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Abstract

Genomic prediction for multiple environments can aid the selection of genotypes suited to specific soil and climate conditions. Method-
ological advances allow effective integration of phenotypic, genomic (additive, nonadditive), and large-scale environmental (enviromic)
data into multi-environmental genomic prediction models. These models can also account for genotype-by-environment interaction,
utilize alternative relationship matrices (kernels), or substitute statistical approaches with deep learning. However, the application
of multi-environmental genomic prediction in apple remained limited, likely due to the challenge of building multi-environmental
datasets and structurally complex models. Here, we applied efficient statistical and deep learning models for multi-environmental
genomic prediction of eleven apple traits with contrasting genetic architectures by integrating genomic- and enviromic-based model
components. Incorporating genotype-by-environment interaction effects into statistical models improved predictive ability by up to
0.08 for nine traits compared to the benchmark model. This outcome, based on Gaussian and Deep kernels, shows these alternatives
can effectively substitute the standard genomic best linear unbiased predictor (G-BLUP). Including nonadditive and enviromic-based
effects resulted in a predictive ability very similar to the benchmark model. The deep learning approach achieved the highest predictive
ability for three traits with oligogenic genetic architectures, outperforming the benchmark by up to 0.10. Our results demonstrate that
the tested statistical models capture genotype-by-environment interactions particularly well, and the deep learning models efficiently
integrate data from diverse sources. This study will foster the adoption of multi-environmental genomic prediction to select apple
cultivars adapted to diverse environmental conditions, providing an opportunity to address climate change impacts.

Introduction
Since the introduction of genomic selection [1], the genome-
wide selection based on thousands of markers has resulted
in increased genetic gain, and this approach is progressively
becoming an integral component of modern crop breeding
programs [2, 3]. To predict the genomic estimated breeding values
for genomic selection, marker effects are frequently estimated
using the well-established genomic best linear unbiased pre-
dictor (G-BLUP) approach [4]. For genomic prediction across
environments, increased predictive ability has been demonstrated
by utilizing G-BLUP to incorporate the main marker effects
and interaction effects of markers and environments [5, 6].
The interaction between markers and environments provides
a mathematical representation of the natural phenomenon of

genotype-by-environment interaction, which results from the
variability in the genotype performance ranking across different
environmental conditions. Despite numerous reports of success-
ful phenotypic performance prediction using molecular markers
in perennial crops such as apple [7–10], genotype-by-environment
interaction has been often overlooked in genomic prediction of
apple traits.

The most comprehensive study conducted thus far to
investigate the influence of genotype-by-environment interaction
on genomic predictive ability in apple, conducted by Jung
et al. [11], was achieved by the establishment of the apple
reference population, known as the apple REFPOP [12]. Across
the numerous phenotypic traits assessed in the apple REFPOP,
genotype-by-environment interaction explained up to 24% of
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the phenotypic variance, and the incorporation of genotype-
by-environment interaction into G-BLUP resulted in a predictive
ability increase of up to 0.07 [11]. The challenge of building multi-
environmental datasets, coupled with the computational costs
tied to the structural complexity of genomic prediction models
accommodating genotype-by-environment interaction, has likely
limited the use of such models in practice.

Recent software advances that reduce computational time
could enable broader adoption of multi-environmental genomic
prediction models in plant breeding (Costa-Neto, Fritsche-Neto,
et al., 2021; [13]). Empirical comparisons between the well-
established R package ‘BGLR’ [14] and the newer R package
‘BGGE’ [13], both of which apply the same model structures
based on G-BLUP, revealed comparable predictive abilities, but
‘BGGE’ was up to five times faster [13]. In addition to G-BLUP,
covariance matrices, alternatively referred to as relationship
matrices or kernels, can be estimated using approaches that
capture nonlinearity in the relationships between phenotype
and genotype. The nonlinear Gaussian kernel and the Deep
kernel (also known as the arc-cosine kernel) have demonstrated
superior performance compared to G-BLUP, showing reduced
computational time and increased predictive ability in maize
and wheat datasets (Costa-Neto, Fritsche-Neto, et al., 2021; [15]).

In addition to the commonly used genomic effects of molecular
markers, the advancements in software have introduced straight-
forward options for incorporating additional sources of variation
into genomic prediction models (Costa-Neto, Fritsche-Neto, et al.,
2021; Costa-Neto, Galli, et al., 2021). Using the natural and orthog-
onal interactions (NOIA) approach, marker values can be split into
additive values and dominance deviations that allow for orthog-
onal partition of variances, which implies that the proportions of
additive genomic effects remain constant even when dominance
effects are incorporated into the genomic prediction model [16].
The incorporation of dominance effects into genomic prediction
models is typically done by the use of relationship matrices,
as proposed by Vitezica et al. [17, 18]. Unlike other approaches
to construct relationship matrices for dominance (e.g. [18]), the
NOIA approach does not assume Hardy–Weinberg equilibrium,
which makes it particularly suitable for populations such as those
resulting from crosses [17]. In apple, the inclusion of nonorthogo-
nal dominance effects under the assumption of Hardy–Weinberg
equilibrium did not affect predictive ability [19]. However, com-
bining dominance effects applying the NOIA approach along with
a fixed effect of inbreeding has demonstrated improved genomic
predictive ability in maize and sugarcane [20, 21]. Additionally,
incorporating nongenetic effects derived from large-scale assess-
ment of environmental attributes (i.e. envirotyping, resulting in
environmental covariates also called enviromic markers [22, 23])
into genomic prediction models can improve the estimation of
similarities between environments and genotype-by-environment
interaction. This enhancement not only leads to increased predic-
tive ability, but also offers a more comprehensive understanding
of the complex interplay between genetic and environmental
factors (Costa-Neto, Fritsche-Neto, et al., 2021; [5]). The enviromic-
based effects, as well as the marker-based effects expressed as
standard genomic, orthogonal additive, and dominance effects,
can all be studied as extensions of G-BLUP using conventional sta-
tistical genomic prediction model frameworks, which simplifies
their integration into the modeling process.

Deep learning approaches have emerged as an alternative to
conventional statistical genomic prediction models. The literature
review of Montesinos-López et al. [24] on the application of deep
learning for genomic selection showed no distinct superiority

of deep learning approaches in terms of predictive ability com-
pared to conventional genomic prediction models, unless very
large datasets were used. However, deep learning models allow
for effective integration of data from diverse sources, but they
can also become impractical for datasets containing many vari-
ables, leading to computational complexity and overfitting. In
plant breeding, datasets comprising thousands of markers are
compiled, and dimensional reduction may help simplify marker
information for deep learning [25]. In the study by Jurado-Ruiz
et al. [26], the use of a small subset of associated markers was
critical for accurate predictions of apple shape when deploying
neural networks. The potential application of deep learning for
multi-environmental genomic prediction of diverse quantitative
apple traits has yet to be examined.

This study aims to conduct a comprehensive comparison
between conventional statistical models that integrate genomic-
and enviromic-based effects and a deep learning approach for
multi-environmental genomic prediction of apple traits. The
subjects of prediction were eleven quantitative traits related to
phenology, productivity, and fruit quality, which were measured
from the apple REFPOP during five years at up to five locations,
i.e. up to 25 environments (defined as combinations of location
and year). The increased extent of the apple REFPOP dataset
across environments allows an evaluation of different modeling
techniques to harness the full potential of these data for accurate
prediction of phenotypic traits. The main objectives of the study
were: (i) to evaluate the relative contribution of different model
components, i.e. random effects and feature streams, for the
statistical and deep learning genomic prediction models, and
(ii) to assess and compare predictive abilities of these models. By
addressing these two crucial factors, this research aims to provide
insights into the strengths and limitations of statistical models
and deep learning to identify the best modeling solutions for the
selection of apple cultivars adapted to diverse environmental
conditions.

Results
Dataset composition
From the eleven phenotypic traits assessed in the apple REFPOP
over five years and at a maximum of five locations, two environ-
ment–trait combinations were excluded due to very low values
of the environment-specific clonal mean heritability (H2 < 0.1).
The excluded combinations included phenotypic measurements
for floral emergence in Spain in 2020 (H2 = 0.036) and flowering
intensity in France in 2021 (H2 = 0.002). Consequently, phenotypic
estimates were generated from a minimum of eight environments
for titratable acidity, soluble solids content, and fruit firmness,
while harvest date, total fruit weight, number of fruits, and single-
fruit weight were evaluated across the maximum number of
environments, totaling 25 (Table S1). Various shapes of distri-
butions and consistent patterns of Pearson’s correlations were
observed for the adjusted means of phenotypic traits over years
and locations (Fig. 1a, Fig. S1, Fig. S2).

For the weather variables, moderate differences were observed
in daily temperature means, daily humidity means, and daily radi-
ation sums between years and locations (Fig. 1b). Consequently,
these data were summarized based on phenology, meaning the
data was split into two periods: the first 80 days until 90% of
the genotypes flowered, and the following days until 90% of the
genotypes were harvested (Fig. S3). After preprocessing the soil
variables, the final enviromic dataset included 28 environmental
covariates for weather and soil.
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Figure 1. Phenotypic and weather data distributions. A, Density estimates for the adjusted means of eleven phenotypic traits from five locations and
five years of measurement. The locations correspond to Belgium (BEL), Switzerland (CHE), Spain (ESP), France (FRA), and Italy (ITA). B, Local regression
curves spanning five years estimated from daily temperature means, daily humidity means, and daily radiation sums. Colors correspond to legend
in A.

Relationship matrices
Implementation of the G-BLUP approach resulted in the standard
genomic relationship matrix KG (based on standard allele coding
with allele dosage values of 0, 1, and 2), the additive genomic
relationship matrix KA, and the dominance genomic relationship

matrix KD (Fig. 2a, b, and c). The heat maps of these matrices
depicted a strong similarity between KG and KA (Fig. 2a and b). The
lower-left quadrant of matrices KG and KA comprised the apple
REFPOP accessions, revealing only subtle differences between
these genotypes. The upper-right quadrant of matrices KG and KA
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Figure 2. Heat maps of the genomic relationship matrices. A, Standard genomic relationship matrix KG based on a marker matrix using the standard
coding for biallelic SNPs (allele dosage values of 0, 1, and 2). B, Additive genomic relationship matrix KA based on marker matrix using the additive
coefficients. C, Dominance genomic relationship matrix KD based on marker matrix using the dominance coefficients. The matrices in A–C were
constructed using the G-BLUP approach. D, Standard genomic relationship matrix KGGK constructed deploying the Gaussian kernel (GK). E, Standard
genomic relationship matrix KGDK based on the Deep kernel (DK). The lower-left and upper-right quadrants show the apple REFPOP accessions and
progenies, respectively.

visualized the apple REFPOP progenies grouped according to their
biparental origin. The progeny groups were evident in the matrix
KD, but no further strong relationships between genotypes were
visually observed. KA and KD showed the mean of their matrix
values close to zero and the mean of the diagonal of 1. Gaussian
kernel and Deep kernel, used as alternative approaches to G-
BLUP, resulted in matrices KGGK and KGDK (Fig. 2d and e) that were
visually similar to the KG and KA matrices implemented using
G-BLUP (Fig. 2a and b), although some differences were observed
particularly for the Gaussian kernel approach (Fig. 2d). Appli-
cation of the G-BLUP to the enviromic dataset of 28 environ-
mental covariates resulted in the enviromic relationship matrix
KW (Fig. 3). Hierarchical clustering of the matrix KW showed five
clusters of environments, each cluster referring to one of the
orchard locations.

Contribution of the model components
Decomposition of the phenotypic variance using linear mixed
models by incorporating random effects for the vector of
genotypes (i.e. genotypic effects) and genotype-by-environment
interaction revealed that the proportion of phenotypic variance

explained by the genotypic effects ranged from 9% for flowering
intensity to 78% for harvest date (Fig. 4a, Table S2). In contrast, the
largest proportion of phenotypic variance explained by genotype-
by-environment interaction was observed for flowering intensity
(29%). The lowest proportion of genotype-by-environment
interaction variance (9%) was found for harvest date. The
total variance explained by both genotypic and genotype-by-
environment interaction effects reached 64% on average across
traits (Table S3).

For the statistical genomic prediction based on G-BLUP, lin-
ear mixed model structures resulted from the application of
the relationship matrices KG, KA, and KD, representing genomic
(G), additive (A), and dominance (D) effects, respectively. Vari-
ous proportions of phenotypic variance related to these random
effects and their interactions (×) were extracted from the model
fits (Fig. 4b, Table S2). Due to its model structure, the simplest
genomic prediction model (used as a benchmark) was labeled as
G, and its random genomic effects accounted for an average of
58% of the variance across traits (Table S3). Across all traits, model
A explained ∼1% more variance compared to model G (Table S3).
Including the fixed effect of inbreeding in model G, leading to
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Figure 3. The enviromic relationship matrix KW constructed from the environmental covariates for weather and soil using G-BLUP. Environments
(combinations of location and year) were grouped applying hierarchical clustering.

model G (inb), resulted in the same proportion of explained vari-
ance of 58% as for model G (Table S3). For the models G + D and
G + D (inb), the average total proportion of variance explained
by the model components G and D across traits was 1% lower
than that of model G (Table S3). The model G + G × E + D + D × E,
on average across traits, explained a proportion of variance 21%
greater than that explained by model G (Table S3).

The model G + G × E based on G-BLUP, including interactions
with the environment, explained, on average across traits, a pro-
portion of variance 14% greater than that explained by model G
(Table S3). Specifically, the effect G accounted for variance ranging
from 19% for flowering intensity to 81% for harvest date, and G × E
explained variance ranging from 6% for harvest date to 23% for
flowering intensity (Fig. 4a, Table S2).

The enviromic effects (W) and the interaction effects G × W
were implemented applying the relationship matrix KW based
on G-BLUP in the model structures G + W, G + W + G × W, and
G + G × E + W + G × W, and these models explained, on average
across traits, 24%, 25%, and 30% more variance than model
G, respectively (Fig. 4a, Table S3). For the most complex model
G + G × E + W + G × W, the proportions of variance explained by
the interaction effects G × E and G × W were modest, ranging
from 4% to 9% for G × E and 2%–4% for G × W (Table S2).

When comparing models based on G-BLUP with their coun-
terparts implementing Gaussian kernel using the relationship
matrix KGGK (model structures labeled with GK), the models G (GK),
G + G × E (GK), and G + G × E + W + G × W (GK) demonstrated an
average increase in explained variance of 3%, 7%, and 3% across
traits, respectively (Fig. 4a, Table S3). However, the models G + W
(GK) and G + W + G × W (GK) resulted in an average decrease
in explained variance of up to 1% (Table S3). On average over

traits, the model structures based on Deep kernel implement-
ing the relationship matrix KGDK (model structures labeled with
DK) exhibited a strong decrease in the proportion of variance
explained by the genomic- and enviromic-based random effects
when compared to their counterparts utilizing G-BLUP, namely
−22% for G (DK), −19% for G + G × E (DK), −26% for G + W (DK),
−25% for G + W + G × W (DK), and −17% for G + G × E + W + G × W
(Table S3).

The applied deep learning genomic prediction model integrated
marker and enviromic data through four feature streams, namely
single nucleotide polymorphism (SNP), principal component (PC),
weather, and soil streams, and the estimation of Shapley additive
explanations (SHAP) revealed the relative mean importance of
these feature streams (Fig. 4c, Table S4). Across all traits, the
relative SHAP contributions were 50% for the SNP stream, 1% for
the PC stream, 36% for the weather stream, and 13% for the soil
stream. The relative SHAP contribution for the SNP stream ranged
from 18% to 26% for floral emergence and the productivity traits
(flowering intensity, total fruit weight, and number of fruits) to
80% for titratable acidity. For the PC stream, the relative SHAP
contribution ranged between 0% for russet frequency and 3% for
number of fruits. The lowest weather stream contribution of 10%
was found for titratable acidity, while the largest contribution of
the weather stream of 55%–63% was found for floral emergence
and the productivity traits (flowering intensity, total fruit weight,
and number of fruits). The relative SHAP contribution for the soil
stream ranged between 5% for soluble solids content and 19%–
23% for floral emergence and two productivity traits (total fruit
weight and number of fruits). An abundance of SNPs displaying
high absolute mean SHAP were found for harvest date, titratable
acidity, and red over color (Fig. S4, Fig. S5). For harvest date,
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Figure 4. Relative contribution of different model components estimated for eleven traits. A, Average proportions of phenotypic variance related to
genotypic (g) and genomic (G) effects, their interactions (×) with the vector of environments (E), the enviromic effects (W), the interaction effects
G × W, as well as the residual effect extracted from the statistical genomic prediction model fits. The relationship matrices for the different effects in
the statistical genomic prediction models were constructed using the G-BLUP approach or, where indicated, the Gaussian kernel (GK) or Deep kernel
(DK). The statistical genomic prediction models were compared with a model based on phenotypic data (Phenotypic). Error bars correspond to
standard deviation around the mean. B, Average proportions of phenotypic variance related to genomic (G), additive (A), and dominance (D) effects,
their interactions (×) with the vector of environments (E), and the residual effect extracted from the statistical genomic prediction model fits. The
model structures G and G + D were additionally extended with the fixed effect of inbreeding (inb). The relationship matrices for the different effects
were based on G-BLUP. Error bars correspond to standard deviation around the mean. The results for the benchmark model G are the same as shown
in A. C Relative contribution of the SNP, PC, weather, and soil feature streams estimated using SHAP for the deep learning genomic prediction model.
Error bars correspond to standard deviation around the mean.
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Figure 5. Comparison of predictive ability averaged across all studied
traits. The statistical genomic prediction models were based on
combinations of the genomic (G), additive (A), dominance (D), and
enviromic (W) effects, interactions (×) with the vector of environments
(E), and interactions between the genomic and enviromic effects (G × W).
The model structures G and G + D were additionally extended with the
fixed effect of inbreeding (inb). The relationship matrices for the
different effects in the statistical genomic prediction models were
constructed using the G-BLUP approach or, where indicated, the
Gaussian kernel (GK) or Deep kernel (DK). The y-axis was truncated to
provide a detailed model comparison. See Table S6 for a comparison of
the predictive ability for each trait.

three SNPs with the highest absolute mean SHAP of 0.002 were
located on chromosome 3 at 29.2 Mb (AX-115250472), 30.7 Mb
(AX-115366114), and 30.8 Mb (AX-115233388). The three SNPs with
the highest absolute mean SHAP of 0.003 for titratable acidity
were found on chromosome 8 at 10.7 Mb (AX-115276534), 10.8 Mb
(AX-115254093), and 11.8 Mb (AX-115519462). For red over color,
the three SNPs with the highest absolute mean SHAP of 0.005
were located on chromosome 9 at 33.8 Mb (AX-105213720, AX-
115558498) and 35.6 Mb (AX-115370846).

Predictive ability
Assessment of genomic prediction model performance using 5-
fold cross-validation showed that the average predictive ability
across traits ranged from 0.45 to 0.49 for the compared models
(Fig. 5, Table S5). Based on these average predictive abilities, the
model G + W + G × W emerged as the least efficient, with an aver-
age predictive ability across traits of 0.45. Models A, G (inb), G + W,
G + W + G × W (GK), G + W + G × W (DK), G + G × E + W + G × W,
G + D, and G + D (inb) demonstrated equivalent average predictive
ability across traits, with a value of 0.46, comparable to the bench-
mark model G based on G-BLUP. Average predictive ability across
traits of 0.47 was found for the models G (GK), G (DK), G + G × E,
G + W (GK), G + W (DK), and G + G × E + D + D × E. The models
G + G × E + W + G × W (GK), G + G × E + W + G × W (DK), and deep
learning provided additional improvement with the average pre-
dictive ability across traits of 0.48. The models G + G × E (GK) and
G + G × E (DK) showed the highest average predictive ability across
traits of 0.49.

For four models selected for an in-depth comparison with the
benchmark model G based on their performance and character-
istics (G (GK), G + G × E, G + G × E (GK), and deep learning), strong
differences in average predictive ability were observed among the
examined traits (Fig. 6, Table S6). Flowering intensity and russet
frequency were at the lower end of the predictive ability spectrum,
while harvest date and red over color were at the upper end.

Compared to model G, the model G (GK) showed an increase
in average predictive ability of 0.01–0.02 for most traits, but no
improvement in predictive ability was found using this model for
titratable acidity and fruit firmness. Model G + G × E led to an
increase in average predictive ability of 0.07 for flowering intensity
and 0.01–0.02 for floral emergence, number of fruits, single-fruit
weight, soluble solids content, and russet frequency. It showed no
improvement for harvest date, total fruit weight, titratable acidity,
fruit firmness, and red over color. Model G + G × E (GK) demon-
strated an additional improvement in average predictive ability
of 0.01–0.02 compared to model G + G × E for all traits, except
for titratable acidity and fruit firmness. For these two traits, the
incorporation of the G × E effect led to a decrease in average
predictive ability by 0.01 in both tested models, G + G × E and
G + G × E (GK), compared to model G. The deep learning genomic
prediction model demonstrated higher predictive abilities than
model G for five out of the eleven traits studied. For harvest date,
titratable acidity and red over color, the deep learning genomic
prediction model outperformed all statistical genomic prediction
models tested. The increase in average predictive ability com-
pared to model G was 0.06 for harvest date, 0.07 for titratable
acidity, and 0.10 for red over color.

Discussion
This study provides insights into the complexities of multi-
environmental genomic prediction in quantitative apple traits.
The incorporation of different sources of variation in the form of
model components, and the comparison of predictive abilities
between statistical genomic prediction models and a deep
learning approach contribute to advancing the understanding
of efficient genomic prediction methodologies. The findings high-
light the need for a nuanced approach, considering the specific
traits and modeling approaches in plant breeding applications.

Modeling genotype-by-environment interaction
In the context of genomic prediction across environments
(defined as combinations of location and year), this work
underscored a detectable improvement in predictive ability when
employing genomic prediction models based on G-BLUP that
integrate both main marker effects and the interaction effects of
markers and environments, as it has been described by previous
studies [5, 6, 11]. Compared to the benchmark genomic prediction
model implementing exclusively the main marker effects, Jung
et al. [11] reported up to 0.07 increase in predictive ability for
apple traits by integrating the random effects for G × E using
the software package ‘BGLR’ [14]. In this study deploying the
newer software ‘BGGE’ [13], an analogous model comparison
based on the same plant material but including two additional
years of phenotypic data, showed comparable improvements in
predictive ability of up to 0.07. Average predictive ability across
eleven studied traits for models incorporating G × E using G-BLUP
was 0.01 lower compared to the average predictive ability for the
same traits reported previously (Table S6, [11]). As the predictive
ability of G × E models based on G-BLUP was similar in ‘BGLR’ and
‘BGGE’ [13], the difference in predictive ability was likely due to the
changes in the phenotypic dataset between the compared studies.

The inclusion of G × E effects led to an increase in predic-
tive ability, which was associated with a higher proportion of
variance explained by the random effects (Fig. 4). However, the
improvement in predictive ability was disproportionately smaller
compared to the increase in explained variance. This discrepancy
between the substantial rise in explained variance and the modest
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Figure 6. Boxplots of predictive abilities for eleven traits estimated using statistical and deep learning genomic prediction models. The statistical
genomic prediction models were based on combinations of the genomic effects (G) and their interactions with the vector of environments (G × E). The
relationship matrices for the different effects in the statistical genomic prediction models were constructed using the G-BLUP approach or, where
indicated, the Gaussian kernel (GK). Twenty-five predictive ability estimates were generated for each available environment (up to 625 estimates per
trait), and their average was displayed as black diamonds for each model and trait. Jittered points (gray) show all predictive ability estimates for
each trait.

gain in predictive ability was observed across all the statisti-
cal genomic prediction models studied, contrary to expectations
(Costa-Neto, Fritsche-Neto, et al., 2021). It might be explained
by the fact that variance was estimated using the training sets,
while predictive ability was evaluated on the validation sets. This
suggests that the model, although effectively capturing patterns
in the training set, did not generalize well to the validation set,
resulting in limited improvements in predictive ability for the
validation set.

Dominance effects
Previous study by Kumar et al. [19] showed similar predictive
ability between genomic prediction models with and without
dominance effects when analyzing quantitative traits in apple. In
their work, dominance effects were modeled using nonorthogonal
coefficients and under the assumption of Hardy–Weinberg
equilibrium. In contrast, our study implemented orthogonal
dominance coefficients that do not assume Hardy–Weinberg
equilibrium, leading to the expectation of improved predictive
ability [20, 21]. However, despite this implementation, only limited
improvement in predictive ability was observed for the G + D and
G + G × E + D + D × E models, as well as for models incorporating
inbreeding (Table S5).

Orthogonal partitioning of variances implies that the pro-
portions of additive genomic effects remain unchanged when
additional effects, such as dominance, are introduced into the
genomic prediction model [16]. Despite using the NOIA procedure
for orthogonal partitioning of additive and dominant variances
that do not assume Hardy–Weinberg equilibrium [16, 17], our
results indicate nonorthogonality when comparing models G, A,
and G + D. Specifically, the comparison of these models showed
a 22% reduction in the average proportion of variance of the
genomic effects across all studied traits for model G + D, and a 1%
decrease in the total average variance explained by model G + D
(Table S2, Table S3). Similar results have been found in different
crops, where the extension of models analogous to G and A with

dominance effects (orthogonal or nonorthogonal, assuming or not
assuming Hardy–Weinberg equilibrium) has often led to reduced
estimates of additive variance components, and sometimes even
to a reduction in the total explained variance, falling below the
levels achieved by the simpler models G and A ([27]; Costa-Neto,
Fritsche-Neto, et al., 2021; [19–21]). While an earlier study showed
that dominance variance was overestimated when inbreeding was
not taken into account [28], our variance decomposition showed
no signs of upwardly biased estimates of dominance variance
in model G + D compared to G + D (inb) (Table S2). Our results
likely point to potential problems in variance estimation caused
by linkage disequilibrium [17, 20], which is prevalent in breeding
material such as that contained in the apple REFPOP. Besides the
violation of the assumption of linkage equilibrium, the incorrect
variance partitioning may have resulted from fitting multiple
genetic and genotype-by-environment interaction effects within
the framework of multi-environmental genomic prediction, which
deserves further investigation. A preliminary analysis outside the
scope of this study indicated that orthogonality was restored
when conducting analyses on across-location clonal values
(results not shown).

Compared to other approaches to modeling nonadditive
effects, the NOIA approach retains the advantage of allowing
deviations from the Hardy–Weinberg equilibrium [17]. In contrast,
the method by VanRaden [4] for constructing standard genomic
relationship matrices assumes that the population is unselected
and in Hardy–Weinberg equilibrium. However, instead of using
allele frequencies from a hypothetical unselected population in
Hardy–Weinberg equilibrium, the standard genomic relationship
matrix KG was computed using observed allele frequencies from
our training population. Although this assumption is violated
for KG, our study showed a strong similarity between KG and
the additive genomic relationship matrix KA that was based on
the NOIA approach (Fig. 2), along with the near-identical average
predictive abilities across traits observed for models G and A
(Fig. 5). These outcomes may suggest that any potential violation
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of Hardy–Weinberg equilibrium in the studied population had
minimal impact on genomic prediction. In addition, despite
the similarity between KG and KA, differences in the predic-
tion error variance of the genomic-estimated breeding values
could arise when using these matrices in genomic prediction
models [29]. However, these differences were not investigated in
this study.

Non-genetic effects from envirotyping
As suggested by moderate differences in daily weather variables
among years and locations, and the low differentiation between
environments within a location in the enviromic relationship
matrix, environmental covariates discriminated well between
locations but weakly between specific environments. This could
likely be explained by the larger number of soil covariates [8]
than weather covariates [30] and the lack of variability between
years for the soil covariates due to their single measurement
at each orchard location in 2016. Additionally, the precipitation
variable, which could have aided in distinguishing between
environments, had to be excluded from the analysis. This decision
was prompted by the confounding of precipitation with irrigation
at some apple REFPOP locations. Nevertheless, the enviromic-
based effects explained a substantial part of the phenotypic
variance, especially for floral emergence known to be strongly
affected by the environment [11]. Although a large proportion of
phenotypic variance was explained here by the enviromic-based
effects, and these effects have been shown to positively influence
predictive ability in other crops (Costa-Neto, Fritsche-Neto, et al.,
2021; [5]), they have not resulted in any increase in predictive
ability for apple traits. For productivity traits such as flowering
intensity, which depends on flower bud formation during the
previous vegetation season, the models could likely benefit from
including prior-year environmental data in the construction of
the enviromic matrix.

Alternative kernels
Similar to previous reports that have shown increased pre-
dictive ability when Gaussian kernel and Deep kernel were
applied (Costa-Neto, Fritsche-Neto, et al., 2021; [15]), these
kernels resulted in a modest but significant improvement in
predictive ability of 0.01–0.02 for most of the studied traits.
The Gaussian kernel proved particularly suitable for capturing
variance attributed to G × E. Model structures based on the Deep
kernel generally explained a smaller proportion of phenotypic
variance than those using the Gaussian kernel and G-BLUP.
This characteristic rendered Deep kernel less suitable for
evaluating trait genetic architecture. Nevertheless, the Deep
kernel-based models demonstrated improved predictive abilities,
equivalent to those of Gaussian kernel-based models. Overall,
both alternative kernels proved to be efficient substitutes for
G-BLUP.

Deep learning for genomic prediction
Specifically for each trait and cross-validation fold, the dimen-
sional reduction of the marker dataset to a subset of 1000 SNPs
selected by a gradient boosting algorithm, extended with known
marker–trait associations, allowed an efficient implementation
of a deep learning approach for multi-environmental genomic
prediction in apple. The studied deep learning approach com-
bined feature streams derived from marker information with
streams incorporating weather and soil variables. It resulted in
stream contributions that effectively represented trait genetic

architectures described in this and previous studies using statis-
tical genomic prediction models [11].

Our study demonstrated that the applied deep learning
approach was particularly well-suited for oligogenic traits.
For these traits, governed by a few genes, the dimensionality
reduction of the marker dataset allowed important genomic
information to be effectively represented. The trait genetic
architecture for harvest date was particularly well captured,
with a 72% contribution from the SNP stream. Harvest date was
previously described as oligogenic trait with significant large-
effect marker associations found on chromosomes 3, 10, and 16
using the apple REFPOP dataset [11, 12]. The strongest of these
associations on chromosome 3 at 30.7 Mb [11] was located in a
major locus NAC18.1 associated with harvest date and multiple
ripening traits [9, 31]. The deep learning genomic prediction
model proved efficient in capturing this major locus, as the
three SNPs with the highest absolute mean SHAP were located
on chromosome 3 at 29.2, 30.7, and 30.8 Mb, the marker AX-
115366114 at 30.7 Mb being strongly associated with harvest
date according to our previous study [11]. Moreover, the deep
learning genomic prediction model outperformed the benchmark
statistical genomic prediction model G for harvest date, improving
predictive ability by 0.06 and achieving the highest predictive
ability among all tested models at 0.75.

Red over color has shown similar predictive ability and trait
genetic architecture as harvest date in this and previous studies
based on statistical genomic prediction models [11]. The SNPs
associated with MdMYB1 transcription factor on chromosome 9,
which regulates red pigmentation of apple skin [32], translated
into large absolute mean SHAP values and predictive ability
improved by 0.10 compared to model G. Similar results were
observed for titratable acidity, where large absolute mean SHAP
were found, and the three SNPs with the largest SHAP were
located on chromosome 8 at 10.7, 10.8, and 11.8 Mb. Two
large-effect loci are known for acidity in apple, namely Ma on
chromosome 16 and Ma3 on chromosome 8 [33]. The SNPs on
chromosome 8 indicated a strong association with the Ma3 locus,
and they colocalized with the SNP marker predictive for this
locus at 10.9 Mb [34]. The maximum relative SHAP contribution
for the SNP stream of 80% was reached for titratable acidity.
Moreover, the predictive ability of the deep learning genomic
prediction model for titratable acidity was improved by 0.07
compared to the statistical genomic prediction model G. Our
results for harvest date, red over color, and titratable acidity
showed that high relative and absolute SHAP values can serve
as predictors of improved deep learning genomic prediction
model performance, and that the applied deep learning approach
can precisely predict apple traits characterized by oligogenic
architecture.

According to Montesinos-López et al. [24], the predictive ability
of deep learning approaches typically falls below that of conven-
tional models for genomic prediction, unless very large datasets
are examined. In our study, the sizes of datasets showed large
differences between the three traits, with predictive ability supe-
rior to all other compared statistical genomic prediction models
(total number of training instances of 12 428 for harvest date,
10 317 for red over color, and 2879 for titratable acidity, Table S1).
Although the number of available environments ranged from the
minimum of eight for titratable acidity to the maximum of 25
for harvest date, similar improvement in predictive ability was
reached for these traits using the applied deep learning approach.
As the improvements in predictive ability for harvest date, red
over color, and titratable acidity were observed independently
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from the number of training instances, the size of the phenotypic
dataset is unlikely to have affected our predictions. Neverthe-
less, an additional improvement in predictive ability for the deep
learning model may be anticipated by increasing the training
population size in terms of the number of genotypes.

Multi-environmental genomic selection in apple
breeding
The establishment of multi-environmental genomic selection in
apple has been constrained by several factors, including the costly
collection of extensive multi-environmental datasets and compu-
tational limitations. The phenotyping efforts in the apple REFPOP
yielded an unprecedented dataset in terms of trait–environment
combinations [11], which has been expanded in this study with
two additional years of phenotyping. This dataset now encom-
passes phenotypic data for eleven traits across up to 25 environ-
ments. The availability of this dataset has enabled the implemen-
tation of multi-environmental genomic prediction models within
a computationally efficient framework, laying the groundwork for
the practical application of multi-environmental genomic selec-
tion in apple. Further insights into predictive ability for indepen-
dent test sets could be gained in the future by assessing the
predictive performance on breeding material distinct from the
apple REFPOP. Additionally, expanding the training set size may
increase predictive ability for some traits [35] and could poten-
tially enable a more accurate estimation of variance components.
To expand the dataset by increasing the number of genotypes
and environments, new collaborative approaches between breed-
ers are required to generate data capable of overcoming this
challenge.

The approach to multi-environmental genomic prediction
of apple traits used in this study diverges from the traditional
understanding of environments in apple tree cultivation. In
practice, apple trees remain stationary in the same location across
multiple years. This stationary nature of apple cultivation implies
that the effects of yearly climatic variations are superimposed on
the same geographical location, whereas the genomic prediction
approach treats each year–location combination as a distinct
environment. Nevertheless, breeding values for apple genotypes
lacking phenotypic information can be predicted across diverse
environmental conditions using the genomic prediction models
trained in this study.

Among all predictions obtained, the model G + G × E applying
Gaussian and Deep kernels improved predictive abilities for most
traits (except for titratable acidity and fruit firmness, where it
showed results comparable to those of the benchmark model G).
Therefore, the model G + G × E proved to be a universally effec-
tive solution for multi-environmental genomic prediction in the
studied apple traits. Additionally, the G + G × E model, along with
other statistical genomic prediction models tested, was outper-
formed by the applied deep learning approach for three traits with
oligogenic genetic architectures (harvest date, titratable acidity,
and red over color). Depending on the genetic architecture of the
trait, either the G + G × E model or the deep learning approach can
be recommended for multi-environmental genomic predictions,
leading to informed breeding decisions, and assisting in the selec-
tion of cultivars more adaptable to future climates.

Materials and methods
Plant material
The apple REFPOP comprised 265 progenies from 27 biparental
families generated by European breeding programs, along with

269 diverse accessions [12]. This study focused on five locations:
(i) Rillaar, Belgium, (ii) Angers, France, (iii) Laimburg, Italy, (iv)
Lleida, Spain, and (v) Waedenswil, Switzerland. At each location,
all genotypes were generally represented by two trees and planted
in 2016 using a randomized complete block design. Three control
genotypes, namely ‘Gala’, ‘Golden Delicious’, and ‘CIVG198’, were
replicated up to 22 times at each location. The cultivation followed
the common agricultural practices specific to each location, incor-
porating integrated plant protection methods.

Phenotyping
Phenotyping of the eleven traits followed the methodology
described by Jung et al. [11]. Individual trees, representing
genotype replicates, were used for trait measurement. Floral
emergence was determined in Julian days, marking the date
when the first 10% of flowers opened. Flowering intensity was
evaluated on a nine-grade scale, indicating the percentage of
existing flowers relative to the maximum potential number of
flowers. Fruits were harvested on harvest dates, determined in
Julian days, based on expert estimates of fruit ripening. Total fruit
weight (kg) and fruit number were recorded to assess production
per tree. Single fruit weight (g) was estimated by dividing the total
fruit weight by the number of fruits. Titratable acidity (g/l), soluble
solids content (◦Brix), and fruit firmness (g/cm2) were measured
within one week postharvest using an automated instrument
Pimprenelle (Setop, France). Red over color, representing the
percentage of red fruit skin, was assessed on a six-grade scale.
Russet frequency indicated the percentage of fruits exhibiting
russet skin. Further information regarding the evaluation of the
eleven traits is available in Jung et al. [11]. For the different traits,
the assessment spanned a period of up to five years from 2018 to
2022 and was performed at up to five locations.

Envirotyping
Hourly measurements of temperature (◦C) at 2 m above soil level,
relative humidity (%), and global radiation (W/m2) were obtained
from the weather stations near the apple REFPOP orchards from
2018 to 2022. Precipitation (mm) was not taken into consideration
in this study due to irrigation practices in part of the orchard
locations.

In each apple REFPOP orchard between May 12 and June 9,
2016, a total of six soil samples were collected from three distinct
sampling points and two soil depths (∼1–20 cm and 20–40 cm). In
the accredited Laboratory for Soil and Plant Analysis of Laimburg
Research Centre, Italy, the soil samples were analyzed for (i)
organic carbon (% humus); (ii) pH; (iii) carbonate test, expressed
as low to medium, high, very high, or no carbonate content; (iv)
carbonate requirement (dt/ha CaO); (v) phosphorus (mg/100 g
P2O5); (vi) potassium (mg/100 g K2O); (vii) magnesium (mg/100 g);
(viii) boron (mg/kg); (ix) manganese (mg/kg); (x) copper (mg/kg);
and (xi) zinc (mg/kg).

Genotyping
As detailed by Jung et al. [12], the apple REFPOP underwent geno-
typing for biallelic SNPs through a dual approach utilizing the Illu-
mina Infinium® 20 K SNP genotyping array [30] and the Affymetrix
Axiom® Apple 480 K SNP genotyping array [36]. By employing the
Beagle 4.0 software [37] and incorporating pedigree information
[38], the obtained SNP sets were integrated through imputation,
ultimately yielding a genomic dataset of 303 239 biallelic SNPs. All
SNP positions were based on the doubled haploid GDDH13 (v1.1)
reference genome [39].
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Phenotypic data preprocessing
Analyses of phenotypic data were conducted to ensure high data
quality by addressing low heritability, spatial heterogeneity, and
eliminating outliers. The statistical model for the phenotypic data
preprocessing was fitted via restricted maximum likelihood using
the R package ‘lme4’ (v.1.1–28) [40] as:

y = Xβ + Zu + ε (1)

where y was the vector of the response variable, X the design
matrix for the fixed effects, β the vector of the fixed effects, Z
was the design matrix for the random effects, u the vector of the
random effects assuming u ∼ N (0, Σ) with Σ being the variance–
covariance matrix of the random effects, and ε the vector of the
random errors assuming ε ∼ N

(
0, σ2

ε I
)

with σ2
ε being the error

variance and I the identity matrix.
Separately for each trait and environment (combined factor of

location and year), raw phenotypic values for each genotype repli-
cate (total fruit weight and fruit number were log-transformed)
were used as response variable to fit a random-effects model with
a random effect of genotype following Equation 1. From the vari-
ance components of the random-effects model, the environment-
specific clonal mean heritability was calculated as:

H2 = σ2
g

σ2
g + σ2

ε

nt

where σ2
g was the genotypic variance and nt the mean number

of genotype replications. The environment-specific clonal mean
heritability was used to remove trait–environment combinations
with the heritability value <0.1.

To account for spatial variation in the orchards, spatial hetero-
geneity in the raw phenotypic data was modeled separately for
each trait–environment combination using the spatial analysis
of field trials with splines (‘SpATS’ (v.1.0–11)) [41] as described
by Jung et al. [12]. From the fitted SpATS objects, the adjusted
phenotypic values of each genotype and the adjusted phenotypic
values of each tree were obtained.

The adjusted phenotypic values of each genotype were used as
response variable for fitting a mixed-effects model with a fixed
effect of environment and a random effect of genotype following
Equation 1. Subsequently, the outliers were detected using Bon-
ferroni–Holm test to judge residuals standardized by the rescaled
median absolute deviation (BH-MADR) as described by Bernal-
Vasquez et al. [42]. The identified outliers were removed and the
remaining trait- and environment-specific adjusted phenotypic
values of each genotype were further denoted as adjusted means.
The adjusted means for the eleven studied traits were compared
separately for each year and location using the pairwise Pearson’s
correlations and significance tests implemented in the R package
‘corrplot’ (v.0.92) [43]. The significance levels of 0.05, 0.01, and
0.001 were Bonferroni-corrected by dividing them by the total
number of pairwise comparisons among the eleven traits.

Following Equation 1, the adjusted phenotypic values of
each tree served as the response variable in fitting a mixed-
effects model, denoted here as the phenotypic model. This
model included the fixed effects of environment (E), the random
effects of genotype (g), and random effects of genotype-by-
environment interaction (g × E). The proportions of phenotypic
variance explained by the random effects were extracted from the
model fit for comparison with the statistical genomic prediction
models.

Enviromic data preprocessing
The enviromic data were restructured to acquire appropriate
inputs for the subsequent modeling. Daily temperature means,
daily humidity means, and daily radiation sums were calculated
from the hourly measurements. These three daily weather vari-
ables were visualized applying local regression curves estimated
using Loess with a span of 0.1.

Inspired by Jarquín et al. [5], the three daily weather variables
were processed to create six environmental covariates by dividing
each growing season into two periods based on crop phenology.
The two periods were defined separately for each environment.
The first period extended for 80 days, concluding on the day when
90% of the genotypes flowered, determined from adjusted means
for floral emergence. The second period followed the first until
the day when 90% of the genotypes were harvested, as indicated
by the adjusted means for harvest date. Different approaches to
defining the first period were employed for two environments
where adjusted means for floral emergence were unavailable. In
the case of the environment ESP.2020, which was excluded due to
low heritability, the adjusted phenotypic values of each genotype
were used to estimate the day when 90% of the genotypes flow-
ered. For ESP.2022, where floral emergence scores were missing,
the end date of the first period was estimated based on varieties
cultivated near the apple REFPOP. Daily temperature means, daily
humidity means, and daily radiation sums were summed over
each respective period, resulting in six environmental covariates.
Additionally, 22 environmental covariates were obtained as mean
values of eleven soil characteristics calculated per location and
the level of soil depth. All 28 environmental covariates were
collected in the q×z matrix of environmental covariates MW with
q environments and z environmental covariates, which was then
scaled and centered to the mean of zero and standard deviation
of one.

Marker matrices
Three marker matrices were constructed based on the genomic
dataset of biallelic SNPs. The first matrix followed the standard
allele coding, where a SNP was assigned the value 0 when the
individual (i.e. genotype) was homozygous for the first allele (a), 1
when the genotype was heterozygous, and 2 when the genotype
was homozygous for the second allele (A). The allele coding can
be referred to as coefficients in the marker matrix. Therefore,
the n × m marker matrix of the standard coefficients MG with
i = 1, . . . , n genotypes and j = 1, . . . , m markers was:

MG =

⎡
⎢⎢⎣

hG11 · · · hG1m

...
. . .

...
hGn1 · · · hGnm

⎤
⎥⎥⎦

where the element hGij for the ith genotype and jth marker was
equal to:

hGij =

⎧⎪⎨
⎪⎩

2
1
0

for

⎧⎪⎨
⎪⎩

AA
Aa
aa.

with AA, Aa, and aa being the combinations of the alleles a
and A at the marker j. Each column of the matrix MG was
scaled and centered to the mean of zero and standard deviation
of one.

The second and third marker matrices followed the NOIA
model [16] as implemented by Vitezica et al. [17]. These matrices
were estimated from the elements of the marker matrix of the
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standard coefficients MG and had the same dimension. The ele-
ment hAij for the n × m marker matrix of additive coefficients MA

and the element hDij for the n × m marker matrix of dominance
coefficients MD were calculated as follows:

hAij =

⎧⎪⎨
⎪⎩

− (−pAa − 2paa
)

− (
1 − pAa − 2paa

)
− (

2 − pAa − 2paa
) for

⎧⎪⎨
⎪⎩

AA
Aa
aa

and

hDij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2pAapaa

pAA+paa−(pAA−paa)
2

4pAApaa

pAA+paa−(pAA−paa)
2

− 2pAApAa

pAA+paa−(pAA−paa)
2

for

⎧⎪⎨
⎪⎩

AA
Aa
aa

with pAA, pAa, and paa being the relative frequencies for the allelic
combinations AA, Aa, and aa at marker j.

Relationship matrices
The marker matrices MG, MA, and MD and the matrix of envi-
ronmental covariates MW were used to estimate the standard
genomic relationship matrix KG, the additive genomic relationship
matrix KA, the dominance genomic relationship matrix KD, and
the enviromic relationship matrix KW, respectively. Initially, all
relationship matrices were created based on the G-BLUP approach
described by VanRaden [4]. The covariance matrix following the
G-BLUP approach was obtained as:

K = MM′

tr
(
MM′) /nrow (M)

where K was a generic representation of the relationship matrix
(KG, KA, KD, and KW); M was a generic representation of the marker
matrices MG, MA, and MD as well as the matrix of environmental
covariates MW; and nrow was the number of genotypes for MG, MA,
and MD or the number of environments for MW.

Subsequently, two covariance matrix types, namely the Gaus-
sian kernel [44] and Deep kernel [15], were examined as alterna-
tives to the G-BLUP approach. The Gaussian kernel is a nonlinear
method based on a bandwidth parameter that controls the decay
rate of covariance between genotypes, and the percentile of the
square of the Euclidean distance, which is a metric reflecting
the genetic distance between genotypes. The Deep kernel is char-
acterized by a nonlinear arc-cosine function, and its covariance
matrix is designed to mimic a deep learning model featuring a
single hidden layer with many neurons. Applying these alternative
approaches, the standard genomic and enviromic relationship
matrices based on Gaussian kernel (KGGK and KWGK ) and Deep
kernel (KGDK and KWDK ) were created. The Gaussian kernel and
Deep kernel were implemented following the estimation process
as detailed by Costa-Neto, Fritsche-Neto, et al. (2021).

Statistical genomic prediction model structures
The relationship matrices were used to create linear mixed model
structures for the statistical genomic prediction models. Following
Costa-Neto, Fritsche-Neto, et al. (2021), the generic model struc-
ture was defined as:

y = 1μ + Xfβ +
∑k

s=1
gs +

∑l

r=1
wr + ε (2)

where y was the vector of the adjusted means for n genotypes
across q environments, 1μ was the overall mean, Xf the design
matrix for the fixed effects of environments, β the vector

of the fixed effects, gs the random vector for s = 1, . . . , k
marker-based effects, wr the random vector for r = 1, . . . , l
enviromic-based effects, and ε the vector of the random errors
assuming ε ∼ N

(
0, σ2

ε I
)

with σ2
ε being the error variance and I

the identity matrix. The effects of environments were modeled
as fixed in all model structures tested, consistent with other
multi-environmental models that incorporate G × E, as described
by, e.g. Lopez-Cruz et al. [6] and Costa-Neto, Fritsche-Neto, et al.
(2021). All model structures were based on the G-BLUP approach
to estimating the relationship matrices. When the alternatives
to the G-BLUP were used, the model structures were additionally
labeled with ‘(GK)’ for the Gaussian kernel and ‘(DK)’ for the Deep
kernel. For all three approaches to estimating the relationship
matrices, the function get_kernel of the R package ‘EnvRtype’
(v.1.1.1) (Costa-Neto, Galli, et al., 2021) was used to obtain the
relationship matrices for genomic prediction.

Models G, A, and G + D (random (main) genotypic effects
(MM))
Following Equation 2, the model MM accounted for the marker-
based effects (

∑k
s=1gs �= 0) without applying the enviromic-based

effects (
∑l

r=1wr = 0). The gs incorporated relationship matrices
KG (alternatively KGGK or KGDK ), KA, and KD representing random
genomic (G), additive (A), and dominance (D) effects, respectively.
These effects were applied individually or in combinations, result-
ing in model structures denoted as G (alternatively G (GK) and G
(DK)), A, and G + D.

Models G + G × E and G + G × E + D + D × E
(single-variance genotype × environment deviation (MDs))
Analogous to the model MM, the model MDs assumed

∑k
s=1gs �= 0

and
∑l

r=1wr = 0 (Equation 2). In addition to the random effects
G and D, the random interaction effects (×) with the vector of
environments (E) were included, namely the G × E and D × E. This
resulted in model structures G + G × E (alternatively G + G × E (GK)
and G + G × E (DK)) and G + G × E + D + D × E.

Model G + W (EMM)
The model enviromic-enriched MM (EMM) applied both the
marker-based effects

(∑k
s=1gs �= 0

)
and the enviromic-based

effects (
∑l

r=1wr �= 0) (Equation 2). Included were the random
effects G and the random enviromic effects (W), the latter being
derived through the integration of the relationship matrix KW

(alternatively KWGK and KWDK ). The resulting model structure was
G + W (alternatively G + W (GK) and G + W (DK)).

Model G + W + G × W (RNMM)
Building upon the model EMM, the model reaction-norm MM
(RNMM) (

∑k
s=1gs �= 0 and

∑l
r=1wr �= 0, Equation 2) extended

the random enviromic-based effects with a random interaction
effect G × W. The obtained model structure was G + W + G × W
(alternatively G + W + G × W (GK) and G + W + G × W (DK)).

Model G + G × E + W + G × W (RNMDs)
The last of the compared models, the model reaction-norm MDs
(RNMDs) (

∑k
s=1gs �= 0 and

∑l
r=1wr �= 0, Equation 2), combined

the random marker-based effects G and G × E with the random
enviromic-based effects W and G × W in a single model structure
G + G × E + W + G × W (alternatively G + G × E + W + G × W (GK)
and G + G × E + W + G × W (DK)).
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Fixed effect of inbreeding
The design matrix for the fixed effects Xf (Equation 2) was based
on the vector of environments (E) for all model structures tested in
this study. As described by previous authors [20, 28], including an
inbreeding coefficient as fixed effect can account for directional
dominance effects and help to avoid overestimating the propor-
tion of variance explained by the dominance model components.
Hence, the model MM was additionally extended with the fixed
effect of inbreeding contained in parameter Xf , which was incor-
porated in the model structures denoted as G (inb) and G + D (inb).
The inbreeding coefficient for each genotype was estimated from
the marker matrix MG, calculated as the relative frequency of the
homozygous allelic combinations AA and aa across all markers.

Deep learning approach
The deep learning genomic prediction model was designed to be
able to receive both genotypic and environmental data in the
form of four streams. Genotypic data underwent feature selection
in two different ways, generating input data for two different
streams of the model: SNP stream and PC stream. First, to rep-
resent specific genetic variation, the most relevant 1000 SNPs
for each trait and fold were extracted from the marker matrix
MG with a gradient-boosting regressor. The response variable for
the gradient-boosting model was derived from the means of the
random effects of genotypes, which were extracted from a mixed-
effects model. This mixed-effects model followed Equation 1,
incorporating fixed effects of the environment (E) and random
effects of genotype (g). Additionally, the SNPs associated with the
studied traits as reported by Jung et al. [11] were added to the exist-
ing pool of 1000 SNPs within the SNP stream. Second, using the
principal component analysis in related samples (PC-AiR) method
[25], 58 PCs capturing 100% of the genetic variation were extracted
and used as input to represent the overall genetic variation. Daily
weather variables and soil environmental covariates directly con-
stituted the input for the weather and soil streams, respectively.
The adjusted phenotypic means served as the response variables.
All stream and response variables were scaled between −1 and 1.
The model architecture was designed using ‘TensorFlow’ (v.2.10.0)
and ‘Keras’ (v.2.10.0). All streams consisted of a variable number
of dense layers except for the weather stream. In this case, the
first layers were long short-term memory (LSTM), which excel
at processing sequential data. The four streams processed the
data independently and were concatenated after several layers.
Further dense layers were placed before the output neuron to
allow for data integration. For specific details on the model archi-
tecture, please refer to the provided GitHub link (https://github.
com/MichaelaJung/Integrative-prediction). Models for each trait
were trained and evaluated at different learning rates (1e−4, 1e−5,
and 5e−6). When the training loss stopped improving, the training
was stopped. The appropriate learning rate was decided for each
trait based on the highest correlation and the lowest root mean
squared error.

Genomic prediction
All statistical and deep learning genomic prediction models were
iteratively fitted in a 5-fold cross-validation that was repeated
five times, with genotypes being allocated to folds randomly and
without replacement, resulting in 25 runs of each tested model.
All models were applied using the same genotype allocations for
each fold. The statistical genomic prediction model structures
were solved using Bayesian hierarchical modeling implemented
in the R package ‘BGGE’ (v.0.6.5) [13]. The statistical genomic pre-

diction models underwent 10 000 iterations of the Gibbs sampler,
employing a thinning of 3 and discarding the initial 1000 samples
as burn-in.

Relative contribution of model components
For the statistical genomic prediction models, each model fit
from the cross-validation was used to obtain the proportions of
variance explained by the various random effects. To explain
the deep learning model predictions with respect to each input
feature (e.g. a SNP or weather variable), the ‘GradientExplainer’
function from the ‘shap’ package (v.0.42.1) [45] was used to cal-
culate approximated SHAP. It uses the gradients of the model to
approximate SHAP values for each feature, which estimates their
contribution to the prediction. SHAP values were calculated for
every instance of every test fold in each repetition of the cross-
validation. The absolute values of each feature were averaged to
obtain absolute mean SHAP values per feature. Furthermore, to
investigate the contribution of each stream to the prediction, the
absolute mean SHAP values were summed for every fold, and
the relative SHAP contribution of each stream was obtained as
a percentage.

Assessment of predictive ability
For every statistical and deep learning genomic prediction model
and trait, 25 estimates of predictive ability were generated for
each environment, calculated as Pearson’s correlation coefficient
between the adjusted means and predicted values. This resulted
in 200 predictive ability estimates for titratable acidity, soluble
solids content, and fruit firmness, 500 for russet frequency, 525 for
red over color, 575 for floral emergence and flowering intensity,
and 625 for harvest date, total fruit weight, number of fruits,
and single fruit weight. Average predictive ability across traits
was calculated by averaging all estimates of predictive ability for
each model.

Four models were selected for an in-depth comparison based
on their performance and characteristics. The selection criteria
included improvements of at least 0.01 in average predictive
ability across traits compared to the benchmark model G. Addi-
tionally, statistical genomic prediction models that explained a
large proportion of variance were prioritized, with a preference
for simpler model structures over more complex ones. For each
of these models, both the average predictive ability and the distri-
bution of predictive abilities were visualized and compared with
those of the model G for every trait.

All statistical analyses in this work were implemented in R
(v.4.1.3) [46]. The code for implementing, training, using, and
explaining the deep learning genomic prediction models was
written in Python (v.3.9.16).
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