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ABSTRACT

Many farms document daily milk yields of individual 
cows because these are a good indicator of cow well-
being. It is established that extreme meteorological 
conditions influence the milk yields by causing heat 
and cold stress, whereas less is known about the ef-
fects of moderate changes in meteorological conditions. 
Thus, the aim of the present study was to evaluate 
whether individual daily milk yield predictions can be 
improved by considering such changes. We evaluated 8 
years of milking and meteorological data from Eastern 
Switzerland with a total of 33,938 daily milkings from 
145 Brown Swiss and 64 Swiss Fleckvieh cows. The 
cows were aged between 1.9 and 13.5 years at parturi-
tion. The data set was split into 7 periods according 
to the days in milk (DIM) and subsequently filtered 
into subsets by breed and parity. We applied Gauss-
ian process regression to predict individual daily milk 
yield. We compared different models including DIM, 
lagged milk yield, and meteorological variables as fea-
tures and found that models including the lagged milk 
yield performed best. Within the period of 5 to 90 DIM, 
we were able to predict individual next-day milk yield 
from the cow’s last milkings with a root mean squared 
error (RMSE) of 2.1 kg. In contrast, without informa-
tion on the previous milk yield, accuracy of milk yield 
prediction was lower, with an RMSE close to 8 kg. The 
models holding information about previous milk yields 
showed a substantial increase in performance. Within a 
more homogeneous data subset filtered by breed or par-
ity or both, predictions were even better, with a relative 
RMSE of 4.3% for first-parity Fleckvieh cows. However, 
we found that including meteorological features, such 
as temperature, rainfall, wind speed, temperature hu-
midity index, cooling degree, and barometric pressure, 
did not improve the predictions in any of the evalu-
ated periods. This finding indicates that considering 

meteorological features in daily milk yield prediction 
models is not useful in moderate climates; considering 
lagged milk yield is sufficient. We hypothesize that this 
meteorological information, among other influences, is 
indirectly contained in the lagged milk yield.
Key words: milk production, short-term milk yield 
prediction, Gaussian process regression

INTRODUCTION

Increasing interest in smart farming has led to a 
wide range of digitalized processes, offering new op-
portunities for data exploitation in dairy farming, such 
as the evaluation of feeding strategies (Menardo et al., 
2021) or data-driven decisions in livestock management 
(Ferris et al., 2020). Daily milk yield (DMY) data are 
the most commonly collected data on dairy farms, as 
45% of Swiss dairy farmers collect this information dur-
ing milking (Groher et al., 2020). To date, milk yield 
data are considered in a standalone manner, despite 
the circumstance that a few known variables can cause 
short- or long-term drops in milk yield.

Influence of Meteorological Conditions  
on Milk Production

Researchers have evaluated the effects of tempera-
ture and humidity on dairy farms with specific regard 
to heat stress, where they reported an interrelation 
of thermoregulation, productivity, and meteorologi-
cal variables, particularly during summer (Tao et al., 
2020). Based on the evidence of previous studies, Tao 
et al. (2020) describe that physiological heat stress re-
sponses in dairy cows develop rapidly after half a day of 
stress and include increases in rectal temperature and 
respiration rate as well as reduced milk production (Tao 
et al., 2020). Spiers et al. (2004) described increases in 
rectal temperature and respiration rate after 24 h and 
a drop in milk yield and feed intake after 48 h when 
cows were exposed to air temperatures between 19 and 
29°C. Similarly, Bouraoui et al. (2002) found a nega-
tive correlation (r = −0.76) of temperature-humidity 
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index (THI), milk yield, and feed intake, where THI 
increased from 68 to 78 and milk yield dropped by 21%. 
Milk production started decreasing when temperatures 
exceeded 20°C (Tao et al., 2020) or, as reported in a 
more recent study in Southern Germany, at tempera-
tures above 16°C or THI above 60 (Mbuthia et al., 
2022). The degree of cooling is another combination of 
meteorological parameters that has been proposed to 
be relevant for determining physiological reactions to 
meteorological conditions in dairy cows (Baehr et al., 
1984).

Prediction of Milk Yield

Predicting long-term milk yield allows farmers to 
monitor farm production and adapt management de-
cisions accordingly (Grzesiak et al., 2006). Predicting 
and monitoring DMY additionally allows detection of 
physiological alterations of the cow and thus can be 
useful for the implementation of early warning systems. 
Using short-term predictions as an alert for physi-
ological alterations requires high accuracy, so that the 
farmer does not miss actual physiological changes but 
also does not ignore alarms owing to a flood of false 
positive alerts.

Milk yield models have followed 2 paths: lactation 
curve models, which allow modeling of milk yields as 
well as protein and fat contents, while considering sea-
sonal trends caused by feeding (Wood, 1976), or random 
regression test-day models, which have been applied to 
evaluate animal breeding strategies (Schaeffer, 2004). 
Lee and Wardrop (1984) predicted individual milk 
yield from test-day milk data of 49 Canadian herds and 
were able to predict 75 to 80% of DMY with a predic-
tion error below 2 kg. This was extremely valuable and 
innovative in a time before the onset of digitalization 
in milking parlors, where daily cow individual milk re-
cordings were hardly available. Since then, researchers 
have been developing models to improve predictions 
from lactation curve models, test-day milk yield, and 
later DMY (Zhang et al., 2018).

McParland et al. (2019) further predicted individual 
24-h test-day milk yield from a single milking sample of 
the same day to evaluate whether the morning or eve-
ning measurement can be omitted using data from 237 
farms in Ireland. They found that 24-h test-day milk 
yields can be predicted satisfactorily from the morn-
ing milking sample when also considering the milking 
interval.

Murphy et al. (2014) predicted daily herd milk 
yield in pasture-based Holstein-Friesian Irish dairy 
cows by using DIM and the number of milked cows 
as features and found nonlinear autoregressive models 

with exogenous input (NARX models) to be useful in 
that context. These models were able to predict daily 
herd milk yield more accurately than multiple linear 
regression and artificial neural networks (Murphy et 
al., 2014). Hereby, short-term predictions of the next 
10 d achieved a lower relative root mean squared error 
(RMSE) of 5.8% compared with long-term predictions 
of a complete lactation of 305 d with a relative RMSE 
of 8.6%, whereas the conventional models reached rela-
tive RMSE values between 10.5 and 12.2% (Murphy 
et al., 2014). The prediction quality was improved by 
shortening the prediction horizon. The NARX models 
allowed for short- and long-term yield predictions with 
satisfactory accuracies.

Milk Yield Prediction Using Meteorological Data

Previous research considered whether meteorological 
features can improve milk yield prediction, and the out-
come was not quite consistent throughout the different 
studies. Some studies reported no or very small effects 
of meteorological data on milk yield prediction. The 
NARX model published by Murphy et al. (2014) was 
refined in Zhang et al. (2020) by including sunshine 
hours, precipitation, and soil temperature to predict 
individual DMY and tested on lactation data from pas-
ture-based Holstein-Friesian Irish dairy cows. Hereby, 
the authors found a small effect of the meteorological 
parameters, particularly sunshine hours, which they re-
ported with the reservation that these parameters “did 
not have a substantial impact on [milk yield] forecast 
accuracy” (Zhang et al., 2020, p. 120). The authors pro-
vided individual RMSE for the 10-d prediction horizon 
of 39 cows in the test set, which we used to calculate the 
average RMSE. The model containing sunshine hours 
led to an average RMSE of 3.1 kg, an increase of 0.2 kg 
compared with the 3.3-kg average RMSE of the base 
model without meteorological features. Furthermore, a 
recent study, also from Ireland, aimed to predict the 
national weekly milk yield of grazing cows over 12 years 
by using a variety of models and prediction horizons 
of 1 up to 52 weeks ahead, and found that including 
meteorological variables did not improve their results 
(O’Leary and Lynch, 2022). However, Marumo et al. 
(2022) found a small effect of the minimum tempera-
ture lagged by 2 d when predicting individual DMY in 
indoor-housed Holstein-Friesian dairy cows on a Scot-
tish farm, but only for primiparous cows.

Other studies, in contrast, reported effects of me-
teorological parameters. Mbuthia et al. (2022) found 
the herd monthly test-day milk yield to be decreasing 
for temperatures above 16°C and THI greater than 60 
[calculated using NRC, 1971: THI = (1.8 × T + 32) − 
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(0.55 − 0.0055 × rH) × (1.8 × T − 26); temperature 
(T) in °C, relative humidity (rH) in %]. Additionally, a 
study on Lacaune ewes in Spain performed a correla-
tion analysis and found significant yet small Pearson 
correlations between individual DMY and the meteoro-
logical variables mean temperature, relative humidity, 
THI, and solar radiation (Osorio-Avalos et al., 2022). 
Interestingly, Yano et al. (2014) applied a generalized 
additive model using multiple variables, such as DIM, 
parity, temperature, and daylight length, to predict the 
individual milk production traits of yield and fat con-
tent from test-day data; they found that particularly 
high-yielding dairy cows were more sensitive to heat.

Aim of the Study

The current study aimed to quantify the effect of 
moderate meteorological changes on milk production in 
housed dairy cows using Gaussian processes.

MATERIALS AND METHODS

The experiment was conducted under the animal 
welfare license 32348–TG02/20.

Description of Experimental Farm and Animals

The experimental dairy farm had 2 barns: the ex-
perimental barn and the research emissions barn. Only 
milking data from the experimental barn were used in 
this study. The experimental dairy barn housed 63 lac-
tating cows in an open barn with elevated deep-littered 
(straw) cubicles (Supplemental Figures S1–S6; https: 
/ / doi .org/ 10 .6084/ m9 .figshare .23309519; Gasser et al., 
2023). The barn had an Eternit roof with a ridge vent 
(Ondapress 57, Eternit Schweiz AG). Surfaces were 
plane-fixed inside the barn and slatted in the outdoor 
loafing area. The barn was separated into 2 feeding 
group areas, and feed was given according to the 
cows’ stage of lactation (Supplemental Figures S2 and 
S3). The cows had access to a shared outdoor loafing 
area, which they could enter through electronic gates 
(Supplemental Figures S4 and S5). The cows were fed 
a TMR once per day, and the feed was pushed to the 
trough every 3 h by an automated feeding robot (Lely 
Juno). The TMR contained grass silage (47%) with 
maize silage (29%), hay (5%), sugar beet silage (14%), 
and concentrates (3.8%). Additionally, the cows were 
supplemented with concentrates on an individual level 
according to their DMY (range 0–8 kg of concentrates) 
via automated feeding stations placed within the out-
side loafing area (Supplemental Figure S5). The barn 
was open on 3 sides, allowing free airflow during sum-

mer, and could be closed with curtains during winter 
(Supplemental Figure S1). This barn represents the 
primary housing of the dairy cows. However, depending 
on experiments, some of the cows were moved to the 
research emissions barn, which was located 4 km away, 
for brief periods of approximately 3 to 5 mo. Therefore, 
the number of cows housed in the primary experimental 
barn varied, reaching 63 lactating cows at most. The 
cows were accustomed to these relocations. Because no 
data from the research emissions barn were considered 
in this study, the data set did not include complete 
lactation cycles for each cow and lactation period.

Data Collection

For this specific analysis, 2 data sources were exploit-
ed. First, we extracted historic milk yield data from 
the DairyPlan C21 herd management software (GEA 
Farm Technologies) for the time between December 
2014 and June 2022 from the experimental dairy farm, 
located in Tänikon, Switzerland. The milk yields were 
recorded with the International Committee for Animal 
Recording-approved device Megatron P21 (GEA Farm 
Technologies). The milking parlor was professionally 
serviced yearly. Herd management data included morn-
ing and evening milk yield, parity, DIM, cow identity 
and name, breed, age, and date of calving. Until Febru-
ary 2019, these data were recovered from backup files. 
In spring 2019, 88 days of data were missing owing 
to technical issues (software update). From May 2019, 
daily output files were automatically saved.

Second, meteorological data, including tempera-
ture, rainfall, humidity, wind speed, solar radiation, 
and barometric pressure, were collected from the Me-
teoSwiss meteorological station located 300 m away 
from the dairy farm (Federal Office for Meteorology 
and Climatology, MeteoSwiss station: Tänikon; www 
.meteoschweiz .ch; Supplemental Figure S7; https: / / 
doi .org/ 10 .6084/ m9 .figshare .23309519; Gasser et al., 
2023). The temperature range of the data did not allow 
us to draw conclusions about heat stress, because mean 
daily temperatures above 20°C were only measured on 
229 of the 3,108 d of the measurement period (7.4%).

We additionally calculated THI and degree of cooling 
(in W/m2) by applying the following formulas to the 
meteorological data, where T is temperature (in °C), rH 
is relative humidity (in %), and v is wind speed (in m/s).

Temperature-humidity index:

 THI T rH T= ⋅( )+ ⋅ −( )











+0 8

100
14 4 46 4. . .  

  (Mader et al., 2006).
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Cooling degree (CD):

 CD T v v= − ⋅ + ⋅( ) >36 5 0 14 0 49 1. . . ;if  

 CD T v v= − ⋅ + ⋅( ) ≤36 5 0 20 0 40 1. . . if  

  (Baehr et al., 1984).

Due to the use of historic milking data, we were not able 
to measure meteorological data directly at the farm for 
the entire study period. However, we collected tempera-
ture, humidity, and wind speed above the cubicle and 
outside in the loafing area, at 2 m height, during the 
last year of the study. These data on indoor and outdoor 
microclimates were collected via HOBO climate loggers 
(HOBO RX3000, HOBO Data Logging Solutions) and 
used to show the correlation and relevance of the data 
measured by the MeteoSwiss meteorological station.

Data Selection

We extracted milking data from December 2014 to 
June 2022 from the herd management system. The data 
were pre-processed by removing (1) zero milk yield and 
lactation number 0 entries, (2) duplicated entries with 
the same milk yield for several days (these correspond 
to manual entries where the cows were not milked in 
the experimental barn), and (3) duplicated entries per 
milking. If more than 2 entries per morning or evening 
milking existed, we used the last entry after plausibil-
ity checks. After preprocessing, 148,563 single milking 
entries remained, resulting in 550 lactation curves of 
any length, from 225 cows [157 Brown Swiss (BS) and 
68 Swiss Fleckvieh (FV)]. Cows with clinical mastitis 
were milked into a bucket, and their yields were not 
recorded. This appears as missing data in the data set. 
After recovery, cows were milked normally and data 
were collected again.

Missing Data and Data Imputation. At the ex-
perimental barn, the cows were milked twice per day: in 
the morning (0600–0700 h) and in the evening (1630–
1730 h). On 4 d, the data from either a morning or an 
evening milking were missing for all cows. Additionally, 

most cows lacked a few (mostly 1–2) milk yield entries. 
We considered only complete lactation periods with 2 
milkings per day in a consecutive period (i.e., without 
any missing entry) for the prediction of milk yield.

To increase the number of complete lactation peri-
ods, we imputed missing values by linear interpolation 
of previous and subsequent milk yields of same milk-
ing periods; that is, morning or evening milking. If the 
previous or the subsequent milk yield was not available, 
no imputation was done. This means that gaps larger 
than 1 d were not filled, and affected lactation curves 
were excluded from the analysis. Less than 1% of milk 
yield entries were imputed for all data subsets (Table 
1). For example, for the first 5 to 90 DIM, 81 lacta-
tion curves were available without imputation and 178 
curves with imputation. Out of the 30,220 milkings, 
less than 0.5% were imputed, implying that most of the 
data were correct and only very few data points needed 
to be imputed (Table 1). For 89 lactation curves, 1 or 
2 values were imputed. For 7 lactation curves, more 
than 2 milkings needed to be imputed. The other data 
subsets needed a similar amount of imputation ranging 
from 0.38 to 0.71% of the corresponding total number 
of entries (Table 1).

Selection of Periods. The moving of cows between 
the experimental and the research emissions barn led 
to an insufficient number of complete lactation curves 
with up to 305 DIM. The first 4 d after calving were 
excluded for all lactation curves. In the current study, 
we therefore evaluated five 30-d periods within the first 
150 d of the cow’s lactation, collected over the course 
of 8 years. These periods were established according to 
previous studies (Laevens et al., 1997). Additionally, we 
evaluated longer periods, namely, the first 90 DIM and 
the first 150 DIM. (See Table 2 for a detailed overview 
and Supplemental Table S1 (https: / / doi .org/ 10 .6084/ 
m9 .figshare .23309519; Gasser et al., 2023) for the num-
ber of lactation curves per data subset.)

Summary of Selected Data. In total, 33,938 daily 
milkings (i.e., sum of morning and evening milkings) of 
145 BS and 64 FV cows were considered in the evalu-
ation. The cows were aged between 1.9 and 13.5 years 
(mean ± SD: 4.2 ± 2.0 yr) at calving. Modeled periods 
are presented in Table 2. We refer to a data subset as all 
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Table 1. Summary table of imputed values

Milk yield data

Period (DIM)

5–30 31–60 61–90 91–120 121–150 5–90 5–150

Entries (n) 12,056 17,254 13,784 11,790 8,974 30,220 19,630
Imputed (n) 57 66 80 57 64 147 117
Fraction (%) 0.47 0.38 0.58 0.48 0.71 0.49 0.60
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lactation curves from 1 of the 7 periods. For example, 
from 5 to 90 DIM for a breed (i.e., both, BS, and FV) 
and a parity range [i.e., first parity (1), second parity 
(2), third parity and above (3+), and all parities (1+)].

Modeling

We applied Gaussian processes and linear models as 
follows.

Gaussian Process Regression. Gaussian pro-
cesses (GP) are state-of-the-art Bayesian tools for 
discriminative machine learning; that is, regression 
(Williams and Rasmussen, 1995), classification (Kuss 
et al., 2005), and dimensionality reduction (Lawrence 
and Hyvärinen, 2005). They were first proposed in 
statistics by O’Hagan (1978) and are well known to 
the geostatistics community as kriging. However, ow-
ing to their high computational complexity (i.e., cubic 
in the number of samples), they did not become widely 
applied tools in machine learning until the early 21st 
century (Williams and Rasmussen, 2006). In its sim-
plest form, a GP for linear regression uses a Gauss-
ian prior over the weights of the regressor. It couples 
them with a least square error loss function (Gaussian 
likelihood), which allows for computing in closed form 

the best prediction for each input and its confidence 
interval. By relying on the kernel trick (Williams and 
Rasmussen, 2006), GP can also solve nonlinear regres-
sion problems in closed form. It is the main feature of 
GP to provide accurate predictions, which naturally 
come with confidence intervals. The entire Appendix 
describes further details on GP.

The analysis was performed in Python 3.10.4 by ap-
plying the GP package gpflow 2.5.2 (Matthews et al., 
2017).

Models. For prediction, DMY was used as one of 
the 4 target variables. Alternatively, differenced milk 
yields were used, namely, the difference between the 
current and the previous milk yield, and the difference 
between the current and the average of the last 2 and 
3 d, respectively.

For each of the 4 target variables, we applied 3 base-
line models. The simplest model predicted a constant 
milk yield for all cows, which coincides with the average 
milk yield of the data subset the model was trained 
on. A slightly more complex model considered that the 
milk yield depends on the lactation progression by us-
ing DIM as the single feature. The third baseline model 
used the previous milk yield as the prediction of the 
current milk yield.

Gasser et al.: METEOROLOGICAL CONDITIONS AND MILK YIELD PREDICTION

Table 2. Overview of modeled periods based on the daily milk yield

DIM  Breed1

Parity2

1

 

2

 

3+

 

1+

n

Milk yield (kg)

n

Milk yield (kg)

n

Milk yield (kg)

n

Milk yield (kg)

Mean SD Mean SD Mean SD Mean SD

5–30 Both 74 26.2 4.4 57 35.7 3.3 106 (75) 37.7 5.8 237 (149) 33.6 7.4
BS 44 25.8 4.5 33 34.1 4.6 74 (51) 37.1 5.1 151 (99) 33.2 6.8
FV 30 26.7 4.3 24 37.9 6.4 32 (24) 39.1 7.1 86 (50) 34.5 8.3

31–60 Both 88 27.0 4.9 64 36.3 6.2 135 (93) 39.7 5.8 287 (176) 35.1 7.9
BS 64 25.7 4.5 38 34.0 4.8 104 (69) 38.4 5.4 206 (127) 33.7 7.5
FV 24 30.8 3.8 26 39.6 6.6 31 (24) 44.1 5.1 81 (49) 38.7 7.6

61–90 Both 62 25.2 4.5 56 33.6 6.5 111 (82) 36.8 6.2 229 (157) 32.9 7.2
BS 45 23.9 4.1 33 32.2 5.3 88 (62) 35.6 5.6 166 (112) 31.8 7.2
FV 17 28.8 3.7 23 35.7 7.4 23 (20) 41.5 6.0 63 (45) 35.9 7.9

91–120 Both 49 24.4 4.7 50 30.2 6.6 97 (79) 33.3 6.2 196 (142) 30.3 7.0
BS 34 23.0 4.4 27 28.5 5.5 70 (56) 37.6 5.6 131 (93) 28.8 6.4
FV 15 27.5 3.6 23 32.1 7.3 27 (23) 37.6 5.6 65 (49) 33.3 7.1

121–150 Both 41 23.7 4.2 37 27.7 6.5 71 (61) 30.0 6.2 149 (115) 27.7 6.4
BS 25 22.2 4.2 21 25.4 4.2 49 (42) 28.6 5.9 95 (74) 26.2 5.8
FV 16 26.0 3.0 16 30.7 7.7 22 (19) 33.2 5.4 54 (41) 30.3 6.4

5–90 Both 51 25.8 4.6 41 35.2 5.7 86 (67) 38.6 5.8 178 (131) 34.2 7.7
BS 37 24.8 4.4 23 33.3 4.3 66 (49) 37.6 5.4 126 (94) 33.1 7.4
FV 14 28.5 4.0 18 37.6 6.3 20 (18) 41.9 5.9 52 (37) 36.8 7.8

5–150 Both 19 24.2 5.0 13 31.0 7.4 35 (31) 35.6 6.2 67 (60) 31.5 7.9
BS 15 23.7 5.1 7 28.8 4.8 27 (23) 35.0 6.0 49 (42) 30.7 7.5
FV 4 25.9 3.9 6 33.6 8.8 8 (8) 37.7 6.6 18 (18) 33.7 8.3

1BS = Brown Swiss; FV = Fleckvieh.
2For single parities (i.e., 1 and 2), the number of periods coincides with the number of cows. For parity ranges (i.e., 3+ and 1+), the same cow 
can have more than one lactation curve (e.g., from the first and second parities); therefore, the number of cows is given in parentheses after the 
number of lactation curves.
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To determine the features yielding the best prediction, 
several models with varying features were fit, again for 
the different target variables. We evaluated DIM and 
the milk yield (in kg) of up to 3 previous lagged days. 
Meteorological features included temperature (in °C), 
rainfall (in mm/d), wind speed (in m/s), barometric 
pressure (in hPa), THI, and degree of cooling (in W/
m2). The provided hourly values were averaged over 24 
h with a time range from 1800 h of the previous day to 
1800 h of the current day, accounting for the fact that 
the current DMY cannot be affected by the weather 
after the evening milking. After averaging, the meteoro-
logical features were merged with each cow’s individual 
milking data. We included the meteorological features 
of either the current day, the previous day, some of the 
previous days (1, 3, 5, 7), or all 10 previous days. For 
temperature and THI, we also used moving averages 
over the last 2, 3, 5, and 7 d, respectively.

In all but the baseline models, each feature was stan-
dardized (zero-mean, unit SD) based on the training 
data. The predictions for the differenced milk yields were 
calculated back to the original scale in kilograms. In the 
GP models, we used 2 parts of the kernel in Appendix 
Equation [13], a radial basis function with the same 
length scale for all dimensions, describing the relation 
between the data points as well as the noise variance.

Data Splitting and Model Evaluation. We ran 
the models on all data subsets from Table 2, except 
for the period of 5 to 150 DIM, for which the models 
were only fit to data subsets with both breeds because 
there were not enough data points for the 2 breeds to 
be evaluated separately. For each data subset, an 80:20 
train test split was applied, followed by 5-fold cross-val-
idation on the training data. All splits were applied on 
the cow level, stratified by breed, ensuring that no data 
leakage occurred between train and test set or between 
the cross-validation folds. We calculated the evaluation 
metrics RMSE, mean absolute error (MAE), and rela-
tive RMSE (divided by average milk yield of the respec-
tive period as in Murphy et al., 2014). The final models 
were retrained on all training data and evaluated on 
the test data to obtain test error.

Models Based on Linear Extrapolation. To 
expand on the baseline model that uses the last milk 
yield as the prediction of the current milk yield, we 
implemented a simple linear extrapolation. To one of 
the data subsets we fitted linear regression models on 
a varying number of lagged milk yields and used these 
models to predict the current DMY. We considered 1, 
2, 3, 5, and 10 lagged days and used the scikit-learn 
(Pedregosa et al., 2011) implementation.

Linear Temperature Models. We also investigated 
linear relationships between milk yield and temperature 
by using scikit-learn (Pedregosa et al., 2011). To one of 

the data subsets, we applied bootstrapped simple linear 
regression on the training data, with DMY as indepen-
dent variable and temperature as the single dependent 
variable. The bootstrap sample size was set to 1,000.

Limitations

The data used in the current study originated from 
only 1 farm. However, using these data has the ad-
vantage of well-documented processes with adequate 
housing conditions in terms of management and animal 
welfare, as well as a carefully managed herd of dairy 
cows with different breeds (FV and BS), a relatively 
long data collection period, and fully digitalized man-
agement processes. Additionally, Shock et al. (2016) 
recommended not using data from meteorological 
stations to predict microclimate, because the on-farm 
temperature was higher than that of the meteorological 
station. However, we controlled for this condition by 
comparing on-farm data to those from the meteorologi-
cal station and found temperature in the barn to be 
roughly 2°C below that of the meteorological station for 
the entire time frame compared, supporting the good 
management of the farm (Supplemental Figure S8; 
https: / / doi .org/ 10 .6084/ m9 .figshare .23309519; Gasser 
et al., 2023).

Furthermore, we selected shorter periods than the 
usual classifications of early, mid-, and late lactation for 
milk yield prediction. This was a compromise we made 
to include a larger number of complete data sets, but 
it also allowed for a detailed analysis of the prediction 
quality. Although the most critical period of a dairy 
cow’s health during lactation is the transition phase  
(3 wk before to 3 wk after parturition; Sundrum, 2015), 
the period from 5 to 90 DIM reflects a vulnerable time 
of lactation, where cows are particularly affected by 
changes of meteorological conditions owing to their 
peaking milk production (Yano et al., 2014). At the 
same time, milk production strongly increases during 
this time, which makes it both particularly interesting 
and difficult to predict.

Additionally, we would point out that we did not 
consider feeding information in the study because these 
historic data were not available for the entire period. 
However, feeding strategies were consistent throughout 
the measured period.

RESULTS

We first present the results for the period from 5 to 
90 DIM with cows from both breeds and all parities 
before we look at the breeds, parity ranges, and periods 
separately. Unless stated otherwise, cross-validation er-
rors are given.
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Baseline Models

We were able to predict individual next-day milk 
yield from the cow’s last milking(s) with an RMSE of 
2.2 to 2.5 kg (relative RMSE: 6.2–7.3%; MAE: 1.5–1.7 
kg). In contrast, without information on the previous 
milk yield (i.e., for 2 of the 12 combinations of target 
variables and baseline models), accuracy of milk yield 
prediction was lower, with an RMSE of 7.6 to 7.7 kg 
(relative RMSE: 22%; MAE: 6.2–6.3 kg; Table 3). Con-
sidering DIM as the single feature [i.e., the model DMY 
~DIM (presented as target variable ~features)] led to 
an RMSE of 7.6 kg, which was slightly better than 
fitting a constant value across all cows, which resulted 
in an RMSE of 7.7 kg.

The baseline models holding information about pre-
vious milk yields, either in the target variable or when 
the current milk yield was predicted as the cow’s milk 
yield from the last day, showed a substantial increase 
in performance. By including more previous milk yield 
knowledge in the independent variable, we noticed 
a saturation effect. The previous milk yield reduced 
the RMSE from almost 8 kg to 2.5 kg (i.e., prediction 
improved by 5 kg), whereas including the last 2 milk 
yields led to a small additional reduction of 0.3 kg, 
and including the last 3 milk yields hardly improved 
the prediction any further (<0.1 kg). Therefore, we did 
not consider the difference to the last 3 milkings any 
further in the other models.

Linear Extrapolation Models

The linear extrapolation models were found to per-
form at par or worse than the models including previ-
ous milk yield knowledge; that is, in the range of 2.4 kg 
and 9.0 kg RMSE for varying number of lagged milk 
yields used to base the extrapolation on. The highest 
RMSE, obtained by using 2 lagged milk yields to pre-
dict the difference in milk yield, is actually even worse 
than the RMSE of the models without previous milk 
yield knowledge. In the first 90 d of the lactation, the 
lactation curve is not linear but rather first increasing, 

then reaching a plateau at 60 to 80 DIM, and then 
decreasing again but with a smaller slope. This shape of 
the lactation curve cannot be captured well with linear 
extrapolations, in contrast to using the last milk yield 
as the prediction of the current milk yield. The latter, 
1 of the 3 baseline models, coincides with the linear 
extrapolation model using 1 lagged milk yield and is 
able to capture the changing curvature of the lactation 
curve and sudden changes well.

The linear extrapolation models, which are simple 
but restricted, are outperformed by the GP models us-
ing lagged milk yields as features. The GP models are 
nonlinear and therefore more suited to learning nonlin-
ear relationships between variables.

Models with Meteorological Variables

Including meteorological variables did not improve 
the prediction error, independently of considering DIM 
in the model (Table 4). For DMY as target variable, 
the RMSE stagnated close to 8 kg when including the 
meteorological variables temperature, wind speed, rain-
fall, and barometric pressure, and quantities derived 
from them, such as THI or cooling degree (Table 4). 
This was the case for numerous ways of adding me-
teorological information, such as from the current day, 
the previous day, the 10 previous days, and the moving 
averages of the 2, 3, 5, and 7 previous days (Supple-
mental Table S2; https: / / doi .org/ 10 .6084/ m9 .figshare 
.23309519; Gasser et al., 2023). Adding temperature, 
wind speed, and rainfall together to the same model 
or adding temperature of selected days of the previous 
week did not affect the prediction (results not shown). 
For the differenced target variables, RMSE is substan-
tially lower but not also affected by the different meteo-
rological variables (Table 4).

In addition, removing DIM from the models did not 
help (Table 4; Supplemental Table S2). For the raw 
target variable, the RMSE was slightly worse. For the 
differenced milk yields, we observed no change in predic-
tion error (Table 4). Because DIM is the basic descriptor 
of lactation curves, we kept it for the remaining models.
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Table 3. Validation evaluation metrics for the 3 baseline models on all target variables, performed on the data subsets of the 5- to 90-DIM 
period for both breeds and all parities1

Baseline model

Daily milk yield

 

Difference from last milking

 

Difference from last 2 
milkings

 

Difference from last 3 
milkings

RMSE  
(kg)

RMSE  
(%)

MAE  
(kg)

RMSE  
(kg)

RMSE  
(%)

MAE  
(kg)

RMSE  
(kg)

RMSE  
(%)

MAE  
(kg)

RMSE  
(kg)

RMSE  
(%)

MAE  
(kg)

Last day 2.52 7.26 1.72 2.52 7.26 1.72 2.21 6.36 1.53 2.19 6.30 1.51
Constant 7.69 22.13 6.31 2.52 7.26 1.72 2.21 6.36 1.53 2.19 6.30 1.51
DIM 7.60 21.85 6.23 2.52 7.25 1.71 2.20 6.33 1.52 2.16 6.21 1.49
1MAE = mean absolute error; RMSE = root mean squared error.

https://doi.org/10.6084/m9.figshare.23309519
https://doi.org/10.6084/m9.figshare.23309519
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Models with Previous Milk Yield Knowledge

By adding lagged milk yield features to the models 
that predict DMY, the RMSE dropped to 2.1 to 2.5 kg 
(Table 5), which coincided with the error range of the 
baseline models with previous milk yield knowledge. As 
in the models with meteorological variables, this out-
come was independent of adding DIM or meteorological 
variables such as temperature, THI, and degree of cool-
ing as features (Table 5). As in the baseline models, we 
observed a saturation effect with increasing knowledge 
of previous milk yields (Table 5).

Across Breeds, Parity Ranges, and Periods

The same patterns were evident when considering 
parity and breeds separately (still considering the pe-
riod from 5 to 90 DIM). The prediction error depended 
on the data subset. More homogeneous groups, such as 
BS or FV cows in the first parity, tended to achieve a 
lower prediction error (Table 6). The RMSE for single 
parities (e.g., first and second parity) and parity ranges 
(e.g., third and later parities) was up to 3.5 kg lower 
than the RMSE for all parities. Modeling the breeds 
separately had a smaller effect of up to 1.9 kg and did 
not necessarily improve the prediction for both breeds 
(e.g., for the second parity). Across the breeds and con-

sidered parity ranges, adding lagged milk yield reduced 
the prediction error substantially, yet again we noticed 
a saturation effect with increasing previous knowledge.

The findings for the period from 5 to 90 DIM were 
consistent throughout all selected periods. It was not 
possible to improve the short-term milk yield predic-
tion by any meteorological parameter, as shown in 
Figure 1 for both breeds. We plotted the results per 
breed (BS and FV cows) in Supplemental Figures S9 
and S10, respectively (https: / / doi .org/ 10 .6084/ m9 
.figshare .23309519; Gasser et al., 2023). These figures 
summarize the results presented in the previous sec-
tions. Each subplot represents a period, and each line 
represents the results from a data subset (e.g., for a 
period, breed, and parity range). The prediction error 
of each model run is depicted with a symbol. Models 
without meteorological variables are shown with a circle 
and solid lines connecting them. The cross, plus, and 
diamond represent models with temperature, THI, and 
cooling degree, respectively. They mostly coincide with 
the model without weather variables. Including previ-
ous milk yield to predict the current yield provides a 
significant error reduction, illustrated in the plot when 
we move from 0 to 1 in the x-axis, representing previ-
ous milk yield knowledge. Adding the milk yields of 2 
or 3 previous days has a marginal effect, leading to an 
additional reduction in RMSE of only up to 1 kg across 
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Table 4. Validation root mean squared error (RMSE; kg) for models with different meteorological variables of the current day, not including 
lagged milk yields as features, performed on the data subsets of the 5- to 90-DIM period for both breeds and all parities1

Meteorological variable

Daily milk yield

 

Difference from last milking

 

Difference from the last 2 milkings

w/ DIM w/o DIM w/ DIM w/o DIM w/ DIM w/o DIM

None 7.60 7.69 2.52 2.52 2.20 2.21
Temperature 7.68 7.77 2.52 2.52 2.20 2.21
Rainfall 7.60 7.69 2.52 2.52 2.20 2.21
Wind speed 7.60 7.70 2.52 2.52 2.20 2.21
THI 7.69 7.77 2.52 2.52 2.20 2.21
Cooling degree 7.67 7.75 2.52 2.52 2.20 2.21
Barometric pressure 7.63 7.71 2.52 2.52 2.20 2.21
1THI = temperature-humidity index; w/ = with; w/o = without.

Table 5. Validation root mean squared error (RMSE; kg) for models on daily milk yield with knowledge of previous milk yields through lagged 
milk yield features, performed on the data subsets of the 5- to 90-DIM period for both breeds and all parities1

Meteorological variable

Lagged milk yield variables

0

 

1

 

2

 

3

w/ DIM w/o DIM w/ DIM w/o DIM w/ DIM w/o DIM w/ DIM w/o DIM

None 7.60 7.69 2.47 2.48 2.16 2.17 2.11 2.13
Temperature 7.68 7.77 2.48 2.48 2.16 2.18 2.12 2.14
THI 7.69 7.77 2.48 2.48 2.16 2.18 2.12 2.14
Cooling degree 7.67 7.75 2.48 2.48 2.16 2.18 2.12 2.14
1THI = temperature humidity index; w/ = with; w/o = without.

https://doi.org/10.6084/m9.figshare.23309519
https://doi.org/10.6084/m9.figshare.23309519
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all data subsets. Once we use the previous milk yield 
the model becomes “personalized” for each cow, which 
explains the measured improvement.

In Figure 2, we show individual lactation curves and 
the prediction for 2 models for 23 cows from the pe-
riod from 5 to 150 DIM. The first 3 rows correspond 
to first-, second-, and third-parity cows, respectively, 
whereas the fourth row shows cows with parity 4 and 
above. The first 3 columns contain BS cows, the last 3 
rows FV cows. The actual lactation curve is depicted 

as a black line, which is overplotted by the prediction 
from one of the models. We compare the baseline model 
DMY ~DIM, which has no “personalization” and yields 
the same prediction for all cows (purple lines), to the 
baseline model DMY diff ~DIM (where DMY diff is 
the difference between current and previous milk yield), 
which contains information of the prior milk yield in 
the target variable. The latter model is “personalized” 
to each cow, meaning its predictions are different for 
each cow and coincide with the true lactation curve.
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Table 6. Validation root mean squared error (RMSE; kg) and relative RMSE (%) for models on daily milk yield with knowledge of previous 
milk yields through lagged milk yield features, with all models including DIM as a feature, performed on the data subsets of the 5- to 90-DIM 
period with the data split by breeds and parity ranges

Breed1 Parity

Lagged milk yield variables

0

 

1

 

2

 

3

RMSE (kg) RMSE (%) RMSE (kg) RMSE (%) RMSE (kg) RMSE (%) RMSE (kg) RMSE (%)

Both 1 4.53 17.11 2.03 7.67 1.76 6.67 1.74 6.56
 2 6.08 17.38 2.60 7.42 2.13 6.09 2.06 5.88
 3+ 5.61 14.35 2.73 6.98 2.41 6.17 2.36 6.04
 1+ 7.60 21.85 2.47 7.12 2.16 6.21 2.11 6.08
BS 1 4.30 16.83 2.14 8.37 1.85 7.23 1.82 7.14
 2 4.16 12.65 2.36 7.16 2.06 6.25 2.00 6.07
 3+ 5.27 13.86 2.80 7.35 2.45 6.44 2.40 6.30
 1+ 7.32 21.73 2.59 7.70 2.24 6.65 2.19 6.50
FV 1 4.19 14.48 1.69 5.83 1.46 5.04 1.41 4.87
 2 7.38 19.68 2.28 6.08 2.32 6.19 2.21 5.90
 3+ 5.60 13.22 2.49 5.88 2.25 5.31 2.21 5.22
 1+ 7.67 20.49 2.18 5.83 1.96 5.25 1.92 5.14
1BS = Brown Swiss; FV = Fleckvieh.

Figure 1. Validation root mean squared error (RMSE) depending on previous milk yield knowledge in days of lagged milk yield for different 
periods and parity ranges (for both breeds). Meteorological variables such as temperature, temperature-humidity index (THI) and cooling degree 
did not improve the prediction. BS = Brown Swiss; FV = Fleckvieh.
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Similar Outcomes From Test Data

For the models in Figure 1, the evaluation on the test 
data revealed the same behavior with slightly different 
error values (Table 7 and Supplemental Figure S11; 
https: / / doi .org/ 10 .6084/ m9 .figshare .23309519; Gasser 
et al., 2023).

Improved Performance for More Homogeneous  
Data Subsets

To ensure the assumption that our model performs 
better for more homogeneous data subsets, we com-
pared the prediction error with the spread of the milk 
yield and found that the RMSE correlated with the 
standard deviation for most models (Figure 3).

Daily Milk Yield or Differenced Target Variable

Using differenced milk yield instead of DMY as the 
target variable did not improve the prediction. This 

holds for all periods (Figure 4). Predictions for the 
DMY improved with every added milk yield (Figure 4, 
blue curve). In contrast, predictions for the differenced 
milk yields did not improve when adding lagged milk 
yields (Figure 4, green and yellow curves).

Linear Temperature Models

We applied bootstrapped simple linear regression to 
the 5- to 90-DIM period on both breeds and all parities 
and found that the regression coefficient for tempera-
ture was negligible (mean of the bootstrap samples: 
0.01; SD of the bootstrap samples: 0.01) compared 
with the average milk yield of 34.8 kg. The predicted 
milk yields for the lowest and highest measured tem-
peratures, respectively, differed by 0.4 kg, a range that 
is of minor importance compared with the measured 
milk yield range of 58.6 kg. The outcomes for the dif-
ferenced independent variables were similar (data not 
shown).
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Figure 2. Examples for cow individual milk yield prediction (for the period from 5 to 150 DIM). The subplot titles state breed and parity 
of each cow. The dotted interval 1 corresponds to the prediction ± the SD of the radial basis function kernel, whereas the dashed interval 2 
reflects the prediction ± the sum of the SD of the radial basis function kernel and the noise (Appendix Equation [12]). BS = Brown Swiss; FV 
= Fleckvieh; DMY = daily milk yield; DMY diff = difference from last milking.

https://doi.org/10.6084/m9.figshare.23309519


Journal of Dairy Science Vol. 106 No. 8, 2023

5511

DISCUSSION

The exploitation of daily herd management data 
allowed for satisfactory predictions of milk yield. We 
were able to predict DMY with an accuracy of 1.4 to 
2.4 kg (RMSE) for the different data subsets of the pe-
riod from 5 to 90 DIM (Table 6, penultimate column). 
This is sufficient to detect physiological challenges in 
dairy cows that have been reported to cause a 20% 
drop in milk yield (Spiers et al., 2004). Hereby, the 

best prediction model in our study considered cow’s 
individual 3-d lagged milk yield. The prediction models 
showed consistent results across all periods. Consider-
ing meteorological parameters in the model did not 
improve the prediction outcome. Because temperature 
is not the best indicator of thermal comfort, we tested 
a variety of meteorological parameters (temperature, 
wind speed, rainfall, THI, cooling degree, barometric 
pressure), which all resulted in similar prediction er-
rors. This finding indicates that moderate meteorologi-
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Table 7. Test root mean squared error (RMSE; kg) and relative RMSE (%) for models on daily milk yield with knowledge of previous milk 
yields through lagged milk yield features, with all models including DIM as a feature, performed on the data subsets of the 5- to 90-DIM period 
with the data split by breeds and parity ranges

Breed1 Parity

Lagged milk yield variables

0

 

1

 

2

 

3

RMSE (kg) RMSE (%) RMSE (kg) RMSE (%) RMSE (kg) RMSE (%) RMSE (kg) RMSE (%)

Both 1 4.98 20.41 1.80 7.49 1.40 5.74 1.36 5.58
 2 4.26 11.75 2.55 7.04 2.24 6.18 2.17 5.99
 3+ 5.69 15.10 3.05 8.09 2.65 7.02 2.58 6.84
 1+ 7.97 24.21 2.44 7.43 2.12 6.44 2.07 6.30
BS 1 4.52 19.88 1.92 8.43 1.47 6.48 1.43 6.28
 2 4.03 11.62 2.18 6.27 1.97 5.68 1.93 5.56
 3+ 5.03 13.67 3.25 8.82 2.80 7.61 2.70 7.33
 1+ 7.81 24.52 2.49 7.83 2.18 6.84 2.13 6.69
FV 1 4.34 15.44 1.42 5.03 1.24 4.41 1.21 4.29
 2 3.80 9.84 2.98 7.73 2.55 6.62 2.49 6.45
 3+ 6.66 16.06 2.24 5.40 2.09 5.04 2.04 4.93
 1+ 7.71 21.66 2.33 6.55 2.03 5.71 1.98 5.56
1BS = Brown Swiss; FV = Fleckvieh.

Figure 3. Comparison of validation root mean squared error (RMSE) of the baseline model DMY ~DIM and SD of daily milk yield (DMY) 
for all modeled data subsets. BS = Brown Swiss; FV = Fleckvieh.
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cal changes do not influence milk yield, and including 
this parameter in prediction models does not improve 
their outcome.

Prediction of Milk Yield

Murphy et al. (2014) predicted DMY at herd level 
for pasture-based cows with a relative RMSE of 6% 
for a 10-d prediction horizon. In the current study, we 
achieved the same accuracy for daily cow individual 
yield predictions but with a much shorter prediction 
horizon of 1 d and for barn-housed cows. Due to the dif-
ferent prediction horizons and farming types, a direct 
comparison of our study to that of Murphy et al. (2014) 
is difficult.

Furthermore, we found that considering lagged milk 
yield in the model improved prediction quality, which 
is in line with the findings of McParland et al. (2019), 
who found the last milking to be the best predictor of 
24-h milk yield if the milking interval is also included 
in the model. Lee and Wardrop (1984) were able to 
predict milk yield from test-day data, where the models 
predicted 75 to 80% of DMY with a prediction error be-

low 2 kg, whereas the current study achieved a predic-
tion error of 1.4 to 2.4 kg for the different data subsets 
for individual DMY predictions. For these 2 studies, a 
direct comparison to our study is also difficult, as they 
present results for test-day milk yield prediction of 237 
and 49 herds, respectively.

Influence of Climate

In the current study, we evaluated whether we could 
improve DMY predictions by including meteorological 
parameters in the prediction models to detect moder-
ate influences of these parameters. However, including 
the THI, the cooling degree, wind speed, temperature, 
rainfall, or barometric pressure did not improve the ac-
curacy of the model. These results are in line with a 
recent Swiss study reporting no effect of heat periods 
on annual milk revenues, veterinary expenses, or feed 
purchases (Bucheli et al., 2022). These results do not 
mean that meteorological parameters have no effect on 
milk yield prediction. Our line of discussion is two-fold. 
First, our calculations cover moderate temperature 
ranges, which present the focus of this study, but do 
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Figure 4. Validation root mean squared error (RMSE) vs. previous knowledge in number of days of lagged daily milk yield (for both breeds).
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not cover heat periods because the daily mean tem-
perature exceeded 20°C in only 7% of the measurement 
period. Therefore, the data do not allow for evaluating 
predictions related to heat stress. Second, the milk yield 
considered in the model indirectly already incorporates 
the information on the meteorological variables by the 
cow herself, which indicates that meteorological data 
do not add a lot of new information to the model.

Yano et al. (2014) addressed the “non-linear nature 
of milk production and the individual differences in 
dairy cows” (p. 1) as the biggest challenges in creat-
ing models that are flexible enough to process this 
information, and they developed an extension of ex-
isting models to account for temperature effects. The 
authors modeled such effects of temperature on milk 
production in Holstein-Friesian cows and found that 
individual cows react differently to heat stress (Yano 
et al., 2014). They reported that susceptibility to heat 
stress increases with the cow’s daily milk production 
(Yano et al., 2014). However, the authors also found 
that not all cows followed this profile, because indi-
vidual cows’ relative milk production increased with 
rising temperatures (Yano et al., 2014). In contrast, 
in our study, meteorological conditions did not affect 
higher-yielding cows more than lower-yielding cows.

Zhang et al. (2020) reported the individual RMSE 
for all the models in their study. Their best-performing 
model reached a mean RMSE of 3.13 kg (±0.74 kg SD; 
minimum: 2.12 kg; maximum: 5.32 kg) on 39 cows in 
the fourth parity for a 10-d prediction horizon. With 
our best-performing model, we reached a mean test 
RMSE of 1.94 kg (±0.84 kg SD; minimum: 0.68 kg; 
maximum: 4.11 kg) in the 5- to 90-DIM period for both 
breeds and all parities for a prediction horizon of 1 d. 
As stated earlier, the different prediction horizons and 
farming types make a comparison of our study to that 
of Zhang et al. (2020) difficult.

Practical Implications

Pontiggia et al. (2021) reported that stabling cows of-
fered an effective way to reduce heat stress in dairy cows, 
compared with cows exposed to heat during grazing. In 
addition to the moderate temperature ranges covered in 
our study, the professional barn management provided 
the cows with adequate conditions, allowing them to 
cope with uncomfortable environments without devel-
oping physiological reactions. This situation indicates 
that the conditions at the research farm compensated 
for challenging meteorological conditions and further 
supports the hypothesis that moderate temperatures 
do not affect milk production. Bucheli et al. (2022) de-
scribed Swiss dairy farms to be “robust to current heat 
exposure” (p. 304). For practical purposes, this means 

that providing adequate thermal comfort during heat 
periods allows farms to maintain good production levels.

Additionally, our research implies that the last day’s 
milk yield is the most suitable parameter to predict 
milk yield. This means that farmers can take advantage 
of these consistent predictions without being required 
to install additional sensors.

Data Availability

The data are available on Zenodo (https: / / doi .org/ 
10 .5281/ zenodo .7924864).

CONCLUSIONS

Our results suggest that a cow’s individual previous 
day’s milk yield allows prediction of milk yield with sat-
isfactory accuracy. Including meteorological variables 
in the prediction model did not improve the predic-
tion outcome for the underlying data set. This finding 
indicates that considering meteorological features in 
daily yield prediction models is not useful in moder-
ate climates. We hypothesize that this information is 
indirectly contained in the lagged milk yield.
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APPENDIX

Gaussian Processes

Gaussian processes (GP) for regression model the 
output y    R ∈  as a nonlinear function of the inputs x∈Rd :

 y = f(x) + v, [1]

where v is a Gaussian random variable. Gaussian pro-
cess regression, given a labeled data set Dn i i i

ny= { } =x ,,
1

 
not only estimates y for a given input x but also pro-
vides a full statistical description, namely:
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 p y n|x,  . D( )  [2]

Gaussian processes can be presented as a nonlinear 
regressor that expresses the input–output relation in 
Equation [1] by assuming that a real-valued function 
f(x), known as a latent function, underlies the regres-
sion problem and that this function follows a GP. 
Before the labels are revealed, we assume this latent 
function has been drawn from a GP prior. Gauss-
ian processes are characterized by their mean and 
covariance functions, denoted by μ(x) and k(x, xʹ), 
respectively. Even though nonzero-mean priors might 
be of use, working with zero-mean priors typically 
represents a reasonable assumption and simplifies the 
notation. The covariance function explains the cor-
relation between each pair of points in the input space 
and characterizes the functions that can be described 
by the GP. For example, k(x, xʹ) = xTxʹ only yields 
linear latent functions and is used to solve Bayesian 
linear regression problems.

For any finite set of inputs Dn, a GP becomes a mul-
tidimensional Gaussian distribution defined by its mean 
(zero in our case) and covariance matrix, 
K x x x xn( ) = ( ) ∀ ∈ij i j i j nk , ,  ,      .D  The GP prior becomes

 p n n nf X O K|( ) = ( ) N ,  , [3]

where fn = [f(x1), f(x2), . . . , f(xn)]
T and Xn = [x1, 

x2, . . . , xn]. We want to compute the estimate for 
a general input x when the labels for the n training 
examples, denoted by yn = [y1, y2, . . . , yn]

T, are known. 
We can analytically compute Equation [2] by using the 
standard tools of Bayesian statistics: Bayes’ rule, mar-
ginalization, and conditioning.

We first apply Bayes’ rule to obtain the posterior 
density for the latent function:

 p f
p p f

pn n
n n n n

n n
x f x

y f x f x X
y X

( )( ) =
( ) ( )( )

( )
,  ,   

  ,  | , 

|
,|

|
D  [4]

where p(f(x), fn | x, Xn) is the GP prior in Equation 
[3] extended with a general input x, p(yn | fn) is the 
likelihood for the latent function at the training set, in 
which yn is independent of Xn given the latent function 
fn, and p(yn | Xn) is the marginal likelihood or evidence 
of the model.

The likelihood function is given by a factorized model:

 p p y fn n
i

n

i iy f x|( ) = ( )( )
=
∏ | ,

1

 [5]

because the samples in Dn are independent and identi-
cally distributed. In turn, for each pair (f(xi), yi), the 
likelihood is given by Equation [1]; therefore,

 p y f fi i i v| x x( )( ) ( )( )~ ,  .N σ2  [6]

A Gaussian likelihood function is conjugate to the GP 
prior, and hence the posterior in Equation [4] is also a 
multidimensional Gaussian distribution, which simpli-
fies the computations to obtain Equation [2].

Finally, we can obtain the posterior density in Equa-
tion [2] for a general input x by conditioning on the 
training set and x, and by marginalizing the latent 
function:

 p y p y f p f dfn n| | |x x x x x,    ,    ,D D( ) =∫ ( )( ) ( )( ) ( )  [7]

where

 p f p f dn n n nx x x f x f( )( ) =∫ ( )( )| |D D,    ,  ,    , [8]

given the training data set, fn takes values in Rn as it is 
a vector of n samples of a GP.

We have divided the marginalization into 2 separate 
equations to show the marginalization of the latent 
function over the training set in Equation [8] and the 
marginalization of the latent function at a general input 
x in Equation [7]. As mentioned earlier, the likelihood 
and the prior are Gaussians distributions, and therefore 
the marginalization in Equations [7] and [8] only in-
volves Gaussian distributions. Thereby, we can analyti-
cally compute Equations [7] and [8] by using Gaussian 
conditioning and marginalization properties, leading to 
the following Gaussian density for the output:

 p f n f fx x x x( )( ) ( )( ) ( )| ,  ~ ,  ,D    N µ σ2  [9]

where

 µf
T
n nx k C y( )
−= 1  [10]

and

 σf
T
nkx x x k C k( )
−= ( )−2 1,    , [11]

with

 k = (k(x1, x), k(x2, x), . . . , k(xn, x))T  
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and

 C K In n n= + .σν
2  

The mean for p y x n| , D( ) is also given by Equation [10] 
(i.e., μy = μf(x)), and its variance is

 σ σ σνy f
2 2 2= +( )x , [12]

which, as expected, also accounts for the noise in the 
observation model.

Covariance Functions

In the previous section, we have assumed that the 
covariance functions k(x, xʹ) are known, which is not 
typically the case. In fact, the design of a good covari-
ance function is crucial for a GP to provide accurate 
nonlinear solutions. The covariance function describes 
the relation between the inputs, and its form deter-
mines the possible solutions of the GP regression. It 
controls how quickly the function can change, or how 
the samples in one part of the input space affect the 
latent function everywhere else. For most problems, we 
can specify a parametric kernel function that captures 
any available information about the problem at hand. 
As already discussed, unlike kernel methods, a GP can 
infer these parameters, the so-called hyper-parameters, 
from the samples in Dn by using the Bayesian frame-
work, instead of relying on computationally intensive 
procedures as cross-validation (Kimeldorf and Wahba, 
1971) or learning the kernel matrix (Bousquet and Her-
rmann, 2002), as kernel methods need to.

The covariance function must be positive semi-
definite because it represents the covariance matrix 
of a multidimensional Gaussian distribution. The 
covariance can be built by adding simpler covariance 
matrices, weighted by a positive hyper-parameter, or 
by multiplying them together, because the addition 
and multiplication of positive definite matrices yields 
a positive definite matrix. In general, the design of the 
kernel should rely on the information that we have for 
each estimation problem and should be designed to get 
the most accurate solution with the least number of 
samples. Nevertheless, the following kernel in Equation 
[13] often works well in signal processing applications:

 k x xi j
l

d

d il jl i
T
jx x x x, exp( ) = − −











+ +

=
∑α γ α α1

1

2
2 33δij , 

 [13]

where θ = [α1, γ1, γ2, . . . , γd, α2, α3]
T are the hyper-

parameters.
The first term is a radial basis kernel, also denoted as 

RBF or Gaussian, with a different length-scale for each 
input dimension. This term is universal and allows con-
struction of a generic nonlinear regressor. If we have 
symmetries in our problem, we can use the same length-
scale for all dimensions: γ1 = γ for l = 1, . . . , d. The 
second term is the linear covariance function. The last 
term represents the noise variance α συ3

2= , which can 
be treated as an additional hyper-parameter to be 
learned from the data. We can add other terms or 
other covariance functions that allow for faster transi-
tions, such as the Matérn kernel among others (Wil-
liams and Rasmussen, 2006).

If the hyper-parameters, θ, are unknown, the likeli-
hood in Equation [5] and the prior in Equation [3] can 
be expressed as p(y | f, θ) and p(f | X, θ), respec-
tively, and we can proceed to integrate out θ. We have 
dropped the subindex n, because it is inconsequential 
and unnecessarily clutters the notation. First, we com-
pute the marginal likelihood of the hyper-parameters of 
the kernel given the training data set

 p p py X y f f X f| | | d,   ,   ,   .θ θ θ( ) =∫ ( ) ( )  [14]

Second, we can define a prior for the hyper-parameters, 
p(θ), that can be used to construct its posterior. Third, 
we integrate out the hyper-parameters to obtain the 
predictions. However, in this case, the marginal likeli-
hood does not have a conjugate prior and the posterior 
cannot be obtained in closed form. Hence, the inte-
gration must be performed either by sampling or by 
approximations. Although this approach is well prin-
cipled, it is computationally intensive, and it may not 
be feasible for some applications. For example, Markov-
chain Monte Carlo methods require several hundred 
to several thousand samples from the posterior of θ 
to integrate it out. Interested readers can find further 
details in Williams and Rasmussen (2006).

Alternatively, we can maximize the marginal likeli-
hood in Equation [14] to obtain its optimal setting 
(Williams and Rasmussen, 1995). Although setting the 
hyper-parameters by maximum likelihood is not a purely 
Bayesian solution, it is fairly standard in the community, 
and it allows use of Bayesian solutions in time-sensitive 
applications. This optimization is nonconvex (MacKay, 
2003), but, as we increase the number of training samples, 
the likelihood becomes a unimodal distribution around 
the maximum likelihood hyper-parameters, and the so-
lution can be found using gradient ascent techniques. 
See Williams and Rasmussen (2006) for further details.
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