The effect of Swiss Regional Nature Parks on agricultural earnings: Evaluating the impact of parks using causal analysis methods

Marina Cracco, UNIL Dr. Christian Ritzel, Agroscope

5th Swiss Parks Research Conference, University of Lausanne

September 12, 2023

ValPar.CH

Presenting

- Relevance of an impact evaluation
- Research question and hypothesis
- Scope
- Methods
- Preliminary results
- Preliminary conclusions and discussion

Relevance

• Why an impact evaluation?

• Park effect on...

Research question

Research question

• Hypothesis (H₀)

- To what extent the status "park" has an effect on agricultural earnings?
- No difference between the average agricultural earnings in park municipalities vs. non-park municipalities

Scope: national level, major bioregions, and cantonal/individual

- Jura and Alps
- Switzerland

 Cantonal/individual: Parks considered

Regional Nature Parks under study

Major bioregions of Switzerland

Methods

- Swiss level
- Regional level

Cantonal/individual level

*Both methods rely on **matching** and **difference in differences** (quasi-experiment). Stata 17 • FlexpanelDiD* (Dettmann et al. 2020)

• Synthetic Control Method* (Abadie et al. 2010)

Data and unit of analysis

Matching variables:

Age

Economic sectors

Preliminary results: National level (flexpanelDiD)

Similar results for the Jura and Alps regions

		DiD*		robust	2	P> z	
treated	controls			S.E.			
9.9e+03	7.9e+03	2.0e+03	>	1.4e+03	1.3496	0.1790	

Consistent bias-corrected estimator as proposed in Abadie & Imbens (2006,2011).

Preliminary results: Canton/individual level (case 1 - synthetic)

Covariate	V.weight Treated		Synthetic	Control	Average Control		
			Value	Bias	Value	Bias	
RatioFemale_	0.0977	0.1829	0.1829	-0.01%	0.2096	14.58%	
RatioMale_	0.0188	0.8171	0.8171	0.00%	0.7904	-3.26%	
age	0.0008	45.7318	45.4499	-0.62%	46.0631	0.72%	
rhiresy	0.0008	1079.3349	1113.2493	3.14%	1169.2914	8.33%	
tabsy	0.0049	2.5481	2.5656	0.69%	3.9891	56.55%	
srely	0.0452	47.8847	47.8974	0.03%	49.0421	2.42%	
elevation_mean_100m_	0.2437	1804.6887	1804.5105	-0.01%	1546.2456	-14.32%	
Avratio1_	0.0093	0.4323	0.4160	-3.76%	0.1859	-57.00%	
Avratio2_	0.1149	0.1764	0.1747	-0.99%	0.2941	66.71%	
Avratio3_	0.3992	0.4098	0.4093	-0.12%	0.5200	26.91%	
mrevcot(2005)	0.0278	47314.0869	47326.0766	0.03%	49067.8092	3.71%	
mrevcot(2008)	0.0344	47041.7410	47044.7842	0.01%	51377.8535	9.22%	
mrevcot(2012)	0.0025	59568.3055	59231.9521	-0.56%	58011.6120	-2.61%	

Preliminary Results: Canton/individual level (case 1 continued)

Linear regressio	n	Number of obs			=	30	
			F	(3, 26)		=	28.28
			P	rob > F		=	0.0000
			R	-squared		=	0.7830
			R	oot MSE		=	3749.9
		Robust					
Y	Coefficient	std. err.	t	P> t	[95%	conf.	interval]
park	-234.5453	2061.723	-0.11	0.910	-4472.	479	4003.388
D_post	16172.56	2056.232	7.87	0.000	11945	.91	20399.2
c.park#c.D_post	-8866.355	2703.339	-3.28	0.003	-14423	.15	-3309.562
cons	51386.57	1445.267	35.56	0.000	48415	.78	54357.36

. abar

Arellano-Bond test for AR(1): z = -0.11 Pr > z = 0.9153

Preliminary results: Canton/individual level (case 2 - synthetic)

Linear regression	F P R	umber of c (3, 26) rob > F -squared oot MSE	obs = = = = =	30 34.65 0.0000 0.7853 4155		
Y	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
park D_post	1686.828 14527.48	1475.58 1881.513	1.14 7.72	0.263 0.000	-1346.269 10659.97	4719.926 18394.98
c.park#c.D_post	357.2242	2933.074	0.12	0.904	-5671.796	6386.244
_cons	63489.23	1006.528	63.08	0.000	61420.28	65558.18

. abar

Arellano-Bond test for AR(1): z = 1.17 Pr > z = 0.2410

. reg Y park D_post c.park#c.D_post, vce(robust)

Preliminary conclusions and discussion

Overall, no difference in average agricultural earnings in park vs. nonpark municipalities at the three levels (H₀ cannot be rejected)

In one case (canton/individual level) differences exist (H₀ could be rejected)

- What does it really mean?
 - Enough difference over time?
 - Park objectives/Mgmt. plan
 - Qualitative studies
 - Other impact evaluations/outcomes
 - Accountability
 - Knowledge management

Monitoring: data needs

- Outcome of interest constraints
- Panel data strongly balanced
- Data for long pre and post treatment periods
- Covariates/matching variables needed (omitted variable – farmers' skill)

Thank you for your attention

Merci de votre attention

Vielen Dank für Ihre Aufmerksamkeit

References and figure credits

References

- Abadie et al. 2010
- Dettmann et al. 2020

Figures/maps/pictures

- Picture: Naturpark Diemtigtal: ©Swiss Parks Network (modified)
- Map of Parks of National Importance: ©Swiss Parks Network 01/2023 Data: Swiss Parks Network / Federal Office for the Environment FOEN, swisstopo
- Map of Geographical regions in Switzerland: Prof (Honorary) Mikhail Kanevski, UNIL; <u>Multifractal Portrayal of the Swiss</u> <u>Population</u> 2015
- Map geo admin: swisstopo, OFEV, cantons
- <u>Picture: Oranges to apples</u>
- <u>Picture: Apples to apples</u>
- Graph: Nearest Neighbor matching
- Dettmann et al. 2020
- Figure weights: SCM: Matteo Courthoud; Published in <u>Towards Data Science</u>; Jul 30, 2022
- Other figures and graphs: developed by the authors using Stata 17 or https://dagitty.net/dags.html#

FlexpanelDiD (Dettmann et al. 2020): How does it work?

- Several treated units with heterogenous treatment time (staggered treatment)
- Matches on covariates Nearest Neighbor
- Conditional parallel trends assumption

- Uses ps-test, Kolmogorov-Smirnov test, Q.Q plot for normal distribution and matches diagnostics
- Estimation result for average treatment effect for the treated (ATT): with mean bias-corrected and corrected standard errors

Figure 2: sketch of the relative time definitions in flexpaneldid

Preliminary results: Major bioregions

* Consistent bias-corrected estimator as proposed in Abadie & Imbens (2006,2011).

Average treatment effect for the tre Estimator : Nearest neighbor Distance metric : Statistical DF			eated No No Mea	= = =	54 49 1		
Outcome	mean treated	Diff controls	DiD*	AI robust S.E.	Z	P>	z
mrevcot	7.7e+03	8.1e+03	-3.6e+02	2.6e+03	-0.1398	0.8	893

* Consistent bias-corrected estimator as proposed in Abadie & Imbens (2006,2011).

Synthetic control method (Abadie 2010): How does it work?

- One treatment unit (average) and several comparison units
- Matches on covariates, pretreatment (weights)
- Conditional parallel trends assumption
- Placebo tests (in space/in time)

Synthetic control method: (case 1 – placebo test)

The probability of obtaining a post/pretreatment MSPE ratio as large as the unit of treatment is 0.0128