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Abstract
The term carbon (C) sequestration	has	not	just	become	a	buzzword	but	is	something	
of a siren's call to scientific communicators and media outlets. Carbon sequestration is 
the	removal	of	C	from	the	atmosphere	and	the	storage,	for	example,	in	soil.	It	has	the	
potential to partially compensate for anthropogenic greenhouse gas emissions and is, 
therefore,	an	important	piece	in	the	global	climate	change	mitigation	puzzle.	However,	
the term C sequestration is often used misleadingly and, while likely unintentional, can 
lead	to	the	perpetuation	of	biased	conclusions	and	exaggerated	expectations	about	
its	contribution	to	climate	change	mitigation	efforts.	Soils	have	considerable	potential	
to take up C but many are also in a state of continuous loss. In such soils, measures to 
build up soil C may only lead to a reduction in C losses (C loss mitigation) rather than 
result	 in	real	C	sequestration	and	negative	emissions.	 In	an	examination	of	100	re-
cent peer-reviewed papers on topics surrounding soil C, only 4% were found to have 
used the term C sequestration	correctly.	Furthermore,	13%	of	the	papers	equated	C	
sequestration with C stocks. The review, further, revealed that measures leading to 
C sequestration will not always result in climate change mitigation when non-CO2 
greenhouse gases and leakage are taken into consideration. This paper highlights po-
tential pitfalls when using the term C sequestration incorrectly and calls for accurate 
usage of this term going forward. Revised and new terms are suggested to distinguish 
clearly	between	C	sequestration	in	soils,	SOC	loss	mitigation,	negative	emissions,	cli-
mate	change	mitigation,	SOC	storage,	and	SOC	accrual	to	avoid	miscommunication	
among scientists and stakeholder groups in future.
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1  |  INTRODUC TION

At	 the	 21st	 United	 Nations	 Framework	 Convention	 on	 Climate	
Change	 (COP21)	 in	 Paris,	 socio-environmental	 challenges	 arising	
from the anticipated effects of global warming, such as increased 
risk of droughts and flooding, were identified and nature-based 
solutions	for	combating	these	effects	were	discussed	(IPCC,	2021). 
The	reduction	of	greenhouse	gas	(GHG)	emissions	through	sustain-
able management of ecosystems is regarded as a key component in 
strategies	for	achieving	this	goal.	Agricultural	land,	forests	and	wet-
lands have become increasingly prominent as land-use types that 
have the potential to store additional C in soils and biomass, thereby 
decreasing atmospheric CO2 concentration and helping to mitigate 
climate	change	(Griscom	et	al.,	2017). This focus has resulted in pro-
grams such as the 4per1000 initiative and various carbon (C) farm-
ing schemes (Minasny et al., 2017; Rumpel et al., 2020) aiming at 
increasing terrestrial C storage in managed ecosystems. Together, 
these ecosystems are seen as an actionable basis for achieving net 
zero	GHG	emissions	by	2050	and	preventing	the	rise	of	global	tem-
peratures	beyond	2°C	(IPCC,	2021).

Soil	organic	carbon	(SOC)	is	dynamic	in	time	and	space	and	is	
continuously built up but also continuously decomposed and min-
eralised.	Both	SOC	and	 soil	 inorganic	 carbon	 (SIC)	occur	 in	 soils	
but	this	paper's	focus	is	on	SOC,	since	this	is	the	main	area	of	dis-
cussion	in	science	and	politics.	SOC	comprises	all	organic	matter	
in	soils	 that	 is	dead.	Changes	 in	SOC	stocks	are	small	 relative	to	
existing	 large	 SOC	 stocks.	 Biomass	 in	 the	 form	 of	 aboveground	
and belowground litter, including woody material such as dead 
roots	is	entering	the	soil,	thereby	renewing	parts	of	the	SOC	pool.	
Simultaneously,	microbes	decompose	SOC,	releasing	a	portion	of	
carbon as respired CO2 into the atmosphere. Observed changes in 
SOC	stocks	are	thus	mostly	the	consequence	of	two	major	fluxes:	
the	 fraction	 of	 net	 primary	 production	 entering	 the	 soil,	 for	 ex-
ample,	as	 litter	and	the	respiration	flux	releasing	C	from	the	soil	
(Bondeau	 et	 al.,	 2007).	 The	 difference	 between	 the	 two	 fluxes	
is referred to as the net C balance of the soil. The net balance 
changes over time as a result of temporal variations in these two 
fluxes	depending	on	various	drivers.	 If	the	net	C	balance	is	posi-
tive	soil	takes	up	C.	If	soil	C	is	increased	relative	to	initial	SOC	as	
a result of reducing atmospheric carbon (e.g., via photosynthetic 
pathways), C sequestration is achieved.

What is ultimately of importance in relation to climate change 
mitigation	is	the	SOC	stock	change	on	annual,	decennial	or	centen-
nial timescales, and the spatial domains in which this change oc-
curs. In addition to the difficulty of measuring this net balance, the 
misuse of the terms related to C sequestration in soils can lead to 
misunderstandings	and	biased	and	unrealistic	expectations	of	the	
role of agricultural and forest soils in their ability to contribute to 
climate	change	mitigation.	Not	every	local	or	field-scale	increase	
in terrestrial C stocks amounts to C sequestration, and not all C 
sequestration is a negative emission that contributes to climate 
change	 mitigation.	 Assessing	 the	 climate	 change	 mitigation	 po-
tential	 of	 additional	 SOC	 stocks	 requires	 accounting	 for	 leakage	

effects (Lugato et al., 2018).	 Leakage	 describes	 additional	 GHG	
emissions caused by climate change mitigation measures that ei-
ther reduce the strength of a C sink, or turn these measures into 
sources	of	GHGs.

The results and discussion surrounding C sequestration have im-
plications beyond discipline-specific research circles, including for 
stakeholders such as politicians and farmers. There are risks of mis-
communication if the terminology around C sequestration is not ad-
equately defined and correctly used. Therefore, the aim of this paper 
was	to	revisit	existing	definitions	of	the	terms	C sequestration, SOC se-
questration, climate change mitigation, negative emissions, SOC storage, 
and SOC accrual, with the goal of clarifying their meaning and ensuring 
their appropriate and accurate usage going forward. The results are 
presented of an evaluation of 100 recent peer-reviewed publications 
that use the term C sequestration or SOC sequestration in relation to 
soils	in	order	to	explore	current	use	of	the	term,	identify	pitfalls	asso-
ciated with use of these terms based on their definitions, and outline 
a pathway for accurate communication in the field of C sequestration 
and	negative	GHG	emissions.

2  |  DEFINITION OF C SEQUESTR ATION: 
NET UPTAKE OF CO2 FROM ATMOSPHERE

Carbon sequestration	is	defined	by	the	IPCC	as	the	process	of	increas-
ing	the	C	content	of	a	C	pool	other	than	the	atmosphere	(IPCC,	2001). 
Furthermore,	 for	soil	 specifically,	C sequestration in soils is described 
by Olson et al. (2014) as the “process of transferring CO2 from the at-
mosphere into the soil of a land unit through plants, plant residues and 
other organic solids, which are stored or retained in the unit as part of 
the soil organic matter” (Table 1). The term SOC sequestration is fre-
quently used with the same meaning despite it not being entirely cor-
rect since it involves the sequestration of atmospheric CO2 rather than 
soil	organic	carbon	(SOC).	This	means	that	for	C	sequestration	in	soils	
to occur, CO2 must be drawn from the atmosphere and be converted 
into organic C via autotrophs metabolic activities, and then must enter 
the soil either directly (plant matter and plant residues produced on the 
same site) or indirectly (plant-derived organic matter such as manure 
or compost that derive mostly from other sites) in sufficient quantities 
to outweigh losses caused by respiration and lead to a net C stock in-
crease	in	the	soil	(see	example	in	Figure 1a). Consequently, as this C is 
derived from atmospheric CO2, there is a commensurate net removal 
of C from the atmosphere, referred to here as negative emissions if 
the	emission	of	other	greenhouse	gases	(GHGs)	is	not	simultaneously	
enhanced	and	the	sum	of	all	GHG	fluxes	(in	CO2 equivalent) is nega-
tive. To produce negative emissions, a measure needs to change the 
soil	from	a	GHG	source	to	a	GHG	sink,	considering	possible	leakage.

C sequestration in soils	 is	a	 term	often	used	 in	the	context	of	cli-
mate change mitigation because it is the process responsible for de-
termining	the	flux	of	atmospheric	C	entering	soils	and	turning	them	
into C sinks. Climate change mitigation has been defined as “a human 
intervention to reduce emissions or enhance the sinks of greenhouse 
gases”	(IPCC,	2021).	Prior	and	post	states	of	GHG	fluxes	need	to	be	
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compared (including C sinks) to quantify the climate change mitigation 
effect	of	such	interventions.	At	the	same	time	it	is	clear,	a	reduction	
of emissions does not equate to negative emissions but only of C sinks, 
and C sequestration in soils may not always lead to climate change miti-
gation,	depending	on	past	sink	strength	or	past	GHG	emissions.

Furthermore,	the	terms	C sequestration and SOC storage are often 
used	 synonymously,	 but	 have	 different	 implications	 (Baveye	 et	 al.,	
2023). SOC storage is used as either (i) a quantity, that is, the amount 
of	SOC	(e.g.,	SOC	stock)	or	(ii)	a	process,	that	is,	an	increase	in	SOC	
stocks over time for a given land unit. The former is not associated with 
net removal of C from the atmosphere, and thus does not constitute 
actual C sequestration in soils (Chenu et al., 2019;	Guenet	et	al.,	2021), 

while the latter implies it. In order to reduce miscommunication po-
tential, it is proposed that clear definitions of the terms are used. We 
propose definitions in Table 1. Mathematical formulations of the defi-
nitions are presented in Data S1 .

3  |  CURRENT USE OF THE TERM  
C SEQUE S TR ATION

Use of the term C sequestration	in	the	context	of	soils	was	surveyed	
and	 analyzed	 in	 100	 recent	 peer-reviewed	 publications	 with	 the	
aim of comparing the broader use of the term in current scientific 

TA B L E  1 Proposed	definitions	of	key	terms.

Term Definition

C sequestration in soils Process	of	transferring	C	from	the	atmosphere	into	the	soil	through	plants	or	other	organisms,	which	is	retained	
as	soil	organic	carbon	resulting	in	a	global	C	stock	increase	of	the	soil	(based	on	IPCC,	2001; Olson et al., 
2014)

SOC	loss	mitigation An	anthropogenic	intervention	to	reduce	SOC	losses	compared	to	a	business-as-usual	scenario

Negative	emission Net	removal	of	CO2-equivalents of greenhouse gases from the atmosphere

Climate change mitigation An	anthropogenic	intervention	that	reduces	the	sources	or	enhance	the	sinks	of	greenhouse	gases	(based	on	
IPCC,	2021)

SOC	storage The	size	of	the	SOC	pool	(i.e.,	SOC	stock	or	SOC	content)

SOC	accrual An	increase	in	SOC	stock	at	a	given	unit	of	land,	starting	from	an	initial	SOC	stock	or	compared	to	a	business-as-
usual value (does not always result in climate change mitigation or C sequestration in soils)

F I G U R E  1 Possible	trends	in	soil	organic	carbon	(SOC)	stocks	in	business-as-usual	(BAU)	scenarios	and	following	implementation	of	C	
sequestration	measures.	(a)	SOC	stocks	are	assumed	to	be	in	steady	state	with	no	change	in	a	BAU	scenario,	(b)	SOC	stocks	are	predicted	to	
increase	even	without	C	sequestration	measures	in	the	BAU	scenario,	(c)	SOC	stocks	are	expected	to	decline	in	the	BAU	scenario	despite	the	
implementation	of	C	sequestration	measures,	and	(d)	SOC	stocks	are	expected	to	decline	if	no	C	sequestration	measures	are	implemented.	
“SOC	change	of	a	measure”	is	relative	to	the	BAU	scenario.	The	dashed	line	indicates	zero	change.	Calculations	are	provided	in	the	Data	S1.

(b)(a)

(c) (d)
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literature with the definitions outlined above (Table 1). With this re-
view we wanted to get a representative overview of how the term C 
sequestration	is	currently	used.	Publications	were	selected	using	the	
search	string	(“soil”)	AND	(“carbon	sequestration”	OR	“C	sequestra-
tion”)	in	the	title	or	abstract	in	the	Web	of	Science	database	on	12	
October 2022. This produced 10,601 peer-reviewed publications, 
dated between 1945 and 2022, covering the fields of environmental 
sciences (28%), soil science (22%), ecology (12%), agronomy (8%), 
forestry	 (7%),	 plant	 sciences	 (6%),	 geosciences	 (6%),	 agriculture	
(5%), biodiversity conservation (3%) and other multidisciplinary sci-
ences	 (3%).	The	 top	 ten	countries	publishing	8794	 (84%)	of	 these	
studies	 were	 China	 (26%),	 USA	 (23%),	 Germany	 (7%),	 Australia	
(5%),	 India	 (5%),	 Canada	 (5%),	 UK	 (4%),	 Spain	 (3%),	 France	 (3%),	
and Italy (3%), with the remaining 16% of studies published in other 

countries.	The	100	most	recent	publications	covering	April	2022	to	
October 2022 were then selected (see Data S1). The broad range of 
scientific disciplines and countries represented in the search results 
indicates the importance of the term C sequestration in soils across 
scientific	communities,	and	the	urgent	need	for	standardization	of	
the terminology surrounding the uptake, storage, and release of C in 
and	from	soils.	Subsequently,	based	on	the	definitions	given	above,	
the following nine aspects were looked at when surveying the lit-
erature (Table 2).

After	surveying	the	selected	papers,	it	was	found	that	93%	re-
ferred specifically to SOC sequestration or C sequestration in soils 
in	the	title	or	abstract,	while	7%	referred	to	C sequestration where 
the word soil is mentioned independently in the abstract. The 
majority of studies either focused on agricultural management 

TA B L E  2 Overview	of	the	study	details	and	survey	criteria	considered	for	100	peer-reviewed	studies	involving	carbon	(C)	or	soil	organic	
carbon	(SOC)	sequestration.	The	criteria	(right	column)	are	mutually	exclusive.

Aspect Criteria

i. Is	C	or	SOC	addressed? • Only C sequestration mentioned
OR

•	 C/SOC	sequestration	in	soils	is	mentioned

ii. Is	C/SOC	sequestration	in	soils	the	major	topic	
(regardless	of	definition)?

•	 C/SOC	sequestration	is	mentioned	but	no	related	data	or	discussion	is	presented
OR

•	 Specific	or	related	data	are	presented	(e.g.,	soil	organic	matter	data)	or	discussed

iii. Representativeness • Only a subunit of soil is considered (e.g., sequestration in aggregates)
OR

• a representative unit of soil (e.g., fine soil <2 mm)	is	considered

iv. Soil	depths	considered? •	 Not	mentioned
OR

• Only top soil (<30 cm)
OR

•	 Subsoil	also	considered	(>30	to	≤100 cm)

v. Relative C increase vs. C sequestration in soils •	 Higher	C	stock	compared	to	a	business-as-usual	(BAU)	scenario	in	steady	state	
(relative C increase)
OR

•	 SOC	increase	compared	to	a	dynamic	BAU	scenario	or	initial	C	stock

vi. Usage	of	SOC	storage	as	a	mass	or	a	flux? •	 Only	SOC	stock/	SOC	content	reported
OR

•	 C	flux	or	stock	increase	compared	with	a	control	treatment	reported

vii. Long-term storage (permanence) considered and 
ensured?

•	 Not	mentioned
OR

• Mentioned
OR

•	 Accounted	for
OR

•	 Accounted	for	and	ensured	(e.g.,	by	incorporating	C	in	recalcitrant	products	such	
as biochar where C sequestration is not easily reversible)

viii. Time	considered? • C sequestration value provided without time dimension
OR

• C sequestration rate provided

ix. Is leakage considered and accounted for in the 
greenhouse	gas	balance	(e.g.,	N2O emissions, 
loss	of	yield)?

•	 Not	mentioned
OR

• Mentioned
OR

•	 Partially	accounted	for
OR

•	 Fully	accounted	for
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practices that have the potential to increase C storage in soils 
(39%) or quantified the C sequestration potential of whole eco-
systems (20%; Figure 2).	Surprisingly,	42%	of	the	100	papers	ap-
peared	 to	 use	 the	 term	C	or	 SOC	 sequestration	 only	 to	 apply	 a	
broader	context	to	their	study.	While	the	topics	of	 these	papers	
often	included	C	or	soil	C,	there	was	insufficient	data,	context,	and	
meaningful	 C	 or	 SOC	 sequestration	 related	 discussion	 linked	 to	
the term C sequestration.

Soils	 are	 generally	 a	 relatively	 thin	 layer	 between	 the	 atmo-
sphere and bedrock; however, in some regions they can be several 
decameters	 deep.	 The	 highest	 SOC	 stocks	 are	 found	 in	 topsoils	
which	are	also	most	susceptible	to	SOC	changes	because	of	their	
proximity	 to	 the	 atmosphere	 as	 well	 as	 anthropogenic	 impacts	
(Poeplau	&	Don,	2013).	In	72%	of	the	100	analyzed	papers	repre-
sentative	soil	units	were	studied.	Subunits,	such	as	aggregates,	that	
are not necessarily representative of either topsoil or total soil were 
studied in 8% of the publications. The remaining 20% did not men-
tion	 the	 soil	unit	 that	was	analyzed	 (e.g.,	 sieved	<2 mm).	Further,	
most	papers	referred	only	to	the	topsoil	to	30 cm	soil	depth	(55%)	
or made no mention of the soil depth for which their results were 
reported	(34%).	Only	11%	of	the	studies	explicitly	included	subsoils	
below	30 cm	soil	 depth,	demonstrating	 the	 systematic	neglect	of	
subsoil's	contribution	to	soil	C	dynamics	(Börjesson	et	al.,	2018).

Following	 the	 definitions	 given	 in	Table 1, none of the 42 pa-
pers that only used C sequestration in soils to put their study into 
a	broader	 context	without	 data	 or	 discussion	of	 the	 topic	 applied	
the term correctly and, of the 58 remaining publications involving 
soil	C-related	topics,	only	7%	applied	the	term	correctly	(Figure 3b). 

As	many	as	67%	of	 the	100	papers	compared	experimental	 soil	C	
values	 to	 a	 BAU	 scenario	 assuming	 that	 SOC	 stock	 is	 in	 a	 steady	
state. This assumption is oversimplified and unrealistic in most cases 
since	SOC	stocks	change	over	time	(Minasny	et	al.,	2017;	Sanderman	
et al., 2017).	Thus,	it	is	unclear	whether	they	are	showing	a	net	SOC	
increase (C sequestration) or a relative increase compared to a refer-
ence	treatment	or	BAU	scenario.	Finally,	for	29%	of	the	100	papers	
no distinction could be made between correct or incorrect use of 
the term C sequestration	 as	 SOC	was	 not	 the	main	 topic	 of	 these	
papers and the information necessary to make this distinction was 
not given.

Overall, almost two-thirds of 100 recent peer-reviewed publica-
tions referred to SOC storage as an SOC stock increase, while 13% 
referred to SOC storage as SOC stocks. The remaining 25% of studies 
did	not	mention	SOC	stocks	or	SOC	stock	changes,	despite	discuss-
ing C sequestration (Figure S1a). These proportions did not change 
significantly	when	excluding	publications	 in	which	C	sequestration	
in	soils	was	only	used	to	put	their	study	into	a	broader	context	with-
out	data	or	discussion	of	the	topic	(75%,	12%	and	14%	respectively,	
Figure S1b).

A	 value	 for	 total	 C	 sequestration	 within	 a	 time	 period	 (e.g.,	
in	 Mg	 C ha−1) was found in 40% of 100 recent peer-reviewed 
publications,	 while	 57%	 gave	 a	 C	 sequestration	 rate	 (e.g.,	 in	 kg	
C ha−1 year−1)	and	3%	did	not	give	any	information	at	all.	No	large	
differences	 were	 found	 after	 excluding	 those	 publications	 that	
only used C sequestration in soils to put their study into a broader 
context	without	data	or	discussion	of	the	topic	(47%,	51%	and	2%,	
respectively).

F I G U R E  2 Main	topics	of	100	recent	peer-reviewed	publications	following	the	search	string	(“soil”)	AND	(“C	sequestration”	OR	“carbon	
sequestration”) in the title or abstract and divided into two groups: “C sequestration data and/or discussion of the topic” (dark bars) and “C 
sequestration used without data or discussion of the topic” (light bars).
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4  |  PITFALL S OF USING THE TERM  
C SEQUE S TR ATION  IN SOIL S

The literature review underlines the cross- and intra-disciplinary 
confusion about the terms C sequestration, negative emissions, climate 
change mitigation, and C storage related to soil C. In this chapter, we 
want to show the pitfalls surrounding these words and how to avoid 
them.

4.1  |  C sequestration in soils versus C 
loss mitigation

As	a	result	of	the	definitions	of	IPCC	(2021) and Olson et al. (2014) 
for the term C sequestration in soils, not every measure to enhance 
SOC	will	 result	 in	 C	 sequestration	 and	 negative	 emissions	with	 a	
net uptake of C from the atmosphere (Figure 4a).	The	SOC	stocks	
of many agricultural soils are currently declining due to changes 
in land management, such as drainage, and historic land use 
changes but also to climate change (Ciais et al., 2010;	 Poeplau	 &	
Dechow, 2023;	Sanderman	et	al.,	2017).	Agricultural	measures	can	
help reduce (Figure 4b)	or	stop	this	SOC	loss	or	even	achieve	SOC	
build-up (Figure 4c,d) and thus true C sequestration in soils	(Paustian	
et al., 2016).	However,	in	cases	where	SOC	losses	are	only	reduced	
compared	to	a	business-as-usual	scenario	(i.e.,	a	SOC	stock	increase	
compared	to	a	BAU	scenario)	this	cannot	be	called	C sequestration in 
soils	as	the	soil	is	still	losing	SOC.	Instead,	use	of	the	term	SOC loss 
mitigation is proposed but also the term C stock protection is used 
(Whitehead et al., 2018; Figures 1c and 4b).

Previous	 literature	 referred	 to	 this	 as	 relative C sequestration 
(Peralta	et	al.,	2022), but we considered this to be misleading since 
it does not represent a net removal of atmospheric CO2 but uses the 
term C sequestration. Regardless of the underlying reasons for the 

decline	 in	 SOC,	 if	 SOC	 stocks	 do	not	 increase	over	 time	 true	C se-
questration in soils cannot be achieved. Therefore, a comparison of the 
difference	in	SOC	stocks	between	a	treatment	that	enhances	SOC	and	
a control treatment should not be interpreted as C sequestration; the 
initial	SOC	stock	also	needs	to	be	considered.	The	difference	in	SOC	
stocks	between	SOC-enhancing	treatments	and	a	control	 treatment	
can instead be referred to as SOC accrual or SOC increase.

Some	ecosystems	 are	 particularly	 SOC	 rich,	 such	 as	 peatlands	
and some grasslands and forests (Jobbagy & Jackson, 2000). The 
protection	of	their	SOC	stocks	is	important	for	climate	change	mit-
igation since many of them are actually C sources due to land use 
conversion or the agricultural use of peatland after drainage (Leifeld 
et al., 2019).	Therefore,	a	business-as-usual	scenario	in	which	SOC	
is in decline needs to be defined in order to include measures to 
protect	 these	 SOC	 stocks	 as	 climate	 change	mitigation	measures,	
for	example,	if	peatlands	are	rewetted	to	reduce	or	stop	their	CO2 
emissions compared to a business-as-usual scenario with drained 
peatlands (see Figure 1c). In these ecosystems the major aim is to 
achieve climate change mitigation	by	reducing	GHG	emissions	rather	
than through C sequestration.

4.2  |  C sequestration in soil, SOC storage or SOC 
stocks?

Only C that is additionally stored in soils or that is additional com-
pared to a business-as-usual scenario can be relevant for climate 
change mitigation. Thus, C sequestration in soils is not the same as 
SOC	stocks.	Soil	organic	carbon	sequestration	refers	to	a	net	flux	of	
C from the atmosphere to the soil. The rate unit should be mass C 
per	area	per	 time	period,	 for	example,	Mg C ha−1 year−1,	while	SOC	
stock	 is	 a	mass	 per	 area,	 for	 example,	Mg C ha−1. In summary, the 
size	of	any	C	pool	can	be	referred	to	as	a	C	mass,	C	pool	or	C	stock,	

F I G U R E  3 Use	of	the	terms	carbon (C) sequestration or soil organic carbon (SOC) sequestration in 100 recent peer-reviewed studies 
following the definitions shown in Table 1. In the studies, soil C was assessed either relative to a business-as-usual scenario in a steady state 
(orange) or as C sequestration in soils (green), as defined in this study for (a) all 100 publications and (b) a selection of 58 recent peer-reviewed 
publications	excluding	those	that	only	use	C sequestration without data or discussion of the topic. In all cases where study conditions could 
not	be	determined,	these	were	considered	“Not	specified”	(grey).

(a) (b)
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while C sequestration is the process of removing CO2 from the at-
mosphere	over	time,	which	is	always	a	C	flux.

The present analysis showed that in 12% of the 58 publications 
that focused on C sequestration in soils, the term SOC storage was 
used synonymously with SOC stocks, while two thirds used it to de-
scribe	an	 increase	 in	SOC	stocks	 (Figure S1). This highlights the po-
tential for miscommunication resulting from a single term with two 
different	definitions	(as	shown	in	Section	1). While the two uses are 
correct as storage describes both the act of storing or the state of 
being stored (Collin, 1982),	we	suggest	that:	(i)	SOC	content	or	stock	
is referred to as SOC storage	and	(ii)	an	increase	in	SOC	stocks	is	re-
ferred to as SOC accrual (Table 1). While SOC accrual is related to C 
sequestration in soils, there is potential for differences in the source 
of C. Where C sequestration in soils requires the atmosphere to soil 
pathway of C accumulation, SOC accrual does not require atmospheric 
C	as	the	source	of	C,	and	instead	relates	to	any	increase	in	SOC	stocks	
at	a	given	site.	For	example,	SOC accrual can be due to eroded sedi-
ment	that	is	deposited	and	increases	SOC	at	one	site.	However,	this	
is	causing	SOC	depletion	at	another	site	where	the	sediment	was	de-
rived	from	and	thus,	no	net	SOC	increase	(C sequestration) is achieved. 
Additionally,	climate	change	mitigation	effects	were	often	claimed	to	
be	related	to	the	size	of	the	existing	SOC	stock	at	a	single	site	(Baveye	
et al., 2023);	however,	the	protection	of	existing	SOC	stocks	is	only	a	
measure for climate change mitigation if in the business-as-usual sce-
nario	soils	are	losing	SOC.	In	either	case,	C sequestration in soils is not 
achieved since there is no net uptake of C from the atmosphere.

4.3  |  C flux or global warming potential

Differentiating	between	the	global	warming	potential	(GWP)	of	CO2 
and C mass is essential for understanding the effect of a measure 
on	 C	 fluxes	 and	 for	 climate	 change	 mitigation.	 The	 common	 unit	
to	 express	 the	 effect	 of	 GHGs	 on	 the	 climate	 is	 CO2-equivalents 
(CO2-eq).	This	converts	N2O and CH4 emissions into equivalent units 
relative to the cumulative radiative forcing of CO2 over a given pe-
riod,	usually	100 years.	In	contrast,	C sequestration in soils refers to 
C mass which is representative of the number of C atoms removed 
from the atmosphere and is thus different from removals calculated 
in CO2-eq, which are key when focusing on comparing the radiative 
effect	of	different	GHGs.	This	 is	particularly	 important	 if	methane	
(CH4) is part of the evaluation, since it contains C but has a 28-fold 
higher global warming potential than CO2 over a 100-year period. 
Paddy	soils	and	peatlands	are	 systems	 that	emit	 large	amounts	of	
CH4 (Jackson et al., 2020). Thus, C sequestration can be achieved 
with C removal from the atmosphere, but if CH4 emissions increase 
at the same time, they can easily offset the climate change mitiga-
tion effect of C sequestration (Figure 5). Thus, C may be removed 
from the atmosphere (number of C atoms, Figure 5b) without nega-
tive emissions being achieved (unit CO2-eq, Figure 5a).	Although	C 
sequestration in soils	 refers	 to	C	 fluxes	 per	 number	 of	C	 atoms,	 in	
the	wider	context	of	climate	change	mitigation	the	global	warming	
effect	of	different	greenhouse	gases	expressed	as	CO2-equivalents 
is relevant.

F I G U R E  4 Theoretical	examples	of	management	changes	(a–e)	and	their	site-specific	impacts	on	soil	and	atmospheric	carbon	pools	and	
N2O	fluxes.	Off-site	fluxes	(e.g.,	leakage)	are	not	considered.	Management	examples	are	evaluated	according	to	their	effects	on	SOC	loss	
mitigation,	climate	change	mitigation,	C	sequestration	and	negative	emissions.	Arrow	length	represents	the	flux	size	in	CO2-equivalents. ✓: 
yes; ×:	no;	−:	not	applicable.

(a)

(b)

(c)

(d)

(e)
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5  |  FROM C SEQUESTR ATION IN SOIL S 
TO NEGATIVE EMISSIONS

5.1  |  Permanence of additional SOC storage

There are diverging views on the conditionality of permanence for 
C sinks: CO2 storage in geological formations or the deep ocean is 
generally considered to stay for millennia whereas biomass C sinks 
in afforestations are considered as C sinks even though their storage 
time	 is	often	only	measured	 in	decades	 (Gren	&	Zeleke,	2016; Tyka 
et al., 2022).	Thus,	 the	permanence	of	C	storage	 is	context	specific.	
Ideally,	 additional	 SOC	 is	 stored	 permanently	 but	 even	 temporary	
storage	is	beneficial.	For	instance,	the	climate	benefit	of	SOC	that	is	
stored	for	40 years	before	release	is	still	66%	of	that	for	SOC	stored	for	
100 years	before	release	(Leifeld	&	Keel,	2022). Thus, the time period 
for	which	additional	SOC	is	stored	is	pivotal	for	its	climate	impact.

Carbon bound in soil organic matter is in a continuous flow. 
About	80%–90%	of	the	C	entering	soils	in	the	form	of	plant	biomass	
is respired within a timespan of months to a few years in a temperate 
climate	(Angers	et	al.,	2022).	Nevertheless,	even	such	a	dynamic	C	
pool can be enhanced, and C stocks can probably be preserved in 
the	 long-term	 by	 adopting	 SOC	 increasing	management	 practices	
(Johnston et al., 2017).	Only	7%	of	100	recent	peer-reviewed	pub-
lications	considered	or	ensured	long-term	storage,	for	example,	via	

stabilization	as	biochar.	Furthermore,	permanence	was	considered	
by 11%, at least mentioned by 46%, and not mentioned at all by 36% 
of	 all	 the	 studies	 considered.	 No	 notable	 differences	 were	 found	
when	excluding	publications	that	use	C	sequestration	in	soils	only	to	
put	their	study	into	a	broader	context	without	data	or	discussion	of	
the	topic	(7%,	17%,	46%,	30%,	respectively).

5.2  |  Leakage can prevent C sequestration in soils 
from achieving climate change mitigation

Leakage	of	GHGs	may	determine	whether	or	not	an	agricultural	meas-
ure for C sequestration in soils is able to mitigate climate change or 
even achieve negative emissions. Leakage occurs if a measure to en-
hance	SOC	stocks	leads	to	an	increase	in	GHG	emissions	either	on	site	
(i.e.,	from	the	soil	where	SOC	stocks	are	increased)	or	off	site.	Some	
agricultural	measures	for	SOC	accrual	also	increase	on-site	N2O emis-
sions	to	such	an	extent	that	the	potential	climate	change	mitigation	
effect	of	added	SOC	is	completely	negated	or	even	reversed	(Guenet	
et al., 2021; Lugato et al., 2018).	This	may	be	the	case,	for	example,	
when	SOC	stock	increases	are	obtained	by	promoting	biomass	produc-
tion	and	thus	C	inputs	to	the	soil	as	a	result	of	additional	N	fertilization	
(Poeplau	et	al.,	2018).	Potential	 additional	off-site	emissions	can	be	
caused,	 for	 example,	 by	 increased	 energy	 consumption	 required	 for	

F I G U R E  5 Net-exchange	of	methane	(CH4)	and	carbon	dioxide	(CO2)	between	the	soil	and	the	atmosphere	for	a	theoretical	example	of	
a management change and its site-specific impact in (a) CO2-equivalents (CO2-eq)	and	in	(b)	number	of	C	atoms.	Off-site	fluxes	(e.g.,	leakage)	
are	not	considered.	Arrow	lengths	in	(a)	represent	the	flux	size	in	CO2-equivalents with a global warming potential of CH4 of 28. CH4	fluxes	
and CO2	fluxes	together	result	in	the	net	greenhouse	gas	balance	(net	GHG)	by	assuming	zero	N2O	fluxes.	By	only	considering	the	C	in	CH4 
and CO2,	we	derived	a	net	C	balance	(Net	C).	Arrow	lengths	in	(b)	represent	the	C	flux	size	of	CH4-C and CO2-C	that	together	indicate	SOC	
accrual (net C).

(a) (b)

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16983 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.16983&mode=


    |  9 of 14DON et al.

fertilizer	and	machinery	production	and	transport.	Furthermore,	leak-
age	can	occur	due	to	indirect	effects,	for	example,	due	to	a	reduced	
agricultural yield that may trigger the need for additional agricultural 
land	and	related	C	losses	as	a	result	of	land-use	changes.	Such	indirect	
land-use	changes	may	even	dominate	the	net	GHG	balance	of	agricul-
tural measures for climate change mitigation and turn their balance 
from positive to negative (Kløverpris & Mueller, 2013;	 Searchinger	
et al., 2008). It is, therefore, not reasonable, or perhaps even possible, 
to fully account for all leakage effects in studies on C sequestration in 
soils	due	to	the	complexity	of	the	topic.	However,	we	encourage	an	
increased awareness of such leakage effects when evaluating C se-
questration measures.

Another	form	of	leakage	is	the	transfer	of	C	from	one	site	to	an-
other through organic amendments such as farm-yard manure or com-
post	(Paustian	et	al.,	2019). The level of these organic amendments is 
limited by the amount of biomass available to produce these organic 
fertilizers	in	the	first	place	(Janzen	et	al.,	2022).	Thus,	SOC	cannot	be	
increased with organic amendments at one site without a commen-
surate	reduction	of	SOC	from	another	site.	Organic	amendments	are	
thus	likely	to	enhance	SOC	stocks	on	a	local	scale	(SOC	accrual)	with-
out	achieving	SOC	stock	increases	on	a	global	scale	(C	sequestration	in	
soils).	Organic	amendments	can	only	boost	SOC	stocks	globally	if	they	
are not returned to soil in the business-as-usual scenario (e.g., compost 
or sewage sludge that is currently incinerated) or some transformation 
increases	the	persistence	of	the	resulting	SOC.	The	 latter	 is	true	for	
biochar, which has been shown to increase the mean residence time of 
organic C in soils significantly compared with its feedstock and there-
fore	achieves	C	sequestration	in	soils	(Schmidt	et	al.,	2021). However, 
additional	GHG	emissions	 from	processing	of	biochar	and	 transport	
should be accounted for when evaluating its C sequestration potential.

Notably,	of	the	100	recent	peer-reviewed	publications	reviewed,	
only	 9%	 fully	 consider	 leakage	by	 reporting	 a	 complete	GHG	bal-
ance, while 3% partially account for this (e.g., by accounting for just 
some	GHGs	but	not	all).	Meanwhile,	20%	mention	that	leakage	ef-
fects	exist	or	are	possible,	while	the	majority	(68%)	do	not	mention	
it	at	all.	This	does	not	change	very	much	when	excluding	those	pub-
lications that use C sequestration in soils only to put their study into 
a	broader	context	without	data	or	discussion	of	the	topic	(14%,	5%,	
21% and 60%, respectively). Owing to the widespread potential for 
leakage	in	SOC-enhancing	measures,	spatially	explicit	accounting	of	
SOC	stock	changes	 is	not	sufficient	to	capture	the	climate	change	
mitigation potential of a measure, and therefore the global scale 
view is required to establish the true effect of C sequestration. That 
being said, for plot scale studies such global view is hardly possi-
ble and thus estimates on off-site and leakage effects may only be 
roughly estimated, discussed or mentioned.

5.3  |  The temporal dimension of C sequestration: C 
stocks versus GHG fluxes

The	implementation	of	management	changes	can	induce	SOC	stock	
increases,	but	the	achieved	SOC	accrual	will	decrease	over	time	with	

SOC	stocks	approaching	a	new	steady	state	between	SOC	forma-
tion and respiration (Chenu et al., 2019;	 Sommer	&	Bossio,	2014). 
Although	the	measure	continues	to	be	implemented,	there	is	no	fur-
ther	buildup	of	SOC	once	the	new	steady	state	is	reached	(Figure 1). 
In particular, if agricultural measures are implemented to increase 
SOC	 that	 also	 enhance	 GHG	 emissions	 such	 as	 N2O (i.e., on-site 
leakage), the respective time scale for judging these agricultural 
measures on their potential to mitigate climate change or cause 
negative emissions is important (Lugato et al., 2018) and needs to be 
clearly	reported.	For	illustration,	here	is	one	example.	Reduced	till-
age	can	enhance	SOC	stocks	mainly	in	dry	regions	(Bai	et	al.,	2019). 
A	total	C	sequestration	in	soils	of	3 Mg ha−1	(11 Mg CO2 ha

−1) may be 
reached	after	30 years	 in	the	topsoil	compared	to	a	reference	sce-
nario with conventional ploughing (Lugato et al., 2018). Thus, each 
year	0.1 Mg C ha−1	is	sequestered	for	30 years	(0.37 Mg CO2 ha-1).	At	
the	same	time,	reduced	tillage	leads	to	enhanced	annual	N2O emis-
sions	by	0.2 Mg CO2eq ha

−1	(Guenet	et	al.,	2021). Over a 30-year pe-
riod,	this	results	in	a	ratio	of	0.54	between	additional	N2O emissions 
and additional CO2 uptake (see also Figure 4c).	Any	 ratio	below	1	
indicates climate mitigation effects. Thus, over a 30-year timescale, 
this agricultural measure would be considered to contribute to cli-
mate change mitigation (if there is no other leakage and if the ref-
erence	scenario's	SOC	storage	is	in	a	steady	state).	This	conclusion	
changes	if	the	same	example	is	viewed	from	a	100-year	perspective,	
resulting	in	a	ratio	of	1.82	between	N2O and CO2. While the C se-
questration in soils ceases once the new steady state of C input and 
mineralisation	 is	 reached,	N2O may continue to be emitted. Thus, 
in	this	example	reduced	tillage	would	result	in	negative	emissions	if	
calculated	from	a	mid-term	perspective	(30 years),	but	would	result	
in	 additional	 emissions	 from	 a	 longer-term	 perspective.	 Although	
this	 example	 is	 a	 simplification	 regarding	 the	 time-dependency	 of	
the	GWP,	 it	 illustrates	 that	 it	 is	 critical	 to	consider	 timescales	and	
leakage when evaluating a measure's climate change mitigation 
potential.

6  |  CONCLUSIONS

The window for preventing climate change from reaching an irrevers-
ible tipping point is closing and action needs to be taken to keep 
the effect of anthropogenic global warming under +2°C.	 Nature-
based solutions that enhance soil C storage can contribute to climate 
change mitigation. In order to identify and quantify these measures 
and their climate change mitigation potential, multiple stakeholder 
groups need to be able to work together and communicate unam-
biguously. This kind of collaboration is only possible when key terms 
are carefully defined and accurately employed. It is therefore a prior-
ity for the scientific literature to be clear about definitions of impor-
tant terms in order to guide discussions in the political world and 
wider society. This analysis of 100 recently published peer-reviewed 
research papers clearly demonstrates that the terms C sequestration 
and SOC storage are either used ambiguously or have multiple in-
terpretations. Thus, a more rigorous use of the term C sequestration 
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and related vocabulary is needed in order to avoid misunderstand-
ings and biased perception of the true potential of nature-based 
solutions. Clearer definitions of such terms are proposed and new 
terms outlined to distinguish clearly between C sequestration in soils, 
SOC loss mitigation, negative emissions, climate change mitigation, SOC 
storage, and SOC accrual.	In	addition,	based	on	examples,	this	paper	
highlights the pitfalls of inaccurately applying terminology associ-
ated	with	SOC	storage,	and	provides	guidance	on	the	proper	use	of	
the	more	clearly	defined	terms	suggested.	Furthermore,	it	highlights	
the importance of transparent communication regarding the perma-
nence	of	additional	SOC	and	leakage	effects.	Without	correct	use	of	
these key terms, misleading conclusions may be drawn regarding cli-
mate change mitigation strategies, ultimately leading to support for 
measures	that	do	not	have	the	intended	benefits.	By	using	a	consist-
ent vocabulary the foundations can be laid for much-needed climate 
change solutions.
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