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Abstract 
Background and aims Soil carbon sequestration 
can play an important role in mitigating climate 
change. Higher organic C inputs to agricultural soils 
are needed in order to increase soil organic car-
bon (SOC) stocks. Genotype selection and breeding 
towards increased root biomass may enhance root C 
inputs to the soil and could therefore be a promising, 
easy-to-implement management option for potentially 
increasing C sequestration. However, an increase in 
root C inputs may compromise yield, which is not 
desirable in terms of food security.
Methods Data from 13 global studies with field 
experiments were compiled in order to estimate the 
potential of optimised genotype selection for enhanc-
ing root biomass without compromising the yield 
of winter wheat, spring wheat, silage maize, winter 
rapeseed and sunflower. A lack of data on the effect 

of variety on rhizodeposition was identified which 
thus had to be excluded.
Results Systematic genotype selection increased 
mean yields by 52% and mean root biomass by 22% 
across all crops and sites. A median root C increase 
of 6.7% for spring wheat, 6.8% for winter rapeseed, 
12.2% for silage maize, 21.6% for winter wheat and 
26.4% for sunflower would be possible without a 
yield reduction.
Conclusion Overall, this review demonstrates that 
optimised genotype selection can be a win-win option 
for increasing root biomass C input to soil while 
maintaining or even enhancing yield.

Keywords Root biomass · Root carbon inputs · 
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Carbon sequestration

Introduction

Soils store more than half of all terrestrial carbon 
(C) (Jobbagy and Jackson 2000) and can be a sink 
or source for atmospheric  CO2 (Lal 2004). The accu-
mulation of C in soils could therefore play an impor-
tant role in mitigating climate change and sustaining 
agricultural productivity and soil health (Lal 2004). 
In order to build up soil organic carbon (SOC) stocks 
in agricultural soils or maintain them with a chang-
ing climate, increased organic carbon (OC) inputs are 
needed (Riggers et  al. 2021). Various management 
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strategies for SOC sequestration have been identified, 
such as minimising bare fallow periods, adjusting 
nitrogen (N) fertilisation, increasing the recycling of 
organic material, and non-harvesting of crop residues 
(Kätterer et al. 2012; Paustian et al. 2016). However, 
aboveground biomass is used in many ways, such as 
for food and fodder, but also as a renewable source 
of energy or fibre. Thus, there is limited potential 
for increasing aboveground C inputs to soils with-
out compromising other agricultural targets. In con-
trast, there is hardly any competing use for most crop 
roots as they are non-harvestable. This does not apply 
for crops where the roots are the agricultural prod-
uct such as sugar beet, carrots and potatoes as their 
underground storage organs are completely harvested 
and removed from the field. In agricultural soils, crop 
roots are the major source of SOC (Poeplau et  al. 
2021) as root C has a residence time in soils two to 
three times longer than that of other crop residues or 
manure-derived C inputs (Kätterer et al. 2011; Meni-
chetti et  al. 2015) and is therefore more effective at 
maintaining and building up SOC. Therefore, enhanc-
ing root biomass could introduce additional OC into 
agricultural soils and thus become an option for 
potentially sequestering C in soils.

Unfortunately, the quantification of root C inputs 
in field experiments is labour intensive, and methods 
vary greatly and are hard to compare (Freschet et al. 
2021). Therefore, in soil C modelling, root C inputs 
are mostly estimated from crop yields using allo-
metric functions (Keel et al. 2017). These allometric 
functions are specific to crop type and relate the yield 
to the amount of aboveground and belowground plant 
biomass, including the root:shoot ratio (Jacobs et al. 
2020; Keel et  al. 2017). There are no genotype-spe-
cific allometric functions due to an absence of data, 
but the few existing studies suggest varying root:shoot 
ratios between genotypes. For example, Fang et  al. 
(2017) found a root:shoot ratio of 1.13 in a wheat 
landrace, while two modern cultivars had root:shoot 
ratios of 0.61 and 0.81. Thus, genotypic variability is 
a cause of considerable uncertainty around SOC pro-
jections in agriculture. This variability does, however, 
offer great potential for increasing root biomass C 
inputs, which is assessed in this study.

It is difficult to reduce these uncertainties and 
even more challenging to maintain current cropland 
productivity in light of climate change with increas-
ing extreme weather events (Anderson et  al. 2020) 

because agricultural production is very site depend-
ent. Higher temperatures may limit root growth, alter 
root system architecture, and reduce root:shoot ratios 
(Koevoets et al. 2016). Lynch (2013) suggested intro-
ducing a new ideotype of maize roots adapted to cli-
mate change, where the deep steep roots would opti-
mise water and nitrogen acquisition.

Optimised genotype selection and breeding 
towards more roots in general may enhance yield sta-
bility under future climatic conditions and be key to 
successful climate change adaptation by agricultural 
systems of the future. However, roots have not so 
far been a focus for breeders, and there is very lim-
ited knowledge about the root biomass of different 
genotypes of various crop types. This review com-
piled existing studies and experimental data on root 
biomass, aboveground biomass and the yield of dif-
ferent genotypes of arable crops in order to estimate 
the potential of genotype selection for enhancing root 
biomass and thereby root biomass C inputs into agri-
cultural soils. The hypotheses of this review were: (a) 
genotypes of arable crops differ significantly in root 
biomass, (b) it is possible to increase root biomass 
while maintaining yield, and (c) the root:shoot ratio 
differs significantly between different genotypes of 
arable crops.

Material and methods

Data collection

To quantify the effects of genotype selection on root 
biomass C inputs, a literature survey was conducted 
using the electronic databases Scopus and ISI Web 
of Science to identify studies that have measured root 
biomass, aboveground biomass and the yield of dif-
ferent genotypes of important arable crops. This sur-
vey focused on the agricultural annual crops of wheat, 
oilseed rape, maize, barley, rye, sunflower, triticale, 
potato and sugar beet. The following search terms 
were used: crop root genotype OR crop root cultivar, 
with results refined by biomass OR matter in “Article 
Title, Abstract or Keywords”. The results from both 
databases were merged, and resulted in 1348 studies 
as an output of the search. In addition, an unpublished 
dataset from Switzerland was provided by Andreas 
Hund et al. (not published).
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In the present study, it was necessary to depict at 
least a small population at each site, thus a minimum 
of four genotypes per study were needed. This led 
to the identification of 198 studies with a sufficient 
number of genotypes. Studies that did not provide the 
necessary information were excluded by the criteria 
outlined in Supplementary Fig.  1: i) studies where 
different genotypes of one crop were not grown at 
the same site, ii) greenhouse trials and experiments 
with plants grown in pots, and iii) studies where root 
biomass, shoot biomass and yield were measured 

before anthesis or were missing. These require-
ments led to a dataset of 13 studies (see Table 1). No 
appropriate data for barley, rye, triticale, potato and 
sugar beet were found. If different water or fertilisa-
tion treatments were available in the study, treatment 
close to agricultural practice was considered to avoid 
effects caused by water stress or large fertilisation 
differences.

For data presented graphically, the authors were 
contacted to provide data or data were extracted using 
WebPlotDigitizer (Ankit Rohatgi 2021). Furthermore, 

Table 1  Overview of the studies included

Code Location Crop MAT (°C) MAP (mm) Number of 
genotypes

Sampling 
depth 
(cm)

Author DOI
of the sampling year

BE-Bas
BE-Mar
BE-Rav

Bassevelde, 
Belgium

Marelbeke, 
Belgium

Ravels, Belgium

Silage maize 18.6 860 8 0–30 Xu et al. 2020 https:// doi. org/ 10. 
1016/j. eja. 2020. 
126121

CH-Zür Zürich, Switzer-
land

Winter wheat 9.7 1463 8 0–20 Hund et al. Not published

CN-Lis Lishu, China Silage maize 6.8 580 8 0–35 Shao et al. 2019 https:// doi. org/ 10. 
1007/ s11104- 
019- 03964-8

DE-Ost Ostenfeld, Ger-
many

Silage maize 8.9 847 10 0–60 Taube et al. 2020 https:// doi. org/ 10. 
3389/ fpls. 2020. 
01214

FR-Cle Clermont-Fer-
rand, France

Winter wheat 10.1 975 16 0–30 Allard 
et al. 2013

https:// doi. org/ 10. 
1016/j. eja. 2012. 
12. 004

FR-LeR Le Rheu, France Winter rape 11.9 737 6 0–100 Vazquez-
Carrasquer 
et al. 2021

https:// doi. org/ 10. 
3389/ fpls. 2021. 
641459

IN-His Hisar, India Winter wheat 25.3 509 5 0–100 Tyagi et al. 2004 –
IN-Nas Nashipur, India Spring wheat 25.78 1518.4 10 0–10 Jahan et al. 2019 https:// doi. org/ 10. 

30848/ PJB20 
19- 2(11)

IN-Tez Tezpur, India Winter wheat 24 740 7 0–30 Baruah 
et al. 2017

https:// doi. org/ 10. 
1071/ FP170 29

IR-Tab Tabriz, Iran Winter rape 16 1360 14 0–100 Norouzi 
et al. 2008

https:// doi. org/ 10. 
1234/4. 2008. 
1230

MX-Obr Obregon, 
Mexico

Spring wheat 24.9 361 10 0–120 Lopes et al. 2011 https:// doi. org/ 
10. 2135/ crops 
ci2010. 07. 0445

PK-Fai Faisalabad, 
Pakistan

Sunflower 24.8 526 12 0–100 Rauf et al. 2008 https:// doi. org/ 
10. 1080/ 09064 
71070 16289 58

ZA-Kwa KwaZulu-Natal, 
South Africa

Winter wheat 18 738 99 0–60 Mathew et al. 
2019

https:// doi. org/ 10. 
1111/ jac. 12332

https://doi.org/10.1016/j.eja.2020.126121
https://doi.org/10.1016/j.eja.2020.126121
https://doi.org/10.1016/j.eja.2020.126121
https://doi.org/10.1007/s11104-019-03964-8
https://doi.org/10.1007/s11104-019-03964-8
https://doi.org/10.1007/s11104-019-03964-8
https://doi.org/10.3389/fpls.2020.01214
https://doi.org/10.3389/fpls.2020.01214
https://doi.org/10.3389/fpls.2020.01214
https://doi.org/10.1016/j.eja.2012.12.004
https://doi.org/10.1016/j.eja.2012.12.004
https://doi.org/10.1016/j.eja.2012.12.004
https://doi.org/10.3389/fpls.2021.641459
https://doi.org/10.3389/fpls.2021.641459
https://doi.org/10.3389/fpls.2021.641459
https://doi.org/10.30848/PJB2019-2(11
https://doi.org/10.30848/PJB2019-2(11
https://doi.org/10.30848/PJB2019-2(11
https://doi.org/10.1071/FP17029
https://doi.org/10.1071/FP17029
https://doi.org/10.1234/4.2008.1230
https://doi.org/10.1234/4.2008.1230
https://doi.org/10.1234/4.2008.1230
https://doi.org/10.2135/cropsci2010.07.0445
https://doi.org/10.2135/cropsci2010.07.0445
https://doi.org/10.2135/cropsci2010.07.0445
https://doi.org/10.1080/09064710701628958
https://doi.org/10.1080/09064710701628958
https://doi.org/10.1080/09064710701628958
https://doi.org/10.1111/jac.12332
https://doi.org/10.1111/jac.12332
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data on soil texture, mean annual precipitation (MAP) 
and mean annual temperature (MAT) were compiled 
as potential explanatory variables. If there was no 
information on MAP and MAT, the gaps were filled 
with data from weath erbase. com, selecting the closest 
weather station.

Calculations & statistics

Equations developed by Fan et  al. (2016) were used 
to extrapolate root biomass to be able to compare the 
different studies and sampling depths (see Eq. 1):

where Rd is the root mass for the selected depth d. 
All root biomass data were harmonised for the depth 
100 cm. Rdobs

 is the root mass for the observed depth 
and dmax is the crop-specific maximum rooting depth 
derived from the literature. da, dmax and c are the fitted 
equation parameters for each crop (Fan et  al. 2016) 
(see Table 2).

To harmonise the various studies and make the 
data comparable, area-related units (Mg   ha−1) were 
calculated. If biomass per plant was assessed in the 
studies, plant densities were estimated based on avail-
able information on seeds  m−2, row spacing and ger-
mination rate to upscale to area-related units.

Following Bolinder et  al. (2007), a root bio-
mass C content of 45% was assumed to calculate 
total root C, but root exudates were not considered. 
As the objective of the review was to estimate the 
potential increase in root biomass C inputs based 
on variety selection, the maximum and average root 

(1)

R
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= R
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biomass observed in a study/population needed to be 
compared. Thus, it was assumed that the variability 
between the selected genotypes was representative 
of the entire population and the data distribution was 
skewed towards lower biomasses. Thus, the genotype 
with the median root biomass was identified and the 
corresponding yield used as the reference for this 
population:

To test for differences in the response variables 
of root biomass and root:shoot ratio, we fitted linear 
mixed-effects models to the data with lme4 (Bates 
et al. 2015). As none of the studies had used the same 
genotypes, the data were perfectly nested and it was 
not possible to test for differences between genotypes. 
To test for differences between means of locations or 
crops, these were modelled as fixed effects. To test for 
correlations between root biomass and climate vari-
ables, for example, location was treated as a random 
effect to account for different site-specific sources of 
variance in the root data.

All the calculations were performed with R Studio 
(R Core Team 2020), R version 4.1.3, using the pack-
age Tidyverse (Wickham et al. 2019).

Results

Root biomass

Overall, 13 studies were collected with a total of 
212 genotypes of winter wheat, spring wheat, win-
ter rapeseed, silage maize and sunflower under vari-
ous growing conditions. The median root biomass 
among all crops was 1.5  Mg   ha−1   yr−1, while the 
variation across median per crop ranged from 1.33 to 
2.39 Mg  ha−1  yr−1 (Table 3). The variation in root bio-
mass between crops, expressed as the standard devia-
tion, was 0.57 Mg   ha−1   yr−1, and the mean standard 
deviation of genotypes within sites within crops was 
0.40 Mg   ha−1   yr−1. Root biomass did not differ sig-
nificantly between crops in this small dataset.

Among all the sites, winter wheat had a median 
root biomass of 1.33  Mg   ha−1   yr−1 (CV = 57.21), 

(2)
Potential root C increase = root Cgenotype − root Creference

(3)
Potential yield increase = yieldgenotype − yieldreference

Table 2  Estimated parameters for root biomass calculation 
from Fan et al. (2016)

Crop da dmax c

Wheat 17.2 150.4 −1.286
Maize 14.9 118.3 −1.151
Rapeseed 9.9 105.6 −0.473
Sunflower 10.0 133.0 −0.671

http://weatherbase.com
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silage maize had a median root biomass of 
1.72  Mg   ha−1   yr−1 (CV = 25.66), and winter rape-
seed had the highest median root biomass of all the 
crops at 2.39  Mg   ha−1   yr−1 (CV = 23.60). The only 
study on sunflower showed a median root biomass of 
1.46 Mg   ha−1   yr−1 (CV = 29.22) (Table 3). The root 
biomass per genotype is displayed in Fig. 1.

Aboveground biomass

Aboveground biomass had a median value of 
10.62  Mg   ha−1   yr−1 and ranged between 2.92 and 
26.21  Mg   ha−1   yr−1 among all crops. Aboveground 
biomass was not correlated with MAT, MAP or clay 
content (Supplement Table 1). The yield (total above-
ground biomass) of silage maize was significantly 
higher, at 21 ± 5 Mg  ha−1  yr−1, than the grain yield of 

all other crops (p < 0.05). The ranges of total above-
ground biomass yield and grain yield per study site 
are depicted in Fig. 2.

Silage maize showed a median yield of 
22.26  Mg   ha−1   yr−1 with a CV of 22.19% 
(Table  4). The median yield of winter wheat was 
5.15  Mg   ha−1   yr−1 (CV = 20.69%) and for spring 
wheat it was 4.88 Mg  ha−1  yr−1 (CV = 31.98%). Win-
ter rapeseed had a median yield of 3.73 Mg  ha−1  yr−1 
(CV = 33.04%). The only study on sunflowers showed 
a median yield of 1.81 Mg  ha−1  yr−1 (CV = 84.67%).

Sixty-three of the 212 genotypes included in this 
study showed potential for increasing root biomass 
C without compromising yield. The potential for 
increasing root biomass C inputs (Eq.  2) and yield 
(Eq. 3) did not seem to follow a positive correlation; 

Table 3  Variation in root 
biomass per crop type. 
CV is the coefficient of 
variation in per cent. 
Standard deviation, 
maximum, median and 
minimum are given in the 
unit Mg  ha−1  yr−1

Crop Silage maize Spring wheat Sunflower Winter rapeseed Winter wheat

Standard deviation 0.43 0.47 0.45 0.60 0.92
CV [%] 25.66 31.13 29.22 23.60 57.21
Maximum 2.49 2.87 2.44 3.82 6.56
Median 1.72 1.51 1.46 2.39 1.33
Minimum 0.90 0.67 1.00 1.71 0.76

Fig. 1  Belowground biomass of all genotypes of field-grown 
crop types. The number of genotypes tested at each study site 
(n) is displayed in bold; the coefficients of variation [%] (CV) 
are depicted in italics

Fig. 2  Yield (total aboveground biomass of silage maize and 
grain yield of spring wheat, winter wheat, sunflower and win-
ter rapeseed) of all genotypes. The number of genotypes tested 
at each study site (n) is displayed in bold; the coefficients of 
variation [%] (CV) are depicted in italics



24 Plant Soil (2023) 490:19–30

1 3
Vol:. (1234567890)

there appeared to be either a large yield increase or a 
large root biomass and therefore root biomass C input 
increase, but not both (Fig. 4).

The greatest potential for increasing root biomass 
C without compromising yield was observed in win-
ter wheat (0.67 Mg C  ha−1  yr−1), followed by spring 
wheat (0.64  Mg C  ha−1   yr−1). The median poten-
tial yield increase varied from 0.34  Mg   ha−1   yr−1 

(winter rapeseed) to 6.63 Mg  ha−1  yr−1 (sunflower). 
Sunflower also showed the greatest potential for 
increasing yield (4.43 Mg C  ha−1  yr−1) (Fig. 3).

Root:shoot ratios

Root:shoot ratios had a median of 0.13, and ranged between 
0.05 and 0.80 among all crops. Winter wheat showed a 
median root:shoot ratio of 0.15 (CV = 66.59%), which was 
the highest median root:shoot ratio of all crops with the 
highest variation. Winter rapeseed had a similar root:shoot 
ratio of 0.14, but a lower variability (CV = 16.46%). Spring 
wheat had a median root:shoot ratio of 0.12 (CV = 51.38%). 
Sunflower and silage maize had the lowest median 
root:shoot ratios (0.09 and 0.08) of all crops, but sunflower 
showed more variability (CV = 58.81%) than silage maize 
(CV = 28.57%). Winter wheat, summer wheat and sun-
flower seemed to be more flexible than silage maize and 
winter rapeseed (Table 5, Fig. 4).

Discussion

Can genotype selection increase root biomass C 
inputs to soil?

The presented data show that there is a great variability 
in root biomass production between different genotypes 

Table 4  Variation in yield (total aboveground biomass of 
silage maize and grain yield of spring wheat, winter wheat, 
sunflower and winter rapeseed) per crop type. CV is the coef-

ficient of variation in per cent. Standard deviation, maximum, 
median and minimum are given in the unit Mg  ha−1  yr−1

Crop Silage maize Spring wheat Sunflower Winter rapeseed Winter wheat

Standard deviation 4.58 1.57 2.33 1.43 1.07
CV [%] 22.19 31.98 84.67 33.04 20.69
Maximum 26.21 6.80 6.24 7.54 7.83
Median 22.26 4.88 1.81 3.73 5.15
Minimum 10.58 2.20 0.43 2.68 0.30

Fig. 3  Relative potential yield and root biomass C change [%] 
of all field-grown genotypes in comparison with the median 
root biomass of each study’s genotype and its corresponding 
yield

Table 5  Variation of 
root:shoot ratios per crop 
type. CV is the coefficient 
of variation in per cent

Crop Silage maize Spring wheat Sunflower Winter rapeseed Winter wheat

Standard deviation 0.02 0.08 0.06 0.02 0.12
CV [%] 28.57 51.38 58.81 16.46 66.59
Maximum 0.19 0.37 0.25 0.22 0.80
Median 0.08 0.12 0.09 0.14 0.15
Minimum 0.05 0.09 0.05 0.12 0.09
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of a given crop, with a factor 1 to 4 between the geno-
types with the lowest and highest root biomass at the 
same site. Therefore, optimised genotype selection can 
increase root biomass C inputs to the soil by select-
ing genotypes that grow more root biomass. The C 
bound in this additional root biomass can in turn con-
tribute to potentially increasing SOC stocks (Kätterer 
et  al. 2012). Breeding efforts in recent decades have 
resulted in increasing yields (Fischer and Edmeades 
2010) by focusing on the water and nutrient uptake of 
the root system, but not on the size of the root system 
(van Noordwijk and de Willigen 1987; Kell 2011; Lynch 
and Wojciechowski 2015). Thus, modern varieties are 
known to grow fewer roots per plant and have smaller 
root systems than older varieties (Fradgley et al. 2020; 
Zhu et al. 2019). This might give the impression that in 
modern genotypes of common crops it is not feasible 
to increase root biomass C inputs to agricultural soils. 
To test this assumption, Taube et al. (2020) recreated a 
timeline of the breeding progress in silage maize in Ger-
many from 1970 to 2012. It showed that root biomass 
did not increase significantly as the advances in breed-
ing were being made, even though yield increased by 
0.13  t   ha−1   year−1. Thus, they concluded that newer 
genotypes are not likely to enhance the C sequestra-
tion potential through higher root biomass C inputs. 
The dataset from this review contradicts this conclusion 

because 14 of the 26 silage maize genotypes included in 
this study showed potential to increase root biomass and 
therefore root biomass C inputs to agricultural soil by 
a mean of 0.14 Mg C  ha−1  yr−1 (17.6%). For example, 
the genotype Ronaldinio showed a higher yield than the 
median (+ 2.71 Mg  ha−1  yr−1) and the highest root bio-
mass (+ 0.13 Mg  ha−1  yr−1) in the study by Taube et al. 
(2020). Thus, modern genotypes of maize are also able 
to increase root biomass C inputs to agricultural soils. 
Due to constant root:shoot ratios in maize, this surplus 
of root biomass C could be a consequence of the yield 
progress in silage maize.

Fang et  al. (2017) compared three winter wheat 
genotypes: one landrace and two newer cultivars 
(released in 2004 and 2014). The landrace produced 
34–38% more topsoil root mass and 36–62% less sub-
soil root biomass under rain-fed conditions than the 
newer genotypes. Generally, the landrace produced 
more root biomass (226  g   m−2   yr−1) under rain-fed 
conditions than the newer cultivars (170 g   m−2   yr−1 
and 203  g   m−2   yr−1) (Fang et  al. 2017). Since only 
modern genotypes of winter wheat were represented 
in these data, but root biomass production still dif-
fered by 86.4 to 283 g  m−2  yr−1 between the genotype 
with the lowest and the highest root biomass at the 
same site, it could be concluded that modern winter 
wheat genotypes can also increase OC inputs to soils.

Besides root biomass C input from actual root 
biomass, there is another source of OC input from 
the roots – rhizodeposition. Rhizodeposition is esti-
mated to be half the root biomass of crops (Pausch 
and Kuzyakov 2018), and it depends on the degree of 
mycorrhizal colonisation since mycorrhiza can sub-
stitute functions of exudates (Jones et al. 2004). Nei-
ther rhizodeposition nor mycorrhization was included 
in this review as the data availability on this topic 
is extremely limited and would not allow for proper 
evaluation. Van de Broek et al. (2020) found no sig-
nificant differences in net rhizodeposition between 
two old and two new wheat cultivars. A recent study 
by Chaplot et  al. (2023) indicates that rhizodeposi-
tion differ by genotype. But there is no evidence 
that higher root biomass comes at the expense of 
rhizodeposition (Hirte et al. 2018; Pausch and Kuzya-
kov 2018). The key take away from this is that more 
studies on this topic are needed as we do not have 
enough reliable data on how rhizodeposition changes 
between different varieties. However, what we do 
know is that mycorrhizal colonisation varies between 

Fig. 4  Root:shoot ratios of all genotypes of field-grown crop 
types. The number of genotypes tested at each study site (n) 
is displayed in bold; the coefficients of variation [%] (CV) are 
depicted in italics
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genotypes. Al-Karaki and Al-Raddad (1997) found a 
higher mycorrhizal colonisation on a drought-resist-
ant wheat genotype than on a drought-sensitive geno-
type. Singh et al. (2012) showed that the mycorrhizal 
colonisation varied depending on genotype and ferti-
lisation intensity, demonstrating that rhizodeposition 
and its dependency on mycorrhizal colonisation is 
another factor that needs to be considered when esti-
mating OC inputs from roots, but was neglected in 
this study. In general, root data are scarce and more 
research is needed if reliable conclusions are to be 
drawn.

Does genotype selection for increased root biomass 
compromise yield?

The data suggested that increased root biomass does 
not necessarily compromise yield (Fig.  3). In fact, 
the opposite was the case because there seemed to 
be broad potential for increasing root biomass with-
out compromising yield in all crops. If farmers 
select the best yielding genotype, it is highly prob-
able that they are also selecting for the highest root 
biomass C input. Mathew et  al. (2019) showed that 
both aims of genotype selection – higher grain yields 
to sustain food production and higher root biomass C 
inputs for potentially increased C sequestration – can 
be achieved simultaneously. Notably, an increase of 
belowground biomass does not necessarily result 
in an equivalent decline of aboveground biomass as 
both are more likely to feed each other than not (Kell 
2012). Poorter et  al. (2012) suggested that biomass 
allocation might be controlled by the source and sink 
strength of all organs.

Grain yield was moderately positively correlated 
with root biomass under non-stressed conditions, but 
even more strongly and highly significantly positively 
correlated with root biomass and root:shoot ratio 
under drought stress (Mathew et al. 2019). In a simi-
lar experiment with 34 wheat genotypes, Severini et al. 
(2020) found that their own experiment had a much 
larger effect on the variation of biomass and yield 
than the genotype group. This led to the question of 
whether abiotic factors alter the yield and root biomass 
of genotypes even more than genetic variability. This 
knowledge gap could be filled by variety testing for 
climate change adaptation. Testing several genotypes 
under different climatic conditions without neglecting 
the “hidden part” of the plant could provide detailed 

insight into the actual possibilities and limitations of 
optimised genotype selection. Data on the roots of dif-
ferent genotypes at the maturity stage and correspond-
ing yields are currently limited. More information 
on mature plants is needed because Bai et  al. (2019) 
reported that laboratory seedling root screens did not 
predict the root growth of wheat genotypes in the field.

Roots are thought to play a key role when adapting 
food production to climate change (Kell 2012; Lynch 
and Wojciechowski 2015). Deeper rooting enhances 
water and nitrogen acquisition in many agroecosystems 
(Lynch 2013), while larger fine root proliferation and a 
higher mycorrhizal abundance in the topsoil increase 
phosphorus capture (Niu et al. 2013). But an increased 
root biomass does not necessarily equal a larger root 
system with benefits for resource acquisition and thus 
may not always be beneficial for the plant if under abi-
otic stress. Deeper crop rooting is also promoted as a C 
sequestration measure in the subsoil (Kell 2012; Lynch 
and Wojciechowski 2015). Optimised genotype selec-
tion and breeding towards generally more and/or deeper 
roots may thus enhance yield stability under future cli-
matic conditions with increased drought events during 
their vegetation period in Europe.

Variation of root:shoot ratios – impact and potential 
of genotypes

The aboveground to belowground biomass, as displayed 
in the root:shoot ratio, is known to vary widely with envi-
ronmental conditions and with management (Bolinder 
et al. 1997; Plaza-Bonilla et al. 2014; Keel et al. 2017). 
For example, the root:shoot ratio of conventional and 
organic winter wheat differed significantly from 0.09 
(conventional) to 0.15 (organic) at flowering at eight field 
sites in Switzerland (Hirte et al. 2021). Even under homo-
geneous, optimal growth conditions in a greenhouse, the 
mean root:shoot ratio of 297 genotypes of spring wheat 
varied from 0.18 to 4.1 (Narayanan et  al. 2014). The 
root:shoot ratios calculated in the present study are com-
parable to those mentioned above. The lowest root:shoot 
ratios ranged from 0.11 to 0.22 in Clermont-Ferrand, 
France and were higher in Hisar, India, where they 
ranged from 0.67 to 0.80. The included study by Mathew 
et  al. (2019) reported significant variations among 100 
genotypes of winter wheat, ranging from 0.03 to 3.04. 
Fang et  al. (2017) also observed significant differences 
between three genotypes of winter wheat, which ranged 
from 0.61 to 1.13. In contrast, some studies found no 
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significant difference between root:shoot ratios of differ-
ent genotypes (Bolinder et al. 1997; Xu et al. 2020; van 
de Broek et al. 2020). Van de Broek et al. (2020) con-
ducted a mesocosm experiment that could have altered 
the root:shoot ratio in comparison with field experiments. 
The similar root:shoot ratios found by Bolinder et  al. 
(1997) could be due to the genetic and functional equal-
ity of the genotypes.

Root:shoot ratios for silage maize ranged between 
0.05 (Belgium, Ravels) and 0.19 (China, Lishu). 
These root:shoot ratios display the state at the time 
of maturity or harvest. Few comparable maize trials 
were found, but root:shoot ratios have been deter-
mined at earlier developmental stages. The root:shoot 
ratios of maize at the R1 growth stage ranged from 
0.27 for unstressed maize plants to 0.47 for maize 
plants with 65  days of water stress in Akron, USA 
(Benjamin et  al. 2014). Moreover, root:shoot ratios 
of eight maize genotypes varied from 0.4 to 0.7 at 
silking in Lusignan, France under field conditions 
(Hébert et  al. 2001). In summary, root:shoot ratios 
might be generally lower in the present data owing to 
the plants being at a later developmental stage.

It was not possible to determine significant dif-
ferences between the root:shoot ratios of genotypes. 
However, some crops appeared to be more flexible 
than others with regard to root:shoot ratios (Fig.  4, 
Table 5). Winter wheat in particular showed a broad 
range of root:shoot ratios not only between study 
sites, but also within them. In contrast, silage maize 
genotypes seemed very constant in root:shoot ratios. 
This suggests that some crops might be more favour-
able than others when aiming for more root biomass 
while maintaining yield levels. In crops with rigid 
root:shoot ratios such as maize, breeding might not 
be as successful as it might be when aiming for root 
biomass in flexible crops such as winter wheat. The 
validity is apparently limited by the scarce data situ-
ation, but a range of possible variabilities was still 
provided and attention drawn to the knowledge gap 
that limits theoretical estimations and the practical 
implementation of optimised genotype selection.

Implications

The selection of genotypes with a high root biomass 
production seems to be a promising easy-to-implement 

option for enhancing C inputs to agricultural soils, and 
may contribute to increase SOC stocks. The pressure 
on agriculture to decrease the  CO2 footprints of their 
products is increasing. Thus, C sequestration in soils is 
a much debated climate change mitigation measure that 
could help compensate for greenhouse gas emissions. 
However, many measures that increase soil C seques-
tration compromise yield and productivity. This review 
demonstrated that genotype selection is a feasible option 
for increasing root biomass C input to the soil while it 
could maintain or even enhance yields. Further, we iden-
tified a serious lack of data availability on differences in 
rhizodeposition between varieties of agricultural annual 
crops. Therefore, it was impossible to include rhizodepo-
sition in this study constituting a considerable uncer-
tainty when estimating root biomass C input to soils that 
must be addressed in future studies. Nevertheless, this 
review clearly demonstrated that there is a wide variation 
in root biomass and root:shoot ratio among genotypes, 
and breeders should start introducing root biomass as a 
new criterion for breeding. Additionally, increased root 
biomass due to deeper roots may stabilise yields under 
climate change conditions with increased frequency of 
drought events during vegetation periods, and may there-
fore serve as a climate change adaptation measure.
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