.

GUTSER, R. & DOSCH, P. 1996. Cattle-slurry—15N turnover in a long-term lysimeter trial. Fertilizers and Environment. Springer.

HELDSTAB, J., LEIPPERT, F., BIEDERMANN, R. & SCHWANK, O., 2013. Stickstoffflüsse in der Schweiz 2020. Stoffflussanalyse und Entwicklungen. Umwelt-Wissen Nr. 1309, Bundesamt für Umwelt BAFU, Bern. 107 S.

HELFRICH, M., NICOLAY, G., WELL, R., BUCHEN-TSCHISKALE, C., DECHOW, R., FUß, R., GENSIOR, A., PAULSEN, H. M., BERENDONK, C. & FLESSA, H. 2020. Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N2O emission. Agriculture, Ecosystems & Environment, 298, 106975.
Reference list (2)

JAYASUNDARA, S., WAGNER-RIDDLE, C., PARKIN, G., LAUZON, J. & FAN, M. Z. 2010. Transformations and losses of swine manure 15N as affected by application timing at two contrasting sites. Canadian Journal of Soil Science, 90, 55-73.

JENSEN, L., PEDERSEN, I., HANSEN, T. & NIELSEN, N. 2000. Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. European Journal of Agronomy, 12, 23-35.

KAYSER, M., SEIDEL, K., MÜLLER, J. & ISSELSTEIN, J. 2008. The effect of succeeding crop and level of N fertilization on N leaching after break-up of grassland. European Journal of Agronomy, 29, 200-207.

MACDONALD, A. J., POWLSON, D. S., POULTON, P. R. & JENKINSON, D. S. 1989. Unused fertiliser nitrogen in arable soils—its contribution to nitrate leaching. Journal of the Science of Food and Agriculture, 46, 407-419.

MURPHY, D., RECOUS, S., STOCKDALE, E. & FILLERY, I. 2003. GROSS NITROGEN FLUXES IN SOIL: THEORY, MEASUREMENT AND APPLICATION OF 15N POOL DILUTION. Advances in Agronomy, 79, 69.

SEBILO, M., MAYER, B., NICOLARDOT, B., PINAY, G. & MARIOTTI, A. 2013. Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences, 110, 18185-18189.

SØRENSEN, P. 2004. Immobilisation, remineralisation and residual effects in subsequent crops of dairy cattle slurry nitrogen compared to mineral fertiliser nitrogen. Plant and Soil, 267, 285-296.

SØRENSEN, P. & AMATO, M. 2002. Remineralisation and residual effects of N after application of pig slurry to soil. European Journal of Agronomy, 16, 81-95.

SPIESS, E., PRASUHN, V., STAUFFER, W. 2011. Einfluss organischer und mineralischer Düngung auf die Nährstoffauswaschung. Agrarforschung Schweiz

STAUFFER, W., SPIESS, E. 2001. Einfluss unterschiedlicher Fruchtfolgen auf die Nitratauswaschung. Agrarforschung Schweiz

THOMSEN, I. K. 2005. Crop N utilization and leaching losses as affected by time and method of application of farmyard manure. European Journal of Agronomy, 22(1), 1-9.

WEBB, J., SØRENSEN, P., VELTHOF, G., AMON, B., PINTO, M., RODHE, L., SALOMON, E., HUTCHINGS, N., BURCZYK, P. & REID, J. 2013. An assessment of the variation of manure nitrogen efficiency throughout Europe and an appraisal of means to increase manure-N efficiency. Advances in Agronomy, 119, 371-442.

YAN, M., PAN, G., LAVALLEE, J. M. & CONANT, R. T. 2020. Rethinking sources of nitrogen to cereal crops. Global Change Biology, 26, 191-199.

Effects of manure treatment on ammonia and nitrous oxide emissions

Gerard Velthof

Content of the presentation

- Manure treatment: why and how?
- Factors controlling NH₃ and N₂O emissions from manure treatment
 - Emissions during the treatment process
 - Changes in manure properties
 - Emissions during manure storage
 - Emissions from applied manure

Conclusions: challenges and potentials

Manure treatment: why and how?

Manure treatment in the manure cascade

Manure treatment: "A controlled biological, chemical or physical process that changes the properties of manures."

Source: RAMIRAN Glossary of terms on manure management (http://ramiran.uvlf.sk/doc11/RAMIRAN%20Glossary_2011.pdf)

Why is manure treated?

- Increase nutrient use efficiency (N, P, K)
- Use as soil improver (organic matter)
- Reduction of volume for transport/export
- Energy generation

UNIVERSITY & RESEARCH

- Reduction of emissions of NH₃, CH₄ and N₂O
- Production of RENURE (REcovered Nitrogen from manURE)
 - Products considered as mineral N fertilizer in the Nitrates Directive, e.g. mineral concentrates, ammonium sulphate and ammonium nitrate

Many techniques and products

Example: production of mineral concentrate

Factors controlling NH₃ and N₂O emissions from manure treatment

Emission during the treatment process

N losses during manure treatment

Low risk in closed systems, e.g. digestion, ultra-filtration, reverse osmosis

• N loss < 5%

Higher risk in open systems, e.g. composting, belt separation

• N losses composting >> 25%

No experimental data on magnitude of NH_3 and N_2O emissions during treatment (except for composting)?

Factors controlling NH₃ and N₂O emission from manure treatment

Changes in manure properties

Effects of manure composition on NH₃ and N₂O emissions

NH₃ emission: NH₄ (TAN), pH, dry matter \rightarrow effects on NH₃ can reasonably be predicted

 N_2O emission: NH_4 , NO_3 , pH, degradable organic matter, dry matter, contaminants

 \rightarrow effects on N₂O are difficult to predict:

- two biological processes involved: nitrification and denitrification
- ratio N_2O/N_2 also affected by these factors

Effect manure treatment on manure properties

Average contents of 65 samples from 9 treatment plants

Parameter	Untreated	Solid fraction	Mineral concentrate
Dry matter, g/kg	61	283	35
Organic matter, g/kg dm	654	753	296
Ratio TAN/Total N	0.59	0.22	0.86
рН	7.8	8.4	7.9
NO_2 -N + NO_3 -N, mg/kg	neglibible	negligible	negligible

Effect co-digestion on pH

Manure treatment dairy farm

Cattle slurry	Dry matter g/kg	Organic matter g/kg	NH4/total N	рН
Untreated	84	72	0.49	6.8
Hydrolysed	81	68	0.61	7.4
Digested	77	59	0.59	7.9
Sold fraction digestate	218	205	0.28	8.5
Liquid fraction digestate	51	33	0.72	7.8

Velthof (unpublished)

Factors controlling NH₃ and N₂O emissions from manure treatment

Emission from stored treated manure

Housing and storage of untreated manure

Manure treatment affects the storage time and emissions of untreated manure in the housing and storage

• emissions of untreated manure decrease when storage time decreases

N losses during storage

Nitrogen losses during storage (literature review)			
Manure type		N loss during	n
		storage, %	
Pig slurry	Untreated	23	8
	Solid fraction; centrifuge	32	8
	Liquid fraction; centrifuge	19	8

- Slurry systems: NH₃ emission >> N₂O emission
- N₂O emission: solid manure storage >> slurry storage
- Mitigation of NH₃ emission by covering storage

Mosquera et al. (2010)

Factors controlling NH₃ and N₂O emissions from manure

Emission of applied manure

NH₃ and N₂O emission under controlled conditions

WAGENINGEN

UNIVERSITY & RESEARCH

1 Total NH3 emission, mg N per m2 400

Ongoing experiment on silage maize

Velthof et al. (2020)

Preliminary results 2021 (Van 't Hull)

Fertilizer	N ₂ O emission
	factor, % of N
	applied
Mineral N fertilizer (CAN)	1.9
Cattle slurry; sod injection	0.6
Liquid fraction separated cattle slurry; sod injection	1.2
Solid fraction separated cattle slurry; incorporation	0.7
Mineral concentrate; sod injection	3.1
Mineral concentrate + nitriifcation inhibitor; sod injection	1.3
Liquid ammonium sulphate of acid trap; injected	3.6

Manure treatment and ammonia abatement techniques

Changes in ammonia emissions (%)

Meta-analysis of Hou et al. (2015)

WAGENINGEN

UNIVERSITY & RESEARCH

Use of mineral N fertilizers

- Losses through NH₃ and N₂O emissions by manure treatment affect the amount of plant-available N in the end product of treatment
- To obtain the same application of plant-available N, mineral N fertilizer application rate has to be adjusted

 \rightarrow emission of NH₃ and N₂O from mineral N fertilizer

23

Indirect nitrous oxide emissions

For a complete evaluation of N_2O emissions, changes in **indirect** N_2O emissions caused by NH_3 emissions and NO_3 leaching have to be considered as well

Conclusions

- Many treatment techniques and products are available
- Treatment can largely change the manure composition and the risk on NH₃ and N₂O emissions
- Treatment mostly results in two or more products -> N losses from all products have to be considered
- Direction of change in NH₃ emission by treatment can be predicted reasonably well
- Direction of change in N₂O emission by treatment is difficult to predict
- Manure treatment may cause pollution swapping between housing and field application, and between NH₃ and N₂O emission

25

Challenges and potentials

- A system approach is needed to quantify the potential effects of manure treatment
 - All untreated and treated manures
 - Housing storage field
 - $NH_3 N_2O$, but also N_2 and NO_x
 - GHG: N₂O and CH₄
- High potential to decrease N losses by a combination of manure treatment and emission mitigation techniques
 - NH₃: covered storage; low emission application
 - N₂O: N fertilization of the crop; nitrification inhibitor

Thank you

Potentials of manure treatment technologies on nitrogen availability and plant uptake

Kurt Möller University of Hohenheim, Stuttgart, Germany LTZ Augustenberg, Karlsruhe, Germany

Expert Workshop on Nitrogen recovery in manure, Reckenholz, 5th May 2022

Outline

- Introduction
- Overview treatment technologies
- Anaerobic digestion vs. composting
- Post treatment of liquid fertilizers/digestates on composition and fertilizer value
- Conclusions

Overview of methods of manure treatment

Biological approaches	Composting (solids)Anaerobic digestion (liquid and solids)
Physical methods	 Solid-liquid separation (liquids) Drying, pellet production (solids) Evaporation, membrane technologies (liquids)
Physico-chemical methods	•Ammoniac stripping
Chemical methods	 Struvite crystallization (liquid) Ca-Phosphate-precipitation (e.g. P-Roc) (liquid)
Thermal methods	 Incineration, pyrolysis, etc. (liquid and solids)

N transfer efficiencies of N rich feedstocks during manure treatment and in the soil, and total N transfer efficiency (rate = output/input) (Benke et al. 2017)

Relationship between applied N amounts and potato yields depending on the organic fertilizer type (Möller and Kolbe 2003)

Effect of different feedstocks on grain yield of winter wheat in field experiment (Häfner et al., in prep.)

Peas

Digestion of crop residues: Effects on the organic matter and nutrient flows (Stinner et al. 2008, Möller 2009)

Сгор	Stockless without AD	Stockless with AD
Total amount of N (kg ha ⁻¹)	128	126
Amounts of "mobile" N (kg N ha ⁻¹)	0	104
N supplied to non-legume crops (kg N ha ⁻¹)	150	180
N supplied to legumes (kg N ha ⁻¹)	83	10
C/N ratio of organic residues/manures	25.2	11.0
Total ammoniacal N (kg N ha-1)	0	43.2

Effect of anaerobic digestion of residues in a stockless organic crop rotation on relative crop yields (Stinner et al. 2008)

Crop	Stockless without AD	Stockless with AD
Clover grass	100	100
Potatoes	100	100
Winter wheat	100	117
Peas	100	100
Winter wheat	100	130
Spring wheat	100	117
Sum non legumes	100	116
Sum cereals	100	122

Treatment options for liquid feedstocks

Anaerobic digestion

- Anaerobic digestion
- Solid-liquid separation

More sophisticated approaches

- Separation combined with post treatment approaches, e.g.:
 - Drying and pellet production
 - Dewatering, ammonia stripping
 - Membrane technologies
 - Many others (struvite crystallization, etc.)

Digestate composition after treatment of the solid fraction (Petrova et al. 2017)

Treatment	Product	N _t % FM	<mark>،</mark> ہ % TM	nh₄-n % N₁	C/N ratio
no	Digestate untr.	0,59	6,41	47	5,4
Concretion	Liquid fraction	0,55	8,65	50	4,1
Separation	Solid fraction	0,67	2,52	25	17,1
Belt dryer	Solid fraction	1,69	2,56	7	16,2

11

Nutrient stoichiometry of harvested products and of the obtained fertilizer products (without corrections for differences in long term fertilizer efficiency)

Mineral fertilizer equivalents of treated digestate fertilizers (Petrova et al. 2017)

Treatment	Product	MF	MFE (%)		
		Silage maize Spring wi			
no	digestate	61	62		
Separation	liquid fraction	68	50		
Separation	solid	38	4		
Belt dryer	solid	-6	13		

Maximal N-share from organic amendments (%) as function of the N/P-ratio

¹⁵N-cross-labeling of digestates for the pot experiment (Häfner et al., in prep.)

15

N release of ¹⁵N labelled maize digestate at the beginning and after the 5th crop cycle in a pot experiment (Häfner et al., in preparation)

Long term NPK-fertilizer efficiency of organic amendments (Benke et al. 2017, Möller 2020)

• Phosphorus and potassium: 100 %: Schröder et al. 2011, Frossard et al. 2015, Schnug und Haneklaus, 2016

Amend- ment	Long term N fertilizer efficiency	References
composts	20 – 40 %	Amlinger et al., 2003; Diez and Krauss, 1997; Gutser and Claasen, 1994
Solid animal manure	50 – 70 %	Russels, 1937; Körschens, 1987; Asmus, 1995; Chang and Janzen, 1996; Albert and Grunert, 2013; Gutser and Claasen, 1994
Slurry, digestates	70 – 80 %	Gutser and Claasen, 1994; Schröder et al., 2005; Möller and Müller, 2012
Liquid separates	80 – 90 %	Gutser et al., 2005
N-Mineral- fertilizer	80 – 90 %	Körschens, 1987; Asmus, 1995; Gutser et al., 2005

Conclusions

- The stoichiometry of nutrients with liquid fertilizers matches much better crop offtakes than with solid (solid manures, separated solids)
- Composting of N rich feedstocks are related to large N losses and a reduction of the availability of the remaining N
- Anaerobic digestion does increase the N availability mainly when solid feedstocks are digested (e.g. crop residues, solid animal manures, etc.), digestion of liquid animal manures have only minor agronomic effects
- The digested feedstock have only minor effects on the N availability
- Treatment of liquids by solid-liquid separation
 - Liquid fraction: similar N fertilizer value as the unseparated liquid
 - Solid fraction high in Norg: low N fertilizer value, minor carry-over effects
- The overall long term N fertilizer value of organic fertilizers is often driven by their short-term (direct) effects

Federal Department of Economic Affairs, Education and Research EAER Agroscope

Nitrogen recovery after manure application: concepts, challenges and modelling approach at the farm level

CA Epper, J Mayer and F Liebisch

Reckenholz, 5th of May 2022

www.agroscope.ch I good food, healthy environment

Importance of manure as nitrogen source in Switzerland

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Factors influencing the nitrogen recovery assessment

(compiled based concepts in Boxberger et al. 2020, no guarantee of completeness)

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

U

Processes and factors involved in the nitrogen recovery assessment

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Assessing the nitrogen recovery in the Swiss-Balance

System boundary	Field	Farm	Region	Nation	
Scale					
Number of available factors					
Heterogenity of the factor content	e				
Negative impact of nitrogen recove potential underestimation	ry			from the Agroscope pho com, curtesy of MonikaP	

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Assessing the nitrogen recovery in the Swiss-Balance

- No excessive N application → crop N requirement ≈ N applied
- Plant N requirements and economic optimum as central elements
- Plant available N instead of total N → Factors for organic fertilizers

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Assessing the nitrogen recovery in the Swiss-Balance

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Assessing the nitrogen recovery in the Swiss-Balance – Current state

Current nitrogen recovery factors (%N_{tot} applied) :

Cattle and pig slurry: 60 %N_{tot} applied

Cattle farmyard manure: 48 %N_{tot} applied

Hofdüngerart	Mid-term N availabili (% of Ntot applied)
Cattle slurry	50–70
Rindviehgülle, kotarm	65–85
Stapelmist	20-40 ³
Laufstallmist	25-50 ³
Pferdemist	10-25 ³
Schaf- und Ziegenmist	40-60 ³
Pig slurry le	50-70
Schweinemist	40-60 ³
Hennenkot (Kotband)	40-60 ³
Hennenmist (Kotgrube, Bodenhaltung)	40-60 ³
Geflügelmist (Mast), Poulet, Truten	40-60 ³
	Richner et al. 2017

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Assessing the nitrogen recovery in the Swiss-Balance – Current state

Current nitrogen recovery factors (%N_{tot} applied) : Cattle and pig slurry: 60 %N_{tot} applied Cattle farmyard manure: 48 %N_{tot} applied

TABLE 4 | Requirement for N utilization (RNU) of N in animal manure.

Manure category	Requirement for utilization of N in animal manure (RNU), % of manure N
Pig slurry	80
Cattle slurry	75
Mink slurry	75
Poultry slurry	.80
Liquid fraction after slurry separation (i.e., permeate)	85
Deep litter and other solid manure from poultry	60
Deep litter from non-poultry animals	50
Solid manure (in-house separation by scraping or from separation of liquid manure, i.e., retentate)	65
	Sommer, S. G., & Knudsen, L. (202

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

O

Assessing the nitrogen recovery the Swiss-Balance – Modelling approach

Model development

- Applicable at the policy level
- Based solely on the manure characteristics information $\rm NH_4^+$ to $\rm N_{tot}$ ratio
- Farm specific N recovery rate based on information on manure management

Method

- Simple empirical model, which congregates mathematical functions describing different selected processes
- Nitrogen turnover rates retrieved from literature based on field and pot experiments
- First order kinetic mineralisation of the N stabilised in SOM based on Parton 1987

13

Assessing the nitrogen recovery in the Swiss-Balance – Model output

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Modelling the potential nitrogen recovery – Conclusions and outlook

- Helps visualise and better understand what are the processes, factors and time-frames taken into consideration
- Farm-specific nitrogen recovery factors
- Limitations in characterisation certain manure categories

Crucial points of our future model validation

- Field studies at different locations
 - Necessary manure characteristics
 - Site specific characteristics
 - Precise assessment of certain soil microbiological processes (e.g. immobilisation – remobilisation) and nitrogen losses
- \rightarrow Long-term field experiments

References

- Agristat (2021). Verfügbarer Stickstoff. Retrieved on 15 April 2022, from <u>https://www.sbv-</u> usp.ch/de/services/agristat-statistik-der-schweizer-landwirtschaft/statistische-erhebungenund-schaetzungen-ses/produktionsmittel-und-umwelt/
- Office for Agriculture (2020). Direct payments. Retrieved on 15 April 2022, from https://www.blw.admin.ch/blw/en/home/politik/direct_payments.html
- Möller, K. (2020). In Boxberger, Mayer, Möller, Pöllinger (Eds.), Praxishandbuch Organische Düngung : effizient und nachhaltig (1st ed., pp. 72 - 89). Erling Verlag. ISBN: 978-3-86263-161-2
- Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51(5), 1173-1179.
- Richner, W., Flisch, R., Mayer, J., Schlegel, P., Zähner, M. & Menzi, H. (2017). Eigenschaften und Anwendung von Düngern. In Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD).
- Sommer, S. G., & Knudsen, L. (2021). Impact of Danish Livestock and Manure Management Regulations on Nitrogen Pollution, Crop Production, and Economy. Frontiers in Sustainability, 2, 20.
- Sørensen, P., & Amato, M. (2002). Remineralisation and residual effects of N after application of pig slurry to soil. European Journal of Agronomy, 16(2), 81-95.

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

Veränderung der NH₃ Emissionen in Abhängigkeit des Hofdüngermanagements - Beispiel

Nitrogen recovery: concepts, challenges and modelling | Expert workshop on nitrogen recovery Epper, Mayer, Liebisch

19

Veränderung des Ammonium N Gehalt im ausgebrachten Hofdünger in Abhängigkeit des Hofdüngermanagements

Beispiel 25 Milchkühe (Standard Milchleistung 7'500 kg)

Stickstoff (alles als kg N)	Keine Massnahmen	Güllelager Abdeckung und Prallteller	Keine Güllelager Abdeckung und Schleppschlauch	Güllelager Abdeckung und Schleppschlauch
N _{tot} ausgeschieden (kg N)	2'800	2'800	2'800	2'800
NH ₄ ⁺ N Anteil (kg N)	1'540	1'540	1'540	1'540
NH ₃ Verluste (kg N)	1'238	1'074	1'072	859
NH ₄ ⁺ N ausgebracht * (kg N)	549	714	716	929
N _{tot} Ausgebracht (kg N)	1'562	1'726	1'728	1'941
Anteil NH ₄ ⁺ N ausgebracht (%)	35	41	41	48

* Hierzu wurde auch die Mineralisierung des Norg während der Güllelagerung mitberücksichtigt

Long-term manure N dynamics in soil: long-term field trials as information base

Peter Sørensen

Outline – long-term manure N dynamics

- Introduction
- Askov Long-term experiment- 125 years with manure application
- Experiments with ¹⁵N-labelled manures
- Manure N mineralisation estimated from crop N uptake
- Nitrate leaching from mineralised manure N

MANURE EXPERT WORKSHOP PETER SØRENSEN 4-6 MAY 2022

Residual organic N accumulated in soil by repeated manure application

By continous application of 100 kg total-N/ha/yr with pig slurry.

Conceptual model calculation

(Jensen, 2013)

Askov long-term experiment in DK started 1896. Manure vs mineral fertilizers

1ANURE EXPERT WORKSHOP PETER SØRENSEN 4-6 MAY 2022

Askov long-term experiment - started 1896 mineral fertilizer (NPK) vs animal manure (AM)

Period	Crop	Kg ha ⁻¹ in 1 AM and 1 NPK			
		Total-N	Р	К	
1973-2005	Winter wheat	100	19	88	
	Root crops	225	44	196	
	Spring barley	75	14	65	
	Grass-clover	0	0	0	
Annua	mean	100	19	87	
2006-	Winter wheat	150	30	120	
	Maize	150	30	120	
	Spring barley	100	20	80	
	Grass-clover	0	0	0	
Annual mean		100	20	80	
AARHUS		MANURE EXPERT WORKSHOP PETER SØRENSEN			

Same amount of N. P and K with either mineral fertilizer or manure (AM, cattle slurry)

4-6 MAY 2022

Christensen et al. 2022 J Plant Nutr Soil Sci 2022,

Long-term cereal yields

Long-term yields in maize and grass-clover

Soil C development in Askov soils (top soil)

Treatments started in 1896. After the first 25 years, the difference in soil C related to the un-fertilized plots is nearly constant

Christensen et al. 2022 J Plant Nutr Soil Sci 2022, 1

Cumulated crop uptake of ¹⁵N-labelled manure components and mineral fertilizer over 3 yrs

PETER SØRENSEN

Cumulated crop uptake of ¹⁵N-labelled manure components and fertilizer over 3 yrs

Recovery of ¹⁵N labelled fertilizer in grass over 17 years after one application

Gradual decrease in availability

Extra N mineralisation based on crop N uptake measured during 3 years after pig and cattle slurry application

100 kg mineral N/ha was applied to spring barley in either mineral N or in cattle or pig slurry in the first year. Only mineral N applied in the two following years.

	1 st year	2 nd	year	3 rd year		
	Ryegrass	Spring	Ryegrass	Spring	Ryegrass	
	СС	barley	CC	barley	CC	
Estimated Apparent N recovery(ANR) of mineralised N (%)	49	60	49	60	49	
Cattle slurry net mineralisation (% of organic N input)	17	7.2	10	3.1	5.0	
Pig slurry net mineralisation (% of organic N input)	26	16	11	4.4	5.4	

CC = cover crop

JRE EXPERT WORKSHOP	1	PET
4-6 MAY 2022	Ĵ	

MAN

PETER SØRENSEN

Sørensen et al 2017 Soil Res 55, 500

Simple model of manure N mineralisation based on 3 yrs measured N uptake in crops

Organic N mineralisation from different manure types over 5 yrs (%)

Organic N mineralisation (%) vs thermal time - first year

mineralisation from solid and liquid slurry fractions based on N uptake in grass - 3yrs

Cumulated net mineralisation of residual organic manure N left in soil after harvest of the first barley crop (estimated from extra N uptake and ANR of mineral N)

mineralisation of manure organic N in UK and DK studies

Туре	mineralisation 0-2300* CDD (%/CDD)	mineralisation 2300*-5000 CDD (%/CDD)	
Pig slurry, layer manure (UK)	0.022	<0.001	
Pig slurry (DK)	0.020	0.012	Cumulated Growing de days (GDD=CDD) sinc application with a base
Cattle slurry, FYMs (UK)	0.008	<0.001	temperature of 5 °C.
Cattle slurry (DK)	0	0.006	* 2000 CDD in DK study

Nitrate Leaching after application of solid manure or mineral N to lysimeters with spring barley (2 yrs)

Ratio between N leaching and crop N uptake

-Vegetation in autumn/ winter is critical for reducing leaching from mineralized soil N and organic manure N

Application to spring barley 2017	Kg total-N/ha	N leaching/ Crop N uptake					
		- Cover crop	+ Cover crop				
0 N	0	(1.0)	0.3				
Mineral N	139	0.4	0.04				
Cattle deep litter	725	0.9	0.2				

4-6 MAY 2022

Leaching measured 2017-18 in 1.5 m deep lysimeters (first year after application) Cover crop: fodder radish sown after barley harvest

Interactions between added N and historical N inputs?

- In a field study we observed higher residual N uptake from previous manure application on unfertilized grass compared to N-fertilized grass (unpublished).
- 'Added nitrogen interactions' (Jenkinson et al. 1985).
- Mores studies are needed.

	ん	AARHUS UNIVERSITY DEPARTMENT OF AGROECO
--	---	---

Conclusions

 Net mineralisation of organic manure N is close to zero during the first 3 months after application of most manure types.

MANURE EXPERT WORKSHOP PETER SØRENSEN

- In the following year mineralisation varies from c.10 to 50%.
 - Highest from pig slurry and layer manure
 - Lower from cattle slurry and farmyard manures containing straw
- After the 3rd year, N mineralisation is low for all manure types.
- Vegetation in autumn/winter is a key to reducing nitrate leaching from mineralized soil N and manure N.

MANURE EXPERT WORKSHOP PETER SØRENSEN 4-6 MAY 2022

Thank you

Ministry of Food, Agriculture and Fisheries of Denmark Department

Regulatory framework in Denmark

Successes & challenges of the Danish fertilization reports -

Expert workshop: potential nitrogen recovery of manure 06/05-2022 AGROSCOPE - Switzerland

Obligatory key elements of Danish Agricultural Regulation (ND)

Obligatory key elements of Danish Agricultural Regulation (ND)

🖉 3 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

ZOOM IN: The obligatory fertilizer accounting system

ZOOM IN: The obligatory fertilizer Accounting System

Registration of information on:

- type of crops & the N standard norm for the respective crops (based on nationally centralized calculation of the economic optimum)
- type of livestock & the N resulting from livestock production
- use of fertilizers both manure & commercial fertilizer
- delivery of fertilizer & exchange of fertilizer or manure
- establishment of catch crops
- number of livestock units (coupled to the national central animal husbandry register)
- general facts on the holding, i.e. address, stable construction, etc

A maximum N-quota for each registered farm is automatically calculated on the basis of:

- choice of crops in the planning period
- size of cultivated area with the crops •
- ٠ pre-crops composition
- soil type (sandy vs. loamy soils)
- expected yields
- irrigation of the fields
- N forecast

Setting of share of manure-N, to be accounted for:

type of animal manure	Efficiency (N ex storage)
pig slurry	80 %
cattle slurry	75 %
Poultry slurry/solid manure	80/70 %
deep litter (pig & cattle)	50 %
liquid fraction after manure processing	85 %

Source: https://www.retsinformation.dk/eli/lta/2021/1601

5 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

Catch crop or lay Previous crop main crop Soil type inal Field ID# 812 85 68 89 810 831 86 33 813 814 VIDE tandard Andret Hovedalgrøde Forfrugt Efterafgrøde og udlæs esist over afgradelo Oversigt over alto 38 nr 64 38 nr 0 v ð 0 v 0 v ð 0 0 0 0.00 0,00 0.00 0.00 0.00 0.00 0.00 815 B16 B17 B18 819 820 821 622 **B24** 825 B23 Mark-Nark-

ZOOM IN: The fertilizer plan at field scale

Gødningsoplysninge Fosfortal N-fradrag forfrugt 🛛 kg N/ha Deduction due to norm kg N/ha kg N/ha kg N/ha kg N/ha kg N/ha kg N/mark kg P/ha kg P/ha kg P/mark 0 0 0 a 0 0 a 0 0 Correction based 0 on prognosis previous crop 0,00 Pdemand

6 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

ZOOM IN: The fertilizer plan – N norms etc.

_	Normer til landbrugsafgre														-		
	Kvælstofnormer og retnings artsspecifik kvælstofnorm,				i kg pr. ha	for 2019/20	0. Normern	e angiver to	otal mængd	le kvælstof	pā ārsbasis	. For grans	ager på frilar	nd, hv	or de	r er fastsa	at en
Afgrødekode	Algrede Previ vali	Forfrugts- værdi	ng af forfri dens kvæl	JB 1 -		JB 2 + 4		JB	JB 1-4		det lerjord 5-6 Kvæl-	BL	rjord 7-9	Karrektion for udbytte (opfodring)		p de	Retnings-givende normer@ct.fos-
C	iop ivali	kg N/ha	Ja/Nej	hkg/ha	stof- norm kg N/ha	Udbytte- norm hkg/ha	stof- norm kg N/ha	Udbytte- norm hkg/ha	stof- norm kg N/ha	Udbytte- norm hkg/ha	stof- norm kg N/ha	Udbytte- norm hkg/ha	Kyælstof- norm kg N/ha	kg N	/hkg	kg P/ha	kg K/ha
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
13	Vinterhvede, brødhvede ²	0	Ja	55 (61)	212	69 (76)	221	73 (80)	243	88 (97)	252	93 (102)	266	1,7	0.0	21	67
57	Vinterrhavre	0	Ja	51 (56)	143	65 (72)	144	64 (70)	158	77 (85)	159	81 (89)	168	1,2	1,2	18	53
14	Vinterrug ²	0	Ja	51 (56)	143	65 (72)	144	64 (70)	158	77 (85)	159	81 (89)	168	1,2	1,2	18	53
vinter sat)	said to modenned (rort-			hkg/ha	1	hkg/ha		hkg/ha	s	hkg/ha		hkg/ha					
_	Vinterhybridrug ²	0	Ja	62 (68)	155	77 (85)	159	77 (85)	174	88 (97)	172	93 (102)	183	1.2	1.2	22	63
16	Vintertriticale ²	0	Ja	48 (53)	178	60 (66)	177	60 (66)	192	68 (75)	187	72 (79)	197	1,2	1,2	20	39
9	Vinterspelt	0	Ja	51 (56)	143	65 (72)	144	64 (70)	158	77 (85)	159	81 (89)	168	1.2	1.2	18	53
17	Blanding af efterårssåede arter ^{2,12}	0	Ja	51 (56)	143	65 (72)	144	64 (70)	158	77 (85)	159	81 (89)	168	12	1.2	18	53
Diefn	e og Bælgsæd			hkg/ha	1.10	hkg/ha		hkg/ha		hkg/ha	100	hkg/ha		1.00	-		
21	Vårraps	23	Ja	19	137	22	127	24	145	25	121	26	123	1.5	0	22	51
22	Vinterraps	23	Ja	31	196	39	208	39	208	44	216	46	219	1,5	0	26	84
23	Rybs	23	Ja	19	137	22	127	24	145	25	121	26	123	1,5	0	22	51
24	Solsikke	23	Ja	19	185	21	170	24	185	25	160	26	160	D	0	16	74
25	Sojabønner	23	Nej	47	0	47	0	47	0	47	0	47	0	D	0	30	103
160	Gul sennep	23	Ja	20	139	22	128	25	146	25	121	26	122	1,5	0	20	45
182	Blanding af oliearter	23	Ja		137		127		145		121		123	15	0	22	51

Excerpt of 14 main crops our of ca. 300 different crop codes - updated annually

SE A

7 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

Composition of livestock manure in Denmark

Development of utilization/substitution requirements for livestock manures in the past

Stepwise increase of the "fertilizing value" of nitrogen in the different livestock manures types

Average utilization efficiency requirement (weighed according to amounts) since 2002 = **71%**

9 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

Agricultural Nitrogen balance [1.000 tons]

Increase in livestock manure utilization/substitution requirement → contribution to clear **reduction in use of inorganic fertilizer** - and consequently - **improvement of the N-balance**

Source: Vandmiljø og Natur 2017

Ŵ

11 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

Beneficial side effects due to limitation of "total utilized" N

12 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

Beneficial side effects due to limitation of "total utilized" N

Incentives for farmers to...

- Invest in manure treatment
- Deliver manure to **biogas plants** for anaerobic digestion
- Use advanced techniques for manure field application more
- Avoid manure application in less suitable time periods
- · Improve storage facilities/capacity for manure

Results:

- Better agricultural management
- A number of (indirect) environmental benefits but more flexible & efficient than "direct" regulation:
 - larger storage capacity requirement
 - prolonged close periods, etc.
- Lower N leaching risk and/or lower N₂O emissions (for farmers who choose not to invest in new technologies)
- Lower ammonia emissions (from farms with investments in manure treatment, acidification etc.)
- Synergy with obligations under the EU NEC-directive
- Benefits for other environmental and nature-EU-regulation

13 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

8 2 Back to the fertilizer reports... Seç i gebringsprolekter Seç i törnölde virkeumheder XML Indbenthing Kvitteringsrappo IT-module 2 IT-module 1 455 m. WWWWW Nam. 1967 Test Type: Handelspacking - Abat handelspacking Family 201740 nter videressiet i perioden 🗍 VI utheides som isverandar 🗍 indpentitiva constant. 12-047-2017 1922 Internation on To Vigna Bar Vinteration Herd Scherger, Antal Top documenter CVR-SF-at: Abat II Produkter Sen Ses Tanggard DHA v WKgating 53-12 n 1 x 100 193 VALUE INC The v 201540 DHI V VED Inter 1届花 IT-module 4 Tibitek 2 2 2 IT-module 3 80% of farmers use advisory service Reporting to authorities - use of upload by xml-files • IT-module 5 14 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framew

Data collection & reuse of data for fertilizer reports

15 / Ministry of Food, Agriculture and Fisheries of Denmark - Department / Regulatory Framework in Denmark

Ministry of Food, Agriculture and Fisheries of Denmark Department

- Important tool for awareness-building for farmers & consultants \triangleright
- **Constant maintenance & further development** \triangleright of registry & accounting system

Thanks for your interest & attention!

Questions are welcome... Expert workshop: potential

nitrogen recovery of manure 06/05-2022 AGROSCOPE - Switzerland

Für Mensch & Umwelt

Expert workshop: potential nitrogen recovery of manure Dealing with nitrate vulnerable zones in Germany

Dr. Maximilian Hofmeier Section II 2.8/ Agriculture German Environment Agency

Agenda

BACKGROUND

- · Environmental indicators (N surplus, nitrate in groundwater,...)
- · A brief history of fertilizer legislation in Germany

NITRATE VULNERABLE ZONES

- Legal background
- · Approaches to the designation of NVZ
- Obligatory measures in NVZ

OUTLOOK

- How to proceed with the NVZ?
- · Further activities on fertilizer legislation

Nitrate in groundwater

Since 2016, compliance with the nitrate quality standard has also been a target of the German Sustainable Development Strategy

Since 2008 the proportion of monitoring sites which exceed the quality standard lies between 16 and 19 %.

The proportion of monitoring sites with a nitrate concentration above 25 mg/l has also stagnated since 2008 at 33–38 %.

06.05.2022 D

Dealing with nitrate vulnerable zones in Germany

3

Background

Groundwater bodies in poor chemical status

Groundwater bodies that have poor chemical status due to nitrate pollution.

WFD reporting

Criterion: at least 20% of a groundwater body with nitrate > 50 mg/L or >37.5 mg/L with increasing trend

In the last management cycle 27.1% of groundwater bodies in Germany were in poor chemical status

Geobasisdaten: GeoBasis-DE / BKG 2015 Fachdaten: Berichtsportal WasserBLick/BfG, Stand 23.03.2016 Bearbeitung: Umweitbundesamt, Bund/Länderarbeitsgemeinschaft Wasser (LAWA)

Agricultural nitrogen surplus

Balance is calculated according to a farm-gate balance on sectoral level

Balance surplus shows the total nitrogen loss potential of German agriculture

Goals:

- German sustainability strategy: Reduction of N surpluses by 2030 to 70 kg/N*ha

Causes for decrease:

- **Reduced fertilizer use** .
- higher yields -
- decrease in livestock -
- density in eastern Germany Fertilizer legislation
- Weather conditions

06.05.2022 Dealing with nitrate vulnerable zones in Germany

5

Background

River eutrophication by phosphorus

Goals:

- WFD: All water bodies to be in good status by 2027
- DNS 2016: Water bodytypical orientation values are to be complied with at all monitoring sites by 2030

Assessment:

- Agriculture is responsible for approx. 50% of P inputs
- Main reasons for improvement since 1990: phosphate-free detergents and phosphate precipitation in wastewater treatment plants

Fic requirement for good status for different types of water hodies is exceeded if the ty class for total phosphones is "Hall" or worse. The indicator shows the percentage of ites which access the target value compared to Secure Puspared by the German Environment Agency from data provided by the German

Background

A brief history of fertilizer legislation in Germany

06.05.2022 Dealing with nitrate vulnerable zones in Germany

7

Nitrate vulnerable zones

Designation of NVZ 1996-2020

1996-2017

- the entire agricultural area was designated as NVZ
- the action programme applied to all farms nationwide

2017-2020

٠

- with the adoption of the fertilizer ordinance in 2017, the federal states were obliged to designate "red areas" and eutrophicated areas in which further measures were mandatory
 - Each state had to implement at least three measures from a catalog of measures for NVZ
- basis for the area designation were the red groundwater bodies according to WFD
 - optionally, the federal states could also carry out a so-called internal differentiation
 - Identification of sub-areas where the quality standard is exceeded
 - the methodology of the differentiation was not specified

Nitrate vulnerable zones

Designation of NVZ 2021-???

DEMANDS OF THE COM

- · Changes to the fertilizer ordinance
- Uniform designation of NVZ by the federal states (issuance of administrative regulations)
- Establishment of an impact monitoring

2021-PRESENT

- to implement the ECJ ruling, the fertilizer ordinance was amended once again and adopted in May 2020
- Additionally, a general administrative regulation was generated to standardize the procedure for designating NVZ and for eutrophicated areas (AVV GeA)
 - Areas (plots) with high nitrogen pollution and endangerment of groundwater
 - eutrophic areas were designated for P in surface waters
- With the adoption of the fertilizer ordinance in 2020, the internal differentiation of the "red areas" was mandatory for the federal states

Uniform designation of NVZ

Additional measures in NVZ

In 2021, seven additional measures were mandatory implemented in NVZ:

- 1. Nitrogen fertilization 20 % below calculated fertilizer requirement
 - Applies to the average of the areas in NVZ
- 2. Compliance with the 170 kg N/ha limit for the use of organic fertilizers at the field level
- 3. Autumn fertilization only in exceptional cases
 - Catch crops with forage use are excluded
 - Exception for winter rape if Nmin < 45 kg N/ha
 - Exception for catch crops without forage use: if there is a building application for the expansion of storage capacities
- 4. Limitation of N fertilization in autumn on grassland
 - From September to begin of the banning period to 60 kg N_{tot}/ha
- 5. Obligatory cultivation of cover crops
 - Nitrogen fertilization for crops sown after 01/02 is only permitted if a cover crop was grown and that was not turned over before 15/01
- 6. Extended blocking period for solid manure to 3 month (01/11 to 31/01)
- 7. Extended blocking period for grassland by four weeks from 01/10 to 31/01

Additionally: Each state has to identify at least two further measures for NVZ

06.05.2022 Dealing with nitrate vulnerable zones in Germany

13

Outlook

How to proceed with the NVZ?

ACTUAL DISCUSSION

- · COM has raised objections to the current designation of NVZ
 - Modeling of N-emissions must be deleted without replacement
 - designation of NVZ should be based exclusively on the monitoring sites
 - Red measuring points were partly outside red areas
- Numerous methods were discussed to designate the red areas
- The draft of the new area designation is with the COM

DECISION ON THE FURTHER PROCEDURE OF THE COM IS PENDING

SECOND PROCEDURE SUSPENDED ON CONDITION THAT THE PACKAGE OF MEASURES IS FULLY IMPLEMENTED

Further activities on fertilizer legislation

IMPACT MONITORING

- Introduction was committed by the two former ministers to the COM at its "Manure Report" 2019 in Brussels.
- Objective is to document the development of agricultural management and its impact on the status of water bodies
- · show positive development trends, avoid negative developments
- nation-wide, annual, digital
- Involvement of all necessary levels (agriculture, water management, federal government, federal states)
- · Supplement to the nitrate report to be compiled every four years
- · Financing not yet secured
- · So far, no legal basis exists for the extensive collection of the required operational data

MATERIAL FLOW BALANCE ORDINANCE

- Amendment has to be completed 2023
- The key point of the adjustment is the valuation of the balance surplus

06.05.2022 Dealing with nitrate vulnerable zones in Germany

Conclusion

NEED FOR ACTION REMAINS HIGH

INFRINGEMENT PROCEEDINGS AS A KEY DRIVER FOR ADJUSTMENTS

HUGH UNCERTAINTIES IN THE DESIGNATION OF NVZ

NVZ ONLY BASED ON MEASURING SITES

HIGH LEVEL OF DISSATISFACTION WITH CURRENT REGULATIONS

DO WE NEED A CHANGE IN THE WHOLE SYSTEM?

15

Thank you for your attention

Maximilian Hofmeier Maximilian.hofmeier@uba.de

Federal Depatment of Economic Affairs, Education and Research EAER Agroscope

Quantity and drivers of nitrous oxide emissions during storage (or application)

Expert Workshop on Nitrogen Recovery in Manure

Daniel Bretscher Agroscope *Climate and Agriculture Group*

4.-6. May 2022

Sources of Nitrogen (Swiss National GHG Inventory, year 2020)

Agricultural structures / portfolio

- Number and type of animals
- Crop species
- Leguminous crops
- Locally adapted portfolio and management

Allocation Livestock Categories

Agroscope

Crop Species

Figure 6. Correlations between nitrogen use efficiency, or calories produced per g of nitrogen input, and the environmental impacts of non-rice cereal crops. Regression lines are reciprocal fits between nitrogen use efficiency and a food's environmental impact. All relationships are significant at p < .05 except for acidification potential.

6

Pasture or Liquid or Solid Manure?

HIGHLIGHTS

N₂O emission factors for excreta (0.08-0.353) were lower than IPCC default value.

value. • NG and NHs losses were 0.01-0.12% and 1.69-12.75 of excreta N. • NHz NO7, and DON leaching were 0-4580, 164-24.85, and 1.43-5.91%. Urino patches always caused more N. losses or plant N uptake than dung narches.

losses or plant N uptake than dung patches. • NO₂ leaching was significantly negatively correlated with plant N uptake. Source: Cai and Akiyama, 2016

Agricultural structures / portfolio • Number and type of animals

- Crop species
- •
- Leguminous crops Locally adapted portfolio and management •

General management options

- Feeding strategy
- Housing systems
- Storage Systems

Nitrogen use efficiency

- Nitrogen loss pathways (NH₃, NO₃⁻) Precision farming (feeding, fertiliser management)
- . 4R – Principle

9

 N_2O

kt Nitrogen

1990

125 (55%)

2020

103 (58%)

Mitigation

Agricultural structures / portfolio Number and type of animals Crop species Leguminous crops Locally adapted portfolio and management
General management options Feeding strategy Housing systems Storage Systems
Nitrogen use efficiency Nitrogen loss pathways (NH₃, NO₃⁻) Precision farming (feeding, fertiliser management) 4R – Principle
 Emission factors (end of pipe solutions) Environmental conditions (T, moisture, pH, O₂, C) Crop species Application method Nitrification inhibitors / Urease inhibitors

Agroscope

Nitrogen input

Fig. 4. Hypothetical diagram representing variation of direct nitrous oxide (N₂O) emission by increase of nitrogen (N) input.

Source: Kim et al. 2013

N₂O Emission Factors

N₂O Emission Factors

Wintigation drivers of nitrous oxide emissions during storage and application

Instruments

- Incentives vs. provisions
- Requirement for a balanced nutrient management
- Subsidy programs
- Fiscal instruments (e.g. taxes)

Implementation

Swiss Agri-Environmental Data Network (SAEDN)

Quelle: Agroscope

Source: BLW 2015 (Agrarbericht)

Agroscope

Literature

BLW 2015: Agrarbericht 2015. Bundesamt für Landwirtschaft (BLW). Bern, Schweiz.

Cai, **Y.**, **Akiyama**, **H. 2016**: Nitrogen loss factors of nitrogen trace gas emissions and leaching from excreta patches in grassland ecosystems: A summary of available data. Science of The Total Environment, 572 185-195.

Clark, M., Tilman, D. 2017: Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12 (6): 064016.

FOEN 2020: Switzerland's Greenhouse Gas Inventory 1990–2018: National Inventory Report, CRF-tables. Submission of April 2020 under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Federal Office for the Environment, Bern.

FOEN 2022: Switzerland's Greenhouse Gas Inventory 1990–2020: National Inventory Report, CRF-tables. Submission of April 2022 under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Federal Office for the Environment, Bern.

Kim, D.-G., Hernandez-Ramirez, G., Giltrap, D. 2013: Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture, Ecosystems & Environment, 168 (0): 53-65.

Schils, R.L.M., Olesen, J.E., del Prado, A., Soussana, J.F. 2007: A review of farm level modeling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livestock Science, 112 (3): 240-251.

Expert Workshop on Nitrogen recovery in manure 4 - 6 May 2022

Strategies and technologies to reduce volatilisation during manure storage

Thomas Kupper

Hochschule f
ür Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Principal mechanisms driving ammonia emissions

- Amount of N in the agricultural system
- Physical-chemical conditions for ammonia generation (urease activity, temperature, pH)
- Size of the emitting surface
- Turbulence at the emitting surface
- Elimination of the TAN flow (air scrubbers, incineration of manure)

Techniques to reduce emissions from slurry storage: covering

- Covering
 Reduces turbulence and gas exchange at the emitting surface
- ► The lower the turbulence → the tighter the cover the higher the emission reduction

*De Bode, M.J.C., 1991. Odour and ammonia emissions from manure storage, in: Nielsen, V. C., Voorburg, J. H., L'Hermite, P. (Eds.), Odour and ammonia emissions from livestock farming. Elsevier Applied Science, London, England, pp. 69-76. **Kupper, T., Eugster, R., Sintermann, J., Neftel, A., Häni, C. 2021. A novel approach to estimate the abatement of ammonia emissions from mitigation techniques at farm-scale slurry stores exemplified by a semifloating cover. J. Environ. Qual. 50(5): 1074-1083. ~80% reduction (measured at pilot scale*)

~48% reduction (measured at farm scale**)

Techniques to reduce emissions from slurry storage: covering

		#	NH ₃		N ₂ O			CH ₄			
			n	Avg	Std	n	Avg	Std	n	Avg	Std
	Lid (wood,	С	6	73%*	29%	2	-4%	23%	2	15%	2%
Impermeable	concrete)	Ρ	7	64%*	35%	4	31%	56%	4	45%*	17%
structural covers	Tent	С	2	77%	9%	-	-	-	-	-	-
	covering	Ρ	2	89%	7%	-	-	-	-	-	-
Impermeable synthetic floating covers		С	4	66%*	22%	-		-	-	-	-
	Plastic film	Ρ	6	88%*	18%	2	100%	0%	2	62%	54%
	Plastic	С	1	89%	-	1	68%	-	1	-2%	-
	fabrics	Ρ	5	39%*	15%	-	-		3	-17%	18%
	Expanded	С	4	59%	39%	-	-	-	2	11%	7%
Permeable synthetic	clay	Ρ	12	74%*	20%	1	-8%	-	6	8%	17%
floating covers	Expanded	С	2	79%	2%	-	-	-	-	-	-
	polystyrene	Ρ	4	64%*	32%	-	-	-	2	-26%	41%
	Plastic tiles	С	-	-	-	-	-	-	-	-	-
	riastic tiles	Ρ	2	88%	11%	1	-7%	-	1	25%	-

#C cattle, P pig.

*statistically significant difference (p<0.05) between storage with a cover and uncovered storage

Kupper, T., Häni, C., Neftel, A., Kincaid, C., Bühler, M., Amon, B., VanderZaag, A.C. 2020. Ammonia and greenhouse gas emissions from slurry storage - a review. Agr. Ecosyst. Environ. 300(106963): 1-18.

Techniques to reduce emissions from slurry storage: covering

- Covering: efficient technique***
 - to reduce NH₃ emissions from slurry storage
 - which tends to concomittantly reduce GHG emissions (mainly CH₄ which dominates GHG emissions)

This statement can be considered as valid although robust experimental data are somewhat sparse. ~80% reduction (measured at pilot-scale*)

~48% reduction (measured at farm-scale**)

***Kupper, T., Häni, C., Neftel, A., Kincaid, C., Bühler, M., Amon, B., VanderZaag, A.C. 2020. Ammonia and greenhouse gas emissions from slurry storage - a review. Agr. Ecosyst. Environ. 300(106963): 1-18.

Techniques to reduce emissions from slurry storage: natural crust

- Natural crust:
 - Formed from particles in the slurry
 - Ability to crusting depends from
 - ► Type of slurry 8e.g. cattle, pig)→type of particles (fibres, other)
 - ► Amount of particles→thickness of slurry layer

Kupper, T., Eugster, R., Sintermann, J., Häni, C. 2021. Ammonia emissions from an uncovered dairy slurry storage tank over two years: Interactions with tank operations and meteorological conditions. Biosyst. Eng. 204: 36-49.

Techniques to reduce emissions from slurry storage: natural crust

- Natural crust (although not equivalent to covering):
 →barrier to the gas molecules between the liquid and the air and microbial degradation of NH₃, CH₄
- Avoid disturbance of the stores surface

- Monitoring over > 2 years at a slurry storage tank
 - With crust: 0.044 g NH₃ m⁻² h⁻¹
 - Without crust: 0.103 g NH₃ m⁻² h⁻¹

Kupper, T., Eugster, R., Sintermann, J., Häni, C. 2021. Ammonia emissions from an uncovered dairy slurry storage tank over two years: Interactions with tank operations and meteorological conditions. Biosyst. Eng. 204: 36-49.

Techniques to reduce emissions from slurry storage: slurry treatment

		NH ₃			N ₂ O			CH_4		
		n	Avg	Std	n	Avg	Std	n	Avg	Std
Acidification	Cattle	5	71%*	17%	1	- 4%	-	5	61%*	36%
	Pig	3	77%*	22%	1	- 39%	-	3	96%*	3%
Anaerobic digestion	Cattle	3	- 59%	64%	3	-16%	29%	5	-2%	129%
	Pig	1	45%	20	1	- 363%	-	1	99%	-
Solid-liquid separation	Cattle	12	- 23%*	21%	6	43%*	36%	10	32%*	27%
	Pig	7	-1%	18%	1	- 258%	-	7	39%*	39%
Dilution	Cattle	5	48%*	29%	5	57%*	38%	5	39%	33%
	Pig	-	-	_	_	-	-	2	47%	15%

Cells denoted with "-": value is not available.

* Numbers with an asterisk indicate a statistically significant difference (p < 0.05) between the treated and the untreated slurry.

Emission reduction/increase (for total GHG em.: CH_4 =dominating gas)

- Acidification: \downarrow NH₃, \downarrow CH₄, \uparrow N₂O?
- Anaerobic digestion: \uparrow NH₃ (probably different for cattle and pig), \downarrow CH₄, \uparrow N₂O?
- ▶ Solid-liquid separation: \uparrow NH₃, \downarrow CH₄, \downarrow N₂O
- Solid-liquid separation: \uparrow NH₃, \downarrow CH₄, \downarrow N₂O

Dilution: ↑ NH₃, ↓ CH₄, ↓ N₂O: data obtained from pilot-scale studies: volume identical for diluted and untreated slurry; at farm-scale: increase of slurry volume and increase of emitting surface → overcompensation of emission reduction

Kupper, T., Häni, C., Neftel, A., Kincaid, C., Bühler, M., Amon, B., VanderZaag, A.C. 2020. Ammonia and greenhouse gas emissions from slurry storage - a review. Agr. Ecosyst. Environ. 300(106963): 1-18.

Techniques to reduce emissions from solid manure storage: covering

- Covering (sheeting)
 - → Reduces turbulence and gas exchange at the emitting surface
 → Keeps manure moist and avoids/reduces self-heating

25

sses from cattle FYM heaps at IGER North Wyke, May - September 2000 at h 2003

Fig. 1 - Nitrogen lost from broiler litter heaps during storage.

Sagoo, E., Williams, J.R., Chambers, B.J., Chadwick, D.R. 2006. Defra Project WA0716, Management Techniques to Minimise Ammonia Emissions from Solid Manures. Final Report to Defra, London. Mansfield, Notts. NG20 9PF ADAS Gleadthorpe Research Centre.

Sagoo, E., Williams, J.R., Chambers, B.J., Boyles, L.O., Matthews, R., Chadwick, D.R. 2007. Integrated management practices to minimise losses and maximise the crop nitrogen value of broiler litter. Biosyst. Eng. 97(4): 512-519.

Techniques to reduce emissions from solid manure storage: covering

- Covering (sheeting)
 reduces turbulence and gas exchange at the emitting surface
 keeps manure moist and avoids/reduces self-heating
- Compaction reduces self-heating (microbial decomposition of OM) and thus, gas transfer and increase of pH*
- Emission reduction achieved for NH₃ due to covering and/or compacting: >50%, but increase of CH₄ emission
- Other measures (storage under a roof, addition of straw, narrow A-shaped heaps that shed water more readily, turning**, composting are ineffective or increase emissions***
- Additives may reduce emissions from manure composting[#]

^{*}Chadwick, D.R. 2005. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos. Environ. 39(4): 787-799.

^{**}Sagoo, E., Williams, J.R., Chambers, B.J., Chadwick, D.R. 2006. Defra Project WA0716, Management Techniques to Minimise Ammonia Emissions from Solid Manures. Final Report to Defra, London. Mansfield, Notts. NG20 9PF ADAS Gleadthorpe Research Centre.

^{***}Ba, S.D., Qu, Q.B., Zhang, K.Q., Groot, J.C.J. 2020. Meta-analysis of greenhouse gas and ammonia emissions from dairy manure composting. Biosyst. Eng. 193: 126-137.

^{*}Cao, Y.B., Wang, X., Bai, Z.H., Chadwick, D., Misselbrook, T., Sommer, S.G., Qin, W., Ma, L. 2019. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: A meta-analysis. J. Clean Prod. 235: 626-635.

How do we maximise the nutrient value of manures?

John Williams ADAS Soil Scientist

Expert workshop; Agroscope, Zurich 4 -6 May 2022

www.adas.uk

Organic manure nutrient content is variable

Manure type	Dry matter	Total N	Total P ₂ O ₅	Total K ₂ O	Total SO ₃	Total MgO			
	%	Kg/t							
Cattle FYM	25	6.0	3.2	9.4	2.4	1.8			
Pig slurry	4	3.6	1.5	2.2	0.7	0.7			
Poultry manure	60	28	8.0	8.5	8.2	5.9			
Food based digestate	4	4.8	1.1	2.4	0.7	0.2			
Biosolids	25	11	11	0.6	8.2	1.6			

Know the nutrient content

- Factors affecting manure nutrient content -
 - Livestock type
 - Diet
 - Bedding type and quantity
 - Water use
 - Manure/slurry storage

Impact of sampling depth and mixing on slurry analysis -

Manure nutrient supply - nitrogen

Slurry separation for improved nutrient utilisation

- Can reduce slurry storage requirement by between 10-20%
- Liquid fraction has low dry matter and high readily available N content
- Organic matter and phosphorus is concentrated in the solid fraction
- Apply solid fraction to low P index soils

What about acidification ?

- Acidification affects the NH_4^+/NH_3 equilibrium: $NH_3(g) + H^+(aq) \iff NH_4^+(aq)$
- Literature suggests reducing pH to *c*.5.5 can reduce ammonia emissions by more than 80%
- Has potential to increase crop available N supply.

Impact of acidification on ammonia emissions(Defra project SCF0215)

Impact of acidification on N use efficiency

P<0.05; letters indicate statistically significant differences between treatments

11

The process absorbs nitrogen oxides into the slurry which lowers the slurry pH without the need for the addition of large quantities of industrial acids.

30 January 2023

Impact of Plasma treatment on slurry N content and pH

	Untreated slurry	Plasma treated slurry
Total nitrogen (kg/m ³)	2.50	4.55
Ammonium-N (kg/m ³)	1.36	1.44
Nitrate-N (kg/m ³)	<0.1	0.60
Nitrite-N (kg/m ³)	<0.1	0.55
Organic N (kg/m ³)	1.14	1.96
Available N (kg/m ³)	1.36	2.59
Dry matter %	3.36	3.24
рН	7.87	5.41

Impact of plasma treatment on ammonia emissions

14

Impact of plasma treatment on N use efficiency

Conclusions & key questions for workshop

- Accounting for variability is challenging
 - Manure analysis to minimize uncertainties
- Simple separation techniques can be very useful in providing materials with more consistent and balanced nutrient contents
- Acidification and plasma treatment stabilize available N costs and practicalities?

Key questions:

How do we validate crop available nutrient supply from organic fertilisers (N & P)? Do we fully understand the benefits and trade offs of manure treatment processes?

30 January 2023

15

Strategies and technologies to reduce ammonia volatilisation during manure application

Dominika J. Krol, Gary J. Lanigan, Karl G. Richards Teagasc, Environment, Soils and Land Use Department Johnstown Castle, Co. Wexford, Ireland

Factors influencing ammonia emissions from land spreading of animal manures

- Manure properties: viscosity / dry matter, TAN content, C content and pH
- Soil properties: pH, CEC, Ca content, moisture, buffering capacity and porosity
- Meteorological conditions: precipitation, solar radiation, temperature, humidity and wind speed
- Method and rate of application
- Height and density of crop present

Manure management systems in the EU

Examples of AWMS for dairy cows in 2019 / 2020

	Liquid / slurry	Solid storage	Pasture, range & paddock	Digesters	Notes
Austria	54.0	29.0	3.7	2.4	1.9 composting, 9.0 other
Belgium - Flanders	60	9	14	-	17 dry lot
Belgium - Wallonia and Brussels	20.7	35.3	44	-	
Germany	57.9	11.5	7.3	22.5	
Ireland	31.1	2.1	66.8	-	
Switzerland	68.2	9.0	16.7	6.0	
					eaza

3 Teagasc Presentation Footer

Irish Ammonia Marginal Abatement Cost Curve

Effect of application technology

Effect of application technology

Effect of application technology

Effect of timing / slurry type and DM

Effect of slurry crude protein

Meade et al., unpublished

Effect of slurry pre-treatment

Considerations

- Type of manure management system
- Land use of application
- Pre-treatment of manure
- Abatement efficiency
- Ease of adoption
- Monitoring and verification

13 Teagasc Presentation Footer

THANK YOU FOR YOUR ATTENTION

Estimation of manure N recovery based on measurable & affordable characteristics for model parameterization: field data and/or laboratory data

France & tropical countries

Laurent THURIÈS¹, Florent LEVAVASSEUR² & coll.

¹ CIRAD, Research Unit « Recycling & risk », Montpellier, France ² INRAe, Research Unit « ECOSYS », Thiverval-Grignon, France

laurent.thuries@cirad.fr 05/2022 - Agroscope Re-evaluating the N recovery of manures

Manure values (fertilizer equivalent, amendment potential)?

« value » / « quality » = f (time, location, animal species, husbandry, physical state...)

Use of long term field trials to calibrate soil-crop model

- QualiAgro Long term field experiment, France (1998-...)
- Maize wheat rotation
- Application of organic wastes every two years (4 t C/ha), with a minimal (Δ) or optimal (ο) mineral N fertilization :

Lab data: chemical, incubations...for typology, indicators, models

Peltre et al. (2009); id. (2011) SBB; Kaboré et al. (2012) JNIRS; Noirot-Cosson et al. (2017); Levavasseur et al. (2020; 2021) AFNOR standards + Lashermes et al., (2009) EJSS; id. (2010) BioresTech <u>Iaurent, thuries@cirad.fr</u> 05/2022 – Agroscope Re-evaluating the N recovery of manures

ARVALÍS Institut du végétal	s produits organiqu	es			D	ecision Support System
						Calibration on:
 Ajustement de votre 					++ field trials	
Vous avez choisi l'engrais : Fumiers de bovin batiment	s, litière accumulée sortie					≠ regions (1 country)
Dose prévue : - 30	+ t/ha					mean characteristics of EON
Effet fertilisant de cette dose sur la culture et la	période d'apport choisies					Outputs:
Neff cycle : 31.5 P2O5 : 84 kg/ha K2O : 33	30 kgiha MgO : 57 kgiha					fertilizer equivalents
Neff bilan : 31.5 kgiba	- Composition d	e votre prod	uit orgai	niqu	16 -	amendment potential
Dose prévisionnelle à apport	Période d'implantation :	Culture de	début de prir	ntemp	s (du i ∽	nutrient balance
Apports minéraux réalisés ou pr	Produit organique :	Fumiers de bovins, litière accumulés ~			umulé: ~	advices
	Teneur en éléments fertilisanis :	N _{total} :	- 7	+	kg/T	Agronomic (no envir, no regul)
		Nmindral :	- 1	+	kg/T	Static
		P ₂ O ₅ :	- 4	+	kg/T	- Votre bilan -
		K20:	- 11 - 1,9		kg/T kg/T	Vous avez choisi l'engrais : Fumiers de bovins, ilitère accumulée sortie
		MgO :	- 1,9	т	Kg/1	batiment
	Teneur en carbone organique :	Corg :	- 95	+	kg/T	Bilan des éléments fertilisants avec la quantité de produit prévu (30 t/ha)
	Période d'apport :	Automne v épandage en surface v lage est <u>agronomiquement possible mais</u> st pas optimale O				(équivalence en kg/ha)
	Technique d'épandage :					150 / 150 / 150 / 150 / 150 / 150 / 150
						300 300 300 300 300 300 300 300 300 300
					Suivant	N Le bilan est P2O5 Le bilan est K2O Le bilan est MgO Le bilan est positif, réduire la positif, reporter 80 % positif, reporter 80 % dose de produit des unités des unités des unités excedentaires sur la excédentaires sur la excédentaires sur la supprime roit culture suivante.

Do we still need models?

New organic materials

e.g. manures: new husbandry methods, bedding materials...

Future climatic conditions easier to be « tested » by modeling than Ecotrons...

≻ ...

Stable pool

CN.

1 C:N ratio

Mineral nitrogen

Decomposition model of EOM in the standard (v10.1) and modified version of the STICS model.

C fluxes = solid black lines,

N fluxes = dashed gray lines.

2 C:N ratios (CN_{res1} and CN_{res2}) a_{CN1} = allocation of N between labile and recalcitrant pools Labile pool: mineralized or assimilated by zymogenous biomass Immobilization of N: if $CN_{res1} >> CN_{bio}$ From Levavasseur

From Levavasseur et al. (2021) Nut Cycl Agro

Calibration on laboratory or field data; with which version?

SON stocks predictions based on lab incubation vs field data (Qualiagro)

Calibration on laboratory data: extension of the approach?

Example of a national database of EOM with chemical analyses and incubations:

(manures, composts, sludges, digestates, food by-products, animal residues, plant residues, organic fertilizers, algae, others)

Main characteristics of the 663 organic materials

Group	C _{org} *	N _{org} *	C _{org} :N _{org}	N _{min} *	I _{ROC} (%OM)
		-			
Manures	353 - <mark>428</mark>	12 - <mark>45</mark>	9 - 25	0.5 - <mark>31</mark>	27 - 59
Composted manures	322	22	15	1.4	67
All others (sludges, digestates,					
food byproducts, animal or plant	155 - 483	<mark>8 - 39</mark>	7 - 38	0.1 - 36	<mark>21 - 80</mark>
residues, composts non-animal)					

* in g kg⁻¹ DM

🕷 INRAØ 🕑 cirad

Large diversity of C & N [], ratio, indic levels Manures within « others » C & N [], ratio, indic ranges

Calibration on laboratory data: extension of the approach?

Simplified version of v10.2 STICS soil module

2 C:N ratios (CN_{res1} and CN_{res2})

 a_{CN1} = allocation of N between labile and recalcitrant pools Labile pool: mineralized or assimilated by zymogenous biomass Immobilization of N: if $CN_{res1} >> Cn_{bio}$ Kres₂

Recalcitrant pool directly incorporated into the SOM Active Pool

11

Field trials: organic fertilizers on sugarcane cropping

Long-term experiment (2013) on a Nitisol (clay + fine silt > 70%; pH_{KCL} 4.9)

Sugarcane monocropping

Tropical climate (Réunion Island)

 $\overline{T^{\circ}}$ = 25 °C P_{an} = 1650 mm 6 treatments 5 replicates Urea (control) Pig liquid manure Digested-limed-dried-pelleted sew. sludge (Poultry manure or Greenwaste + sludge compost) (Bare soil) (Rotat. control)

Limited number of treatments Climatic events - dependent Hum ressources & money

- Environmental risks (e.g. trace elements, GHG emissions, nitrate leaching) vs improvement of « soil health » (e.g. SOC & functions, biodiversity...)
 - SOC stocks?
 - Drivers of the SOC stocks and GHG emissions?

FRANÇAISE INRA® Cirad

And for mixtures? Interactions? e.g. manure + crop residues

FRANÇAISE INRAO

18

From Kyulavski et al. (2019) EJSS

measured —CANTIS model

And for mixtures? Interactions? e.g. manure + crop residues

ured -CANTIS model

FRANÇAISE INRAØ

20

19

Gaps, limitations, perspectives

Analyses:

- type (spectrosc. e.g. NIR substitutes to ref analyses)
- nature (e.g. C:N, other easily accessible & affordable)

Field vs lab data (± standardized, e.g. AFNOR dried, 1mm, +KNO₃) Moisture Particle size Loss of NH4/NH3 when EOM preparation for lab (drying)

Accessibility to decomposers Physical state (liquid, paste, solid) Specific surface

Sensitivity to gazeous losses Physical state (liquid, paste, solid) Specific surface

Microbial and other biological (fauna, nematodes...) drivers

laurent.thuries@cirad.fr 05/2022 - Agroscope Re-evaluating the N recovery of manures

Let's talk about (all of?) this!

Action/Choice = f (fertilizer value X availability X cost X regulations ...)

- > I use it at the same dose because it is available... and I've always done it this way
- > I would like to use it but they say that manure is poor in nutrients
- > I would like to use it but they say that lots of N is lost (I will loose money & time)
- I don't use it because I don't know its fertilizer value
- > I don't use it because it is difficult to have it & spread, + regulations... and it stinks!

 Σ = a wide range of potential ways for the improvement of manure utilization

Objectives (at \neq levels):

- improve N recovery (& reduce losses)
- document the fertilizer value
- provide decision support systems or easy tools
- * ...
- improved comprehension of processes (drive adequate levers)

Supp material: Indicators & characterization techniques (e.g. NIRS)

Thuriès et al. (2001) SBB; Thuriès et al. (2005) JNIRS; AFNOR (2009-2016); Lashermes et al (2009) SBB; Peltre et al. (2009) SBB

Supp material: PROLAB, lab vs field & lab standard vs lab ~field

AFNOR standard for lab incubations: 40°C dried EOM, 1mm particle size, +KNO₃ solution (non-limiting conditions)

3L cumul Cmin Poultry manure

REPUBLIQUE INRA® Cirad

AFNOR FD U44-162 (2016); project ADEME PROLAB (unpublished results)
laurent.thuries@cirad.fr 05/2022 – Agroscope Re-evaluating the N recovery of manures

Supp material: PROLAB, lab vs field & lab standard vs lab ~field

Workshop 3.B N recovery vs. site conditions: opportunities and challenges of combining studies from different locations

Influence of external factors on manure N recovery

LAURA ZAVATTARO DEPT. OF VETERINARY SCIENCES UNIVERSITY OF TORINO, ITALY

Commitment

Factors that influence N recovery from manures

External factors (3.B)

- Soil → texture, pH, SOM; water content...
- Climate \rightarrow T, rainfall, ET...

Internal factors (3.A)

• C/N, type of C compounds...

Management factors (1,2)

 Crop, season, incorporation depth, frequency of distributions, amount...

N recovery

Recent meta-analyses or reviews

- Du, Y., Cui, B., Zhang, Q., Wang, Z., Sun, J., Niu, W., 2020. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. CATENA 193, 104617. doi:10.1016/j.catena.2020.104617
- Li, B., Song, H., Cao, W., Wang, Y., Chen, J., Guo, J., 2021. Responses of soil organic carbon stock to animal manure application: A new global synthesis integrating the impacts of agricultural managements and environmental conditions. Global Change Biology 27, 5356–5367. doi:10.1111/gcb.15731
- Maillard, É., Angers, D.A., 2014. Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology 20, 666–679. doi:10.1111/gcb.12438
- O'Brien, P.L., Hatfield, J.L., 2019. Dairy Manure and Synthetic Fertilizer: A Meta-Analysis of Crop Production and Environmental Quality. Agrosystems, Geosciences & Environment 2. doi:10.2134/age2019.04.0027
- Wei, L., Chen, S., Cui, J., Ping, H., Yuan, C., Chen, Q., 2022. A meta-analysis of arable soil phosphorus pools response to manure application as influenced by manure types, soil properties, and climate. Journal of Environmental Management 313, 115006. doi:10.1016/j.jenvman.2022.115006
- Zavattaro L., Bechini L*. Grignani C., van Evert F.K., Mallast J., Spiegel H., Sandén T., Pecio A., Giráldez Cervera J.V., Guzmán G., Vanderlinden K., D'Hose T., Ruysschaert G., ten Berge H.F.M., 2017. Agronomic effects of bovine manure: A review of long-term European field experiments. European Journal of Agronomy 90: 127-138. doi:10.1016/j.eja.2017.07.010

Arid

333

5.3

(b) Climate (c) Texture Du et al., 2020 Warm (376)Clay (201)Cool (396)(218) Loam (154)Humid (18) Sandy (333) Arid -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Ln(RR yield) Change (%) 95% CI Change (%) n n Climate types Warm 376 7.0 1.6 Soil texture Clay 201 9.9 Cool 396 8.0 2.0 Loam 218 11.2 Arid index Humid 154 9.5 5.9 Sandy 18 9.5

2.0

(n comparisons)

95% CI

2.1

2.6

9.7

Climate and texture ightarrow yield and N in yield

Climate and texture \rightarrow SOC, TN

Du et al., 2020

SOC

		n	Change (%)	95% CI			n	Change (%)	95% CI
Climate types	Warm	186	14.2	2.2	Soil texture	Clay	105	14.1	2.9
	Cool	206	20.8	2.6		Loam	97	22.5	4.2
Arid index	Humid	97	19.3	3.8		Sandy	10	15.5	17.9
	Arid	173	15.1	1.8					
				TN					
		n	Change (%)	95% CI			n	Change (%)	95% C
Climate types	Warm	165	11.6	2.4	Soil texture	Clay	98	10.8	3.5
	Cool	152	19.7	4.4		Loam	60	16.3	5.4
Arid index	Humid	78	22.1	6.1		Sandy	10	17.9	13.6
	Arid	141	13.5	2.7			Ţ.		

Climate \rightarrow SOC

1.2

1

1.4

Relative SOC change

1.6

Cool temperate (12)

Warm temperate (5)

Tropical (11)

A review on EU data

Zavattaro et al., 2017

Climate ightarrow yield and N in yield

Yield

N in yield

p=0.001 FYM p=0.000 SLU

Climate → SOC, TN

SOC

p=0.006 FYIVI p=0.012 SLU

ΤN

p=0.380 FYM

Soil texture \rightarrow yield and N in yield

Yield

N in yield

p=0.000 FYM p=0.000 SLU

p=0.168 FYM

Soil texture \rightarrow SOC, TN

p=0.032 FYM p=0.599 SLU

TN

Climate, texture \rightarrow efficiency indicators

FYM

SLU

Factor	Level	Yield/Nfe	ert	Nyield	/Nfe	ert	N appar i	recov	1	Factor	Level	Yield	/Nfe	rt	Nyield/	Nfert	N appar re	cov
		mean	n	mean		n	mean		n			mean		n	mean	n	mean	n
Climate	р	0.149 ns	212	0.001	++	55	. +	+ 3.	3	Climate	р	0.001	++	88		ns 27		20
	North		-			-			-		North			-		-		-
	East	-3%	175	-22%	b	38	-76% k	D 18	8		East	-34%	b	47		-		-
	West	-10%	14	+17%	ab	1			-		West	-31%	b	7	-9%	8	1.154	3
	South	+10%	23	+15%	а	16	+174% a	a 1!	5		South	+14%	а	34	-26%	19	0.672	17
Soil texture	р	0.987 ns	212	0.000	++	55	. +	+ 3.	3	Soil texture	р	0.000	++	88		ns 27		20
	Light	-2%	92	+33%	а	25	+62% a	a 11	7		Light	+7%	а	45	-14%	5	-12%	3
	Medium	-2%	114	-23%	b	30	-60% k	D 10	6		Medium	-39%	b	43	-22%	22	-12%	17
	Heavy	0%	6			-			-		Heavy			-		-		-

Open questions

Factors: Classes or continuous variables?	Texture: sand / clay? Climate: mean annual T, mean annual R?
Factors: Are we testing the right factors?	Soil pH, initial SOM, C/N Measurable ≠ relevant (e.g. soil particles vs pores)
N recovery indicators: Which system boundaries?	recovery = plant + soil modern NMPs should include SOC

Thanks for your attention!

Predicting manure N availability

Anne Bhogal Expert workshop; Agroscope, Zurich May 2022

www.adas.uk

Quantifying crop available nutrient supply from manures is 'challenging' !

ADAS

What is the contribution from mineralization of manure organic N?

Key questions:

- How much and when?
- Timescale?
- What about repeat additions/cumulative effects?

Key factors:

- Manure type
- Soil type
- Climate (temperature/moisture)

30 January 2023

4

Manure N forms Cattle slurry Ammonium-N Cattle FYM Organic-N Ammonium-N Organic-N (6% dry matter) Uric acid-N . Pig slurry Poultry Ammonium-N Organic-N (4% dry Organic-N manure matter) Ammonium-N

Contribution of mineralized organic N will vary with manure type:

- Dry matter and total organic N content
- 'quality' of the organic N e.g. C:N ratio

Mineralization of organic nitrogen from farm manure applications

A. BHOGAL¹, J. R. WILLIAMS², F. A. NICHOLSON¹, D. R. CHADWICK³, K. H. CHAMBERS⁴ & B. J. CHAMBERS[†] ¹ADAS Gleadthorpe Meden Vale, Mansfield, Nottinghamshire, NG20 9PD, UK, ²ADAS Boxworth, Cambridge, CB23 4NN, UK, ³School of Environment, Natural Resources and Geography, Bangor University, Dieniol Road, Bangor, LL57 2UW, UK, and ⁴School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NEI 7RU, UK

• Fate of organic N (uptake/leached) in 9 'ammonium-N stripped' manures tracked for 5 years at 2 sites (sandy loam soils), high/low rainfall regions in England

Manure organic N mineralisation vs. thermal time (North Wyke)

Relationship between manure organic N mineralisation and thermal time

Nicholson et al. (2013) Soil Use and Management 29, 473-484

Estimates crop available nutrient supply based on:

- nutrient & dry matter content
- Application method & timing
- Incorporation method & timing
- Rainfall (UK postcodes)
 Soil type (volumetric moisture content)

MANNER-NPK

Typical output – layer manure

12 t/ha Layer manure; Applied in March prior to a spring cereal

ile Tools Library Help						
Farm & Field Details Application Manure		5 £ Value				
Nitrogen			Phosphate, Potash, Sulphur & Magr	nesium		
Total N (kg/ha)	228		Total P2O5 (kg/ha)	168		Show results for: All Applications •
Mineralised N (kg/ha)	27		Crop available P2O5 (kg/ha)	101		Potential financial value
Nitrogen losses			T			of manure application(s) £298/ha
Nitrate-N (kg/ha)	0	۲	Total K ₂ O (kg/ha)	114		
Ammonia-N (kg/ha)	29	1	Crop available K2O (kg/ha)	103		
Denitrified-N (kg/ha)	6	۲	Total SO3 (kg/ha)	48	۲	
Crop available N			Total MgO (kg/ha)	31		
Current crop (kg/ha)	106	۲				
Following crop - year 2 (kg/ha)	8	۲				
Nitrogen efficiency (%)	46	۲				

Typical output – Cattle FYM

40 t/ha Cattle manure, applied in March prior to a spring cereal

2 🗟 🍋 🔚	?						MANN	VP
Farm & Field Details Application M	Manure Analysis	Results	£ Value					200202
Nitrogen				Phosphate, Potash, Sulphur & Mag	nesium			
Total N (kg/ha)	240	5		Total P2O5 (kg/ha)	128		Show results for: All Applications	•
Mineralised N (kg/ha)	9)		Crop available P2O5 (kg/ha)	77		Potential financial value	
Nitrogen losses							of manure application(s) £314/h	a
Nitrate-N (kg/ha)	0		0	Total K:O (kg/ha)	320			
Ammonia-N (kg/ha)	10		1	Crop available K2O (kg/ha)	288			
Denitrified-N (kg/ha)	1		1	Total SO3 (kg/ha)	96	۲		
Crop available N				Total MgO (kg/ha)	72			
Current crop (kg/ha)	22		Ð					
Following crop - year 2 (kg/h	ia) 8	>	۲					
Nitrogen efficiency (%)	9		Ð					

Conclusions & key questions for workshop

- Mineralisation of organic N from manures can contribute significant amounts of N, both in the year of application and subsequent seasons
- This varies with manure type and is related to thermal time Key questions:
- How does this vary with soil type?
- How long should you account for manure N mineralisation
- What about repeat applications/cumulative effects?
- Are there any other / better models that we should be looking at?

30 January 2023

13

Implementation of manure N use efficiency for farmers

16/02/2023

1

Daniele Cavalli

daniele.cavalli@crea.gov.it

Council for Agricultural Research and Economics – Animal Production and Aquaculture (CREA-ZA)

Agroscope, Zurich, Switzerland

04-06 March 2022

<image>

Experimental determination of NUE

Tabulated values

- Type of animal
- Application (time, method, dose)
- Crop (type/growing season)

Models

- Statistical (C/N, NH₄-N/N) (Joseph *et al.*, 2017)
- Empirical (Schröder *et al.*, 2013; Sørensen *et al.*, 2016)
- Mechanistic (Schröder et al., 2005, Nicholson et al., 2013)

Provided values

- First year NFRV and ANR_{manure}
- Residual effects
- N losses

- Different models (Manzoni and Porporato, 2009)
 - n° pools
 - n° fluxes
 - decomposition kinetics
- Sensitivity analysis for the simulated dynamics (Saltelli *et al.*, 2004)
 - understanding how the model behaves
 - identify parameters to be calibrated
 - model simplification
- Parameter calibration
 - tradeoff between C & N simulations (Cavalli and Bechini, 2012)
 - different calibration strategies (e.g. manure-specific parameter set, manure-category parameter set, manure-specific set based on measured properties) (Levavasseur *et al.*, 2021)

16/02/2023	19
------------	----

Variable rate according to crop yield (Moshia et al., 2014)

- Strategy 1: Higher rates in low-yielding zones
- Strategy 2: Higher rates in high-yielding zones

Variable rate to increase stable soil organic matter (Corti *et al.*, submitted)

• Higher rates in fine-textured zones and with lower C content

- Cavalli and Bechini (2012). Multi-objective optimisation of a model of the decomposition of animal slurry in soil: Tradeoffs between simulated C and N dynamics. Soil Biology & Biochemistry 48, 113-124
- Cavalli et al. (2016). Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. Europ. J. Agronomy 73, 34-41 Cavalli et al. (2017). CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and
- digestates. Geoderma 308. 26-35 Cavalli et al. (2019). Sensitivity analysis of C and N modules in biogeochemical crop and grassland models following manure addition to soil. Eur. J. Soil Sci. 70, 833-846
- Cusick et al. (2006) Estimates of residual dairy manure nitrogen availability using various techniques. J. Environ. Qual. 35, 2170-2177
- Delin et al. (2012). Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use Manag. 28, 283-291
- Gale et al. (2006). Estimating plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 35, 2321-2332
- Joseph et al. (2017). Classification and assessment models of first year byproducts nitrogen plant-availability from literature data. Science of the Total Environment 586, 976-984
- Levavasseur et al. (2021). Quantifying and simulating carbon and nitrogen mineralization from diverse exogenous organic matters. Soil Use and Management, 38, 411-425
- Manzoni and Porporato (2009), Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology & Biochemistry 41. 1355-1379
- Morris et al. (2018) Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 110, 1–37 Moshia et al. (2014). Precision manure management across site-specific management zones: grain yield and economic analysis. Agron. J. 106, 2146-2156
- Muñoz et al. (2004). Comparison of estimates of first-year dairy manure nitrogen availability or recovery using nitrogen-15and other techniques. J. Environ. Qual. 33, 719-727
- Nicholson et al. (2013). An enhanced software tool to support better use of manure nutrients: MANNER-NPK. Soil Use Manag. 29, 473-484
- Saltelli et al. (2004). Sensitivity analysis in practice. A guide to assessing scientific models. John Wiley & Sons.
- Schröder et al. (2005). Long-term nitrogen supply from cattle slurry. Soil Use Manag. 21, 196–204 Schröder et al. (2013). Residual N effects from livestock manure inputs to soils. In: Recycling of Organic Residues in Agriculture: From Waste Management to Ecosystem Services. RAMIRAN - Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture, Versailles
- Schröder et al. (2016). The elusive role of soil quality in nutrient cycling: a review. Soil Use Manag. 32, 476-486
- Sørensen and Fernández (2003). Dietary effects on the composition of pig slurry and on the plant utilization of pig slurry nitrogen. J. Agric. Sci. 140, 343–355
- Sørensen et al. (2003). Dietary effects on the composition and plant utilization of nitrogen in dairy cattle manure. J. Agric. Sci. 141, 79-91 Sørensen et al. (2016). A model of animal manure nitrogen mineralisation in soil. Proceedings of the 2016 International Nitrogen Initiative Conference, "Solutions to improve nitrogen use efficiency for the world", 4-8 December 2016, Melbourne, Australia

16/02/2023	21
------------	----

Thank you for your attention

Thanks to my colleagues: Pietro Marino Gallino (Università degli Studi di Milano Luca Bechini (Università degli Studi di Milano Studi di Milano Martina Corti (Università degli

Giovanni Cabassi CREA _amberio Borrelli (CR _uigi Degano (CREA Nicolò Pricca (CR

Roberto Comolli (University of Milano-Bicocca) Chiara Ferrè (University of Milano-Bicocca)

Gianni Bellocchi (INRA, VetAgro Sup)