Slow-feeding and horses:

investigating consequences on horse health and behaviour

Oct. 15 - PhD Defense, Marie Roig-Pons

Overview of the defense

Background

users

Chapter 2: Feeding behaviour with hay net

|**2**|₩11|

○₩1

<u>Chapter 3</u>: Associations with longterm use

Chapter 4: slow-vs portioned feeding

General Discussion

Physiological & behavioural needs

- Diet high in fiber
- Total time spent feeding: 10 to 15 hour
- Feeding bouts during the day <u>and</u> the night
- Feeding breaks < 4 hours
- Sufficiant number of mastication

Van Dierendonck et al., 1996; Ralston, 1984; Vulink et al., 2001; Souris et al., 2007; Davidson and Harris, 2007

Physiological & behavioural needs

- $m \cdot$ Diet high in fiber
- Total time spent feeding: 10 to 15 hour
- Feeding bouts during the day <u>and</u> the night
- Feeding breaks < 4 hours
- Sufficiant number of mastication

Nicol, 1999; Bachmann et al., 2003; Davidson and Harris, 2007; Durham and Thiemann, 2015; Burla et al., 2016; Lesimple et al., 2016

Abnormal & stereotypic behaviour

- Digestive problems
- Increased agressiveness in group

Physiological & behavioural needs

- Diet high in fiber
- Total time spent feeding: 10 to 15 hour
- Feeding bouts during the day <u>and</u> the night
- Feeding breaks < 4 hours
- Sufficiant number of mastication

Nicol, 1999; Bachmann et al., 2003; Davidson and Harris, 2007; Durham and Thiemann, 2015; Burla et al., 2016; Lesimple et al., 2016

S Similar to wild/feral counterparts

- Abnormal & stereotypic behaviour
- Digestive problems
- Increased agressiveness in group

Physiological & behavioural needs

- Diet high in fiber
- Total time spent feeding: 10 to 15 hour
- Feeding bouts during the day <u>and</u> the night
- Feeding breaks < 4 hours
- Sufficiant number of mastication
- Nutritional needs

Arnold et al., 2006; Giles et al., 2014; Schubert et al., 2014; Raudsepp et al., 2019; Norton et al., 2019; Moore et al., 2019 Gregić et al., 2022

Different from wild/feral counterparts

Physiological & behavioural needs

- Diet high in fiber
- Total time spent feeding: 10 to 15 hour
- Feeding bouts during the day <u>and</u> the night
- Feeding breaks < 4 hours
- Sufficiant number of mastication

Nutritional needs

- **Captivity**: environment, food supply, no or low reproductive status
- Modern use of horses: recreational purpose only
- Metabolic predisposition for overweight

Arnold et al., 2006; Giles et al., 2014; Schubert et al., 2014; Raudsepp et al., 2019; Norton et al., 2019; Moore et al., 2019 Gregić et al., 2022

Different from wild/feral counterparts

Physiological & behavioural needs

- Diet high in fiber
- Total time spent feeding: 10 to 15 hour
- Feeding bouts during the day <u>and</u> the night
- Feeding breaks < 4 hours
- Sufficiant number of mastication

Nutritional needs

- Captivity
- Modern use of horses
- Metabolic predisposition

Abnormal & stereotypic behaviour

- Digestive problems
- Increased agressiveness in group

Overweight

Metabolic disease

Johnson et al., 2004; Dugdale et al., 2010; Moore et al., 2019 Dosi et al., 2020

Overweight

- 30% to 70% of equine population
 - Adverse health outcomes (laminitis, orthopaedic problems, metabolic diseases, fertility loss and reduced immune system ...)
 - Reduced lifespan
 - Compromised quality of life

Vick et al., 2007; Wyse et al., 2008; Stephenson et al., 2011; Morgan et al., 2016

Overweight

- 30% to 70% of equine population
- Adverse health outcomes (laminitis, orthopaedic problems, metabolic diseases, fertility loss and reduced immune system ...)
- Reduced lifespan
- Compromised quality of life

Possible solutions

- Increase energy expenditure
- Decrease energy intake
- Promote non-feeding behaviours
- Better portioning
- Slow down hay ingestion

King and Mansmann, 2004; Giles et al., 2014; Dosi et al., 2020

Slow-feeders (SFs)

Dispenser that mechanically slow-down hay ingestion

Glunk et al., 2014; Rochais et al., 2018

Slow-feeders (SFs)

in 2018-2019 (surveys)

70% of horse owners using a hay net

33% of care-takers using a slow-feeders

Siegel et al., 2018; Jaqueth et al., 2019

Existing & missing knowledge

RESEARCH

What we knew when I started this PhD

- Increase intake time (1.5kg/h --> 1kg/h)
- Enhance welfare for stabled horses
- Modify feeding behaviour and posture while feeding compared to loose hay
- May lead to muscular tensions
- Hints for horses' preference

Webster and Ellis, 2010; Glunk et al., 2014; Benz et al., 2014; Ellis et al., 2015a; Speaight et al., 2016; Rochais et al., 2018; Correa et al., 2020

Existing & missing knowledge

What we knew when I started this PhD

- Increase intake time (1.5kg/h --> 1kg/h)
- Enhance welfare for stabled horses
- Modify feeding behaviour and posture while feeding compared to loose hay
- May lead to muscular tensions
- Hints for horses' preference

What was still unknown

- Basic knowledge about SF users
- Extent of feeding behaviour modification compared to natural feeding behaviour (pasture)
- Long-term effect on muscular tensions and articular impairments
- Studies on stabled horses / suspended nets only
- Horses' preference

Comparing slow- and portionedfeeding for horses housed in groups

Hypotheses (from existing literature)

- Slow-feeders can improve human-horse relationship
- Slow-feeders can promote a more natural feeding behaviour compared to loose hay
- Slow-feeders are associated with health impairments: oral cavity (teeth, gums) and
 - musculoskeletal health
- Slow-feeding promote a more natural time-budget compared to multiple portioning

but may also be frustrating to horses

Comparing slow- and portionedfeeding for horses housed in groups

Descriptive study

Observational study

Experimental study

Manuscript 1: Slow-feeders for horses: who, how and why?

M. Roig-Pons, I. Bachmann, S. Briefer-Freymond

This manuscript is currently under review in *Journal of Veterinary Behavior*

Better knowledge of target population

Describe the population of slow-feeder users (both humans and horses) 0

Identify key areas for research

- Understand motivations to use slow-feeders
- Collect information about feeding practices & feedback
- Survey former and non-users to investigate their fears and criticism

- Former SF-user (SF practices, reasons to stop)
- Non SF-user (reasons not to use any SF)
- **Current SF user** (status, SF practices, feedback)
- Horses (general info, housing, feeding, training and health)
- Distributed on social media, news letter, magazines

1'283 answers in total

Status of respondents

- Operator
- Operator and owner
- Owner
- Non-user
- Former user

Chap.1 - Key findings

Chap.1 - Key findings

• Focus PhD on hay **nets**

Need to investigate not only suspended nets

Type of net may influence

- workload
- frequency of issue reporting
- **adverse effect** on horse health

Slow-feeding practices n = 1192

PORTA-GRAZER

Horses feeding from slow-feeder(s) n = 1430

Chap.1 - Key findings

Æ

• Focus PhD on hay **nets**

Need to investigate
 not only suspended nets

Type of net may influence

- workload
- frequency of issue reporting
- **adverse effect** on horse health

Slow-feeding practices n = 1192

PORTA-GRAZER

Horses feeding from slow-feeder(s) n = 1430

- Slow-feeding:
 relatively new practice
- Most horses are fed using <u>only</u> a SF

Horses feeding from nets differ from the general equine population

- age
- training
- housing
- feeding

Chap.1 - Conclusion

- **Need for further research**
 - Horses feeding 10 to 15h from slow-feeders
 - Lack of long-term insights
 - Investigate different types of net 0
 - No major drawbacks reported but sample likely to be biased 0
- Be careful when sampling for observational study (target population \neq equine population)

Comparing slow- and portionedfeeding for horses housed in groups

Descriptive study

Observational study

Experimental study

<u>Manuscript 2:</u> Investigating feeding methods and their consequences on horse behaviour and posture

M. Roig-Pons, S. Tomozyk, L. Gardès, S. Briefer Freymond

This manuscript will be submitted to Animal

Chap.2 - Brief background

Feeding behaviour & equine health

- Forage collection and mastication are linked to dental wear
- Correct dental wear is essential for dental health
- Mastication promotes saliva production
- Posture while feeding may affect horse's musculoskeletal health on the long-term perspective
- Importance of choice for animal welfare

Until now:

- feeding behaviour: mainly forage mastication
- only comparison with loose hay

McGreevy et al., 2001; Dixon and Dacre, 2005; Staszyk et al., 2015; Bochnia et al., 2019; Hodgson et al., 2022; McAteer et al., 2023; Speaight et al., 2016

Chap.2 - Aims & Hypotheses

- Compare feeding behaviour and posture while feeding hay in net vs. loose hay
- Compare it to natural grazing behaviour
- Evaluate the preference of horses regarding hay presentation

Hypotheses

- Prehension and mastication rates differs between hay in net and loose hay
- Feeding from net promote more natural prehension and mastication
- Feeding from net may increase the frequency of neck torsions
- When given the choice, horses will preferentially feed from loose hay, but not exclusively

Ellis et al., 2015; Burla et al., 2016; Correa et al., 2020; Speaight et al., 2019; Webster and Ellis, 2010

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

• 4 stallions 4 treatments 8 videos (15min) per horse per treatment

Loose hay on the floor (FL)

Porta Grazer (PG)

Heu Toy (HT) Hay Bag (HB)

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

 4 stallions 4 treatments 8 videos (15min) per horse per treatment

"Torsion"

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

• Very different forage prehension between loose hay / all SFs

Compare to prehension in natural conditions: pasture

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

 4 stallions 4 treatments 8 videos (15min) per horse per treatment

Main study

• 12 horses (in 2 groups)

A. Hay rack

B. Hay stalls

C. Hay bell

G1

D. Hay rack

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

- 12 horses (in 2 groups)
- 5 treatments (Loose hay & hay in net = same dispenser)

Loose hay

Hay in net

Short grass

Medium grass

Long grass

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

- 12 horses (in 2 groups)
- 5 treatments
- 6 videos (15min) / horse / treatment

Feeding behaviour & posture

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

Main study

- 12 horses (in 2 groups)
- 5 treatments
- 6 videos (15min) / horse / treatment

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

Main study

- 12 horses (in 2 groups)
- 5 treatments
- 6 videos (15min) / horse / treatment
- 5 horses of G1
- 2 forage presentation: hay loose or in net
- 3 tests

Preference test

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

 4 stallions 4 treatments 8 videos (15min) per horse per treatment

Main study

- 12 horses (in 2 groups)
- 5 treatments
- 6 videos (15min) / horse / treatment
- 5 horses of G1
- 2 forage presentation: hay loose or in net
- 3 tests

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

Main study

- 12 horses (in 2 groups)
- 5 treatments
- 6 videos (15min) / horse / treatment
- 5 horses of G1
- 2 forage presentation: hay loose or in net
- 3 tests

• Time spent feeding from net, loose

hay or not feeding

Pilot-sudy

- Optimise ethogram
- Define video analysis strategy
- Sample size calculations

Main study

- 12 horses (in 2 groups)
- 5 treatments
- 6 videos (15min) / horse / treatment
- 5 horses of G1
- 2 forage presentation: hay loose or in net
- 3 tests

 Time spent feeding from net, loose hay or not feeding

Generalized) Linear mixed-model

• Tukeys' post-hoc test

Descriptive statistics

Feeding behaviour & posture

• Despite same forage being used, significant differences between loose hay and hay in net (all 3 p < 0.05)

Feeding behaviour & posture

• Despite same forage being used, significant differences between loose hay and hay in net (all 3 p < 0.05)

Relative Time 09:55.99 (mm:ss.ff	0 09:30.00	09:35.00	09:40.00	09:45.00	09:50.00	09:55.00	10:00.00	10:05.00	10:10.00	10:
 Comportence Masticat Grab and Gather 			11111							III.

- Despite same forage being used, significant differences between loose hay and hay in net (all 3 p < 0.05)
- Forage collection with net not significantly different from pasture (p > 0.05) but loose hay was (p < 0.05)
- Chewing rates all differed significantly (all p > 0.05)

- Despite same forage being used, significant differences between loose hay and hay in net (all 3 p < 0.05)
- Forage collection with net not significantly different from pasture (p > 0.05) but loose hay was (p < 0.05)
- Chewing rates all differed significantly (all p > 0.05)
- Neck torsions only observed with hay (e.g. with a dispenser) and significantly more with the net (p < 0.01)

- Despite same forage being used, significant differences between loose hay and hay in net (all 3 p < 0.05) • Forage collection with net not significantly different from pasture (p > 0.05) but loose hay was (p < 0.05)
- Chewing rates all differed significantly (all p > 0.05)
- Neck torsions only observed with hay (e.g. with a dispenser) and significantly more with the net (p < 0.01) Frequency and duration of neck torsions influenced by the inclination of the net

Feeding behaviour & posture

- Despite same forage being used, significant differences between loose hay and hay in net (all 3 p < 0.05) • Forage collection with net not significantly different from pasture (p > 0.05) but loose hay was (p < 0.05)
- Chewing rates all differed significantly (all p > 0.05)
- Neck torsions only observed with hay (e.g. with a dispenser) and significantly more with the net (p < 0.01) • Frequency and duration of neck torsions influenced by the inclination of the net

Preference test

Horses fed predominantly from loose hay, <u>but not exclusively</u>

Chap.2 - Conclusion

Hypotheses

- Prehension, mastication and exploration rate differs between hay in net and loose hay
- Feeding from net promote more natural collection and mastication of the forage
- Feeding from net may increase the frequency of pauses and neck torsions
- When given the choice between loose hay and hay in net, horses will preferentially feed from loose hay, but not exclusively

Take-away

- Providing hay in net instead of loose promoted a more natural collection of forage
- Reduced number of chews with net compensated by increased time spent feeding
- More natural collection of forage --> improved dental health?
- Increased frequency of neck torsions with (vertical) nets --> muscular impairments ?

• Limited sample size, but in line with the literature Ellis & Webster, 2010

• Contrafreeloading observed in other herbivores Van Os et al., 2018; Sasson-Yenor and Powell, 2019

"Contrafreeloading occurs when animals work for food even though identical food is freely available" (Inglis et al., 1977)

SLOW-FEEDER USERS

Chap. 3 - Brief background

More natural feeding behaviour

- Increased time spent feeding (reduced intake rate) Glunk et al., 2014; Ellis et al., 2015; Rochais et al., 2018
- Decreased frequency of repetitive & abnormal behaviour

Raspa et al., 2018; Correa et al., 2020

Positive effects of slow-feeding

- Increased time spent feeding (reduced intake rate) Glunk et al., 2014; Ellis et al., 2015; Rochais et al., 2018
- Decreased frequency of repetitive & abnormal behaviour
 - Raspa et al., 2018; Correa et al., 2020
- More natural feeding behaviour

But still many unanswered questions

• Unnatural posture while feeding

Ellis et al., 2015; Rochais et al., 2018; Raspa et al., 2021

• Potential muscular tensions associated (conflictory results)

Mac Ateer et al., 2023; DeBoer et al., 2024; • Effect of net on oral cavity (gums & teeth) and vibrissae ?

Hodgson et al., 2021; De boer et al., 2024

• Effect on horse-human relationship

Rochais et al., 2018

Figure 1: Points of measurement for the pressure algometer on the *m. brachiocephalicus*. Origin: distally to the deltoid tuberosity. Insertion: caudal to the wing of atlas. Muscle Belly: proximal to C5.

from Mc Ateer et al., 2023

Figure 9. Mean individual shape variations in back and neck postures according to the three different feeding positions: red, on the ground—control position (CP); green, neck held $15 \pm 3^{\circ}$ below withers height with low hay net position (LP); and blue, neck held $15 \pm 3^{\circ}$ above withers height with high hay net position (HP).

from Raspa et al., 2021

Chap. 3 - Aims & Hypotheses

Aims: Associations between hay net usage and ...

- Horse reactivity to humans
- Horse oral health (gums & teeth)
- Horse vibrissae condition
- Horse musculoskeletal health

Hypotheses

- Use of hay net associated with improved horse-human relationship
- Use of hay net associated with gingiva impairments and increased vibrissae wear
- Use of hay net not associated with specific dental wear
- Use of hay net associated with musculoskeletal impairments (especially in the neck)

Chap. 3 - Methodological issues

Reactivity to humans

• Already several tests described and validated

Søndergaard and Halekoh, 2003; Lansade et al., 2008; Burn et al., 2010; Popescu et al., 2014

Chap. 3 - Methodological issues

Reactivity to humans

• Already several tests described and validated

Oral cavity (teeth and gingiva)

• Protocol well described but not validated yet

Cross, 2023; De Boer et al., 2023

Chap. 3 - Methodological issues

Reactivity to humans

Already several tests described and validated

Oral cavity (teeth and gingiva)

• Protocol well described but not validated yet

Musculoskeletal health

- Different methodologies
- Lack of information regarding protocol used

Speaight et al., 2016; Chen et al., 2017; Raspa et al., 2020

Reactivity to humans

Already several tests described and validated

Oral cavity (teeth and gingiva)

• Protocol well described but not validated yet

Musculoskeletal health

- Different methodologies
- Lack of information regarding protocol used

Design a new protocol and test it

Chap. 3 - Assessing horse health

Rostral Oral Cavity Score (from Cross, 2023)

Photographs

• 6 items

- gingiva margin
- tartar closest to gingiva
- tartar closest on the tooth
- cemementum cracks
- level of incisors abrasion
- type of abrasion

scores from 1 to 3

• type of abrasion

• gingiva margin

tartar closest to gingiva

cemementum cracks

tartar closest on the tooth

level of incisors abrasion

scores from 1 to 3

• 6 items

0

0

Live evaluation (manual palpation)

4 types of structures

- muscles (11)
- peri-articular tissues (11)
- joints (11)
- viscera (3)

scores from 0 to 3

Chap. 3 - Assessing horse health

Criteria for a "good protocol"

(inter- and intra-rater **reliability**)

+ **feasibility**, especially for on-site assessment

Gwet, 2014; *Vieira et al.*, 2018

Asbjørn Hróbjartsson^f, Chris Roberts^g, Mohamed Shoukri^h, David L. Streinerⁱ

Gwet, 2014; *Vieira et al.*, 2018

Manuscript 4: Agreement, reliability and feasibility of two protocols assessing horses' musculoskeletal and rostral oral health

M. Roig-Pons, C. Pérot, S. Briefer-Freymond

This manuscript has been published as a pre-print on Research Square and will be submitted to Animal Open Space

Chap. 3 - Assessing horse health

- Moderate to high inter- and intra- rater reliability
- Quick and easy to perform

Non- (or minimally-) invasive and

reliable ways to assess horse health

<u>Manuscript 3</u>: Hay net feeding in horses: potential impacts on welfare, health, and human interaction

M. Roig-Pons, S. Briefer-Freymond

This manuscript will be submitted to Scientific Report

- Cross-sectional study
- --> Compare horses feeding from nets and horses not feeding from nets

Pilot-study

- Test protocols
- Sample size calculations

 Feeding management • MSH, oral cavity & vibrissae Reactivity to human

Pilot-study

- Test protocols
- Sample size calculations

Largest sample size MSH --> N = 670

Important source of bias for response variables:

- Age
- Housing
- Training frequency
- Shoes

Stratified sampling

Pilot-study

- Test protocols
- Sample size calculations

Largest sample size MSH --> N = 670

Important source of bias for response variables:

- Age
- Housing
- Training frequency
- Shoes

Stratified sampling

+ inclusion criteria

Pilot-study

- Test protocols
- Sample size calculations

- 25 horses in a commercial stable
- 12 with nets
- 13 control

Main study

• 702 horses: "Hay net" / "Control"

Pilot-study

- Test protocols
- Sample size calculations

- 25 horses in a commercial stable
- 12 with nets 13 control

Main study

• 702 horses: "Hay net" / "Control"

Horses feeding from a net (sole or main dispenser) - NH

Pilot-study

- Test protocols
- Sample size calculations

- 25 horses in a commercial stable
- 12 with nets
- 13 control

Main study

• 702 horses: "Hay net" / "Control"

Horses feeding from a net (sole or main dispenser) - NH

Horses not feeding from a net (loose hay, other dispenser) - CH

- 2 Reactivity to Human-test (free and tied)
- Evaluation of musculoskeletal health (MSH)
- Evaluation Body Condition Score
- Photo for Rostral oral cavity (ROC) score
- Live evaluation vibrissae & gum coloration

- 2 Reactivity to Human-test (free and tied)
- Evaluation of musculoskeletal health (MSH)
- Evaluation Body Condition Score
- Photo for Rostral oral cavity (ROC) score
- Live evaluation vibrissae & gum coloration

+ Feeding management

(dispenser features, opening size, feeding frequency ...)

+ General information (Housing, health, training ...)

- 2 Reactivity to Human-test (free and tied)
- Evaluation of musculoskeletal health (MSH)
- Evaluation Body Condition Score
- Photo for Rostral oral cavity (ROC) score
- Live evaluation vibrissae & gum coloration

+ Feeding management

(dispenser features, opening size, feeding frequency ...)

+ General information (Housing, health, training ...)

Linear model + (wilcoxon / orl for subgroups)

Reactivity to human

• No clear differences between the two groups

Reactivity to human

• No clear differences between the two groups

Musculoskeletal health (MSH)

• No significant differences for overall MSH

N	н

8	
1	
0 8	
0.088888000	
• 8 8 8 8 8 8 8 8 8 8	
000	

Reactivity to human

• No clear differences between the two groups

Musculoskeletal health (MSH)

- No significant differences for overall MSH
- No significant differences for specific areas (back line, neck, hindquarters ...)

Neck extensors		Neck flexor		
Н	NH	CH	NH	

Reactivity to human

• No clear differences between the two groups

Musculoskeletal health (MSH)

- No significant differences for overall MSH
- No significant differences for specific areas (back line, neck, hindquarters ...)

Reactivity to human

• No clear differences between the two groups

Musculoskeletal health (MSH)

- No significant differences for overall MSH
- No significant differences for specific areas (back line, neck, hindquarters ...)

Rostral oral cavity (ROC) and vibrissae

- No association between hay net usage (and openings size) and vibrissae length
- No association between hay net usage and most of the ROC parameters (cracks, abrasion)
- Increased risk of redden (OR = 3.45 [1.67; 7.54]) and raised gingiva margins (OR = 3.38 [2.23; 5.18]) with nets --> oedema?

- No association between hay net usage (and openings size) and vibrissae length
 - No association between hay net usage and most of the ROC parameters (cracks, abrasion)
 - Increased risk of redden (OR = 3.45 [1.67; 7.54]) and raised gingiva margins (OR = 3.38 [2.23; 5.18]) with nets --> oedema?

- Overall reassuring results for horse health
- Contradiction of some findings with existing literature (reactivity to humans/MSH)

--> experimental design ? methodology ?

Importance of overall living conditions

3

- Importance of stratified sampling 0
- Be careful with generalization to different population 0
- Only observational study: results need to be validated with experimental study

Effect of hay nets on subluxations, pain-pressure thresholds, and cervical range of motion in the 1 axial skeleton of adult horses 2

M. DeBoer^a, T. Rieck^b, L. Johnson^a, H. Redenius^a, and K. Martinson^e

<u>Manuscript 5:</u> Impact of feeding strategies on the welfare and behaviour of horses in groups: an experimental study

M. Roig-Pons, S. Briefer-Freymond, I. Bachmann

This manuscript will be submitted to Plos One

Chap. 4 - Briefbackground

Keeping horses in groups

- Importance of conspecifics
- Detrimental effects single-housing
- Group housing highly recommended by many authorities
- Individual housing still very prevalent (practicality, space limitation, tradition & ... fear of injuries)

Tyler 1972; Boyd and Bandit, 2002; Feh, 2005; Hartmann et al., 2012; Marliani et al., 2021; Henderson, 2007

Chap. 4 - Brief background

Keeping horses in groups

- Importance of conspecifics
- Detrimental effects single-housing
- Group housing highly recommended by many authorities
- Individual housing still very prevalent (practicality, space limitation, tradition & ... fear of injuries)

SF as an alternative to ensure both limited aggression and optimal body condition?

- Hay availability closely linked to agressiveness
- Ad libitum hay: not always feasible (overweight, waste)
- Two potential feeding strategies: multiple portioning or slow-feeding

Benhajali et al., 2009; Burla et al., 2016; Seabra et al., 2023; Ellis et al., 2015; Rochais et al., 2018

Aims

• Compare two feeding strategies with same goal (slow-feeding / multiple portioning)

Ad libitum hay, in a net

Daily feed divided in multiple meals

Aims

- Compare two feeding strategies with same goal (slow-feeding / portioning)
- Test importance of hay availability vs. duration feeding breaks

Chap. 4 - Aims & Hypotheses

Aims

- Compare two feeding strategies with same goal (slow-feeding / portioning)
- Test importance of hay availability vs. duration feeding breaks

Hypotheses

- Slow-feeding (ad libitum with a net) enhances welfare by promoting a natural time budget and reduce aggression compared to portioned feeding
- Slow-feeding may cause frustration
- Dividing daily feed into smaller and more regular meals may improve horse welfare

- Social interactions
- Injuries
- Time-budget
- Lying behaviour

- 4 groups of 4-5 mares
- Identical housing

Fo:

- Social interactions
- Injuries
- Time-budget
- Lying behaviour

- 4 groups of 4-5 mares
- Identical housing

Traditional (TD) 3 feeding slots of **2 hours each** (7-9 am, 1-3 pm, 7-9 pm) Portioned (PO)

6 feeding slots of 1 hour each

(3-4 am, 7-8 am, 11-12 pm, 3-4 pm, 7-8 pm, 11-12 pm)

Total = 6h Loose hay

Slow-feeding (SF) Ad libitum hay, covered by a **net**

Fb.

- Social interactions
- Injuries
- Time-budget
- Lying behaviour

- 4 groups of 4-5 mares
- Identical housing
- 3 treatments
- Cross-over design
- 3 weeks of habituation,
- 2 weeks of data collection

Slow-feeding (SF) Ad libitum hay, covered by a **net**

Fo:

- Social interactions
- Injuries
- Time-budget
- Lying behaviour

- 4 groups of 4-5 mares
- Identical housing
- 3 treatments
- Cross-over design
- 3 weeks of habituation,
- 2 weeks of data collection

15h of live observation:
Activity & spatial positioning
Social interactions

Number of new injuries

• Time spent lying

- Social interactions
- Injuries
- Time-budget
- Lying behaviour

- 4 groups of 4–5 mares
- Identical housing
- 3 treatments
- Cross-over design
- 3 weeks of habituation,
- 2 weeks of data collection

Diurnal activity distribution (descriptive stat.)

Social int: Linear mixed-models

Generalized linear mixed-models

- Transformation (1+ log(response variable)) when needed
- Tukey's post-hoc tests

15h of live observation: Activity & spatial positioning Social interactions

- Number of new injuries
- Time spent lying

Linear mixed-models

Diurnal time-budget

Injuries

Social interactions

Lying behaviour

- With SF:
 - increased feeding time
 - more social interactions & less "standing"

• TD & PO: very similar

Diurnal time-budget

Injuries

Social interactions

Lying behaviour

Agonistic interactions

• SF: significant decrease during meals compared to PO (p < 0.01) • No significant difference TD/PO

Portioned

Slow-feeding

Traditional

Diurnal time-budget

Injuries

Social interactions

Lying behaviour

- No effect of treatment on injury incidence
- Less body-located injuries in SF

Location of the injuries

- Ė Body
- 崫 Legs

Diurnal time-budget

Injuries

Social interactions

Lying behaviour

• Significant reduction in time spent lying in PO (p < 0.001)

Treatment

Portioned

Slow-feeding

Traditional

Chapter 4 - Conclusions

Hypotheses

- Slow-feeding (ad libitum with a net) enhances welfare by promoting a natural time budget and reduce aggression compared to portioned feeding
- Slow-feeding may cause frustration
- Dividing daily feed into smaller and more regular meals may improve horse welfare 🗡

Take-away

- Slow-feeding treatment positively enhanced the welfare of horses compared to multiple portioning (reduced agonistic level / more natural time-budget)
- -> SF = valuable option to optimize time spent feeding, body condition and regulate risk of injuries

Chapter 4 - Conclusions

Hypotheses

- Slow-feeding (ad libitum with a net) enhances welfare by promoting a natural time budget and reduce aggression compared to portioned feeding
- Slow-feeding may cause frustration
- Dividing daily feed into smaller and more regular meals may improve horse welfare 🗡

Take-away

- Slow-feeding treatment positively enhanced the welfare of horses compared to multiple portioning (reduced agonistic level / more natural time-budget)
- -> SF = valuable option to optimize time spent feeding, body condition and regulate risk of injuries

• No behaviours indicative of frustration but increased agonistic level compared to ad libitum loose hay

Chapter 4 - Conclusions

Hypotheses

- Slow-feeding (ad libitum with a net) enhances welfare by promoting a natural time budget and reduce aggression compared to portioned feeding
- Slow-feeding may cause frustration
- Dividing daily feed into smaller and more regular meals may improve horse welfare 🗡

Take-away

- Slow-feeding treatment positively enhanced the welfare of horses compared to multiple portioning (reduced agonistic level / more natural time-budget)
- -> SF = valuable option to optimize time spent feeding, body condition and regulate risk of injuries

- No behaviours indicative of frustration but increased agonistic level compared to ad libitum loose hay
- Reducing fasting periods did not effectively reduce the level of aggressiveness and risk of injury

Chapter 4 - Conclusions

Hypotheses

- Slow-feeding (ad libitum with a net) enhances welfare by promoting a natural time budget and reduce aggression compared to portioned feeding
- Slow-feeding may cause frustration
- Dividing daily feed into smaller and more regular meals may improve horse welfare X

Take-away

- Slow-feeding treatment positively enhanced the welfare of horses compared to multiple portioning (reduced agonistic level / more natural time-budget)
- -> SF = valuable option to optimize time spent feeding, body condition and regulate risk of injuries

- No behaviours indicative of frustration but increased agonistic level compared to ad libitum loose hay
- Reducing fasting periods did not effectively reduce the level of aggressiveness and risk of injury
- Further research is needed to assess the welfare implications of the timing, frequency and duration of feeding sessions

Let's remember the initial hypotheses ...

Slow-feeder can improve human-horse relationship

- Slow-feeder can promote a more natural feeding behaviour compared to loose hay
- Slow-feeding is associated with health impairments: (teeth, gums and vibrissae)
- Slow-feeding is associated with health impairments (musculoskeletal health)
- Slow-feeding promote a more natural time-budget compared to multiple portioning but may also be frustrating to horses

Let's remember the initial hypotheses ...

- Slow-feeder can improve human-horse relationship
- --> No clear association but SF may improve horse-human relationship for rationed horse

- Slow-feeder can promote a more natural feeding behaviour compared to loose hay
- --> Hay net = more natural collection of forage & unchanged number of chews remain over 24h
 - Slow-feeding is associated with health impairments: (teeth, gums and vibrissae)
- --> Hay nets = risk factor for redden and raised gingiva margins, but nor for increased teeth and vibrissae wear
 - Slow-feeding is associated with health impairments (musculoskeletal health)
- --> Hay nets = not a risk factor for increased musculoskeletal impairments
 - Slow-feeding promote a more natural time-budget compared to multiple portioning but may also be frustrating to horses V
- --> Ad libitum hay in net = more natural time-budget & lower agonistic level than portioned feeding

Let's remember the initial hypotheses ...

- Slow-feeder can improve human-horse relationship
- --> No clear association but SF may improve horse-human relationship for rationed horse

- Slow-feeder can promote a more natural feeding behaviour compared to loose hay
- --> Hay net = more natural collection of forage & unchanged number of chews remain over 24h
 - Slow-feeding is associated with health impairments: (teeth, gums and vibrissae)
- --> Hay nets = risk factor for redden and raised gingiva margins, but nor for increased teeth and vibrissae wear
 - Slow-feeding is associated with health impairments (musculoskeletal health) 🔀
- --> Hay nets = not a risk factor for increased musculoskeletal impairments
 - Slow-feeding promote g more natural time-budget compared to multiple portioning but may also be frustrating to horses

--> Ad libitum hay in net = more natural time-budget & lower agonistic level than portioned feeding

General limitations & associated perspectives

- Although lots of different type of studies: some of them only observational --> need to be confirmed with experimental studies
- Some sample sizes are limited --> **need replication** (preference test)
- Could not quantify hay consumption in last study and only compared it to portioned feeding --> would be beneficial to compare with other weight management strategies
- Only focused on hay nets (except for Manuscript 1) --> part of SFs is still a mysterious world

Ê.

Should we recommend the use of slow-feeding?

Should we recommend the use of slow-feeding?

Should we recommend the use of slow-feeding?

Advantages

Risk

- No access to pasture
- No ad libitum hay
- Overweight horses

Should we recommend the use of slow-feeding?

- Horses who can receive ad libitum hay
- Population different from our study populations
- Mobile, vertical and high SFs

Slow-feeding as an enrichment?

What is an enrichment?

- change that is <u>beneficial</u> to the animal
- add behavioral choices / increase <u>behavioural diversity</u>
- promote <u>species-appropriate</u> repertoires;
- increase ability to cope with challenges

Newberry 1995; Young 2003, Mc Gowan 2007; Westlund 2014,

Slow-feeding as an enrichment?

What is an enrichment?

- change that is beneficial to the animal
- add behavioral choices / increase <u>behavioural diversity</u>
- promote <u>species-appropriate</u> repertoires;
- increase ability to cope with challenges

• Not associated with major impairments Increases time spent feeding • May promote better dental health Provide opportunity of choice

 Promote more natural collection of forage Contrafreeloading phenomenom

 Promote more natural collection of forage Browsing behaviour of horses Foraging behaviour Chewing-type oral movements

Tyler, 1972; Bergeron et al., 2006; Goodwin et al., 2007; Van Den Berg et al., 2015

Acknowledgments

UniBern, Agroscope

UNIVERSITÄT

BERN

Swiss Confederation

Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs, Education and Research EAER Agroscope

Schweizerische Eidgenossenschaft

Stagiaires

Biopraxia, ostéo

Horse owners Horses

^b UNIVERSITÄT BERN Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

> Swiss Confederation Federal Department of Economic Affairs,

Federal Department of Economic Affairs, Education and Research EAER Agroscope

UniBern & Agroscope

Animal Welfare Division & Swiss National Stud Farm

Acknowledgments

Biopraxia & practitioners

- Kim Périchon-Naour, Philippe Ertzer, Alice Jeammes, Anne-Catherine Weber
- Clémence Pérot
- Tessa, Tess, Camille, Caroline & Jeanne

Clémence, Aurélia, Laurie, Claire, Chloé, Stérenn, Maëlle, Emilie, Johann,, Loic & Romane

Horses & Horse owners

Friends & Family

Feeding behaviour

Feeding behaviour (forage collection)

Feeding behaviour (forage mastication)

Feeding behaviour (exploration & pauses)

Feeding behaviour (preference test)

Table 6 - Total time and ratio of time spent feeding from the loose hay (LOO), from the net (NET) and doing some voluntarily feeding pauses for the 3 tests of the five horses during the preference test.

Horse	Test	TotalTime.min	RatioLOO	RatioNET	RatioPauses
AL	Test1	30.04	89.41	2.54	8.02
AL	Test2	31.5	90.32	2.67	6.97
AL	Test3	30.03	76.4	13	10.58
СН	Test1	30.02	50.4	1.13	48.4
СН	Test2	30	0	78.85	21.1
СН	Test3	30.21	66.64	0	29.88
DE	Test1	30.02	55.12	0	0
DE	Test2	30.02	56.86	0	0
DE	Test3	26.76	16.49	2.31	66.65
FO	Test1	30.1	64.81	21.59	13.25
FO	Test2	34.06	22.84	54.94	17.62
FO	Test3	30	74.53	5.51	18.86
US	Test1	30.33	93.9	0	6.05
US	Test2	30.02	54.71	0	45.28
US	Test3	30.03	63.45	0	36.53

Feeding behaviour (pilot-study)

	Ground	Hay Bag	Неи Тоу	Porta Grazer
Frequency of «chews» (nb/min)	71.21 ±7.72	49.94 ±14.19	33.54 ±9.45	41.18 ±8.47
Frequency of «bites» (nb/min)	0.62±0.95	8.78±4.27	9.75±2.88	12.44±4.63
Gathering (% of the time spent feeding)	63.39±14.27	15.47±11.00	41.43±9.44	23.91±13.86
Exploration (% of the time spent feeding)	3.13±3.27	3.22±4.07	5.53±5.58	1.64±3.52
Neck torsion (% of the time spent feeding)	0	7.12±5.44	40.33±17.64	1.52±2.05

Feeding behaviour (pilot-study)

	Ground	Hay Bag	Неи Тоу	Porta Grazer
Frequency of frustration-related behaviours (number/min spent feeding)	0	0.49	0.79	0.47
Ratio of feeding breaks (% of analysable time)	19.70	42.13	24.55	22.46
Average total time of feeding breaks (min.)	2.89	6.40	4.47	3.41
Mean duration of the feeding breaks (sec.)	73	195	86	108

Chap.3.2 - Methods

ROC : photographs, **6 items** (gingiva margin, tartar closest to margin and on the tooth, cememntum cracks, level and type of abrasion)

MSH : live evaluation, manual palpation of 4 types of structure (12 muscles, 11 peri-articular tissues, 11 articular, 3 visceral)

- 15 photographs , 3 raters
- 50 photographs, 3 raters

9 horses, 1 practitioner

12 horses, 6 practitioners

Chap.3.2 - Key findings

Musculoskeletal health (MSH)

• Gwet indices ranged from 0.70 to 0.84

 Gwet indices ranged from **0.62** to **0.70**, except for "Viscera" (0.55)

- **16'42" on average** (11'00"-27'25")
- Importance of prior exeperience (distribution score, time taken)

Concordance results obtained /

literature : suggest validity ?

Chap.3.2 - Key findings

Rostral oral cavity (ROC)

• Gwet indices ranged from 0.23 to 1(0.80 to 1 without Rater 3)

• Gwet indices ranged from 0.60 to 0.72

- 14'22" to 5'50" per photograph
- 1.8% of NAs
- Training > Background

- Concordance ROC score / dental abnormalities (De Boer et al, 2024)
- Cordance ROC score / age

(previous study)

Chap.3.2 - Key findings

General

- Impact overall distribution of scores on indices : "Kappa paradox"
- Importance of training (MSH: improved results from 3rd horse; ROC: improved results for 2 most trained raters)

Chap.3.2 - Key findings

Musculoskeletal health (MSH)

- Intra-rater reliability: Gwet indices between 0.70 and 0.84
- Inter-rater reliability: Gwet indices between 0.62 and 0.70, except for "Viscera" (0.55)
- <u>Feasability</u>: **16'42" on average** (11'00"-27'25"). **Importance of prior exeperience** (distribution score, time taken)
- Validity: Concordance results obtained / literature : suggest validity ?

Rostral oral cavity (ROC)

- Intra-rater reliability: Gwet indices between 0.23 to 1 (0.80 to 1 without Rater 3)
- Inter-rater reliability: Gwet indices between 0.60 to 0.72
- Feasability: 1.8% of NAs _ 4'22" to 5'50" per photograph _ Training > Background
- Validity: Concordance ROC score / dental abnormalities (De Boer et al, 2024) and age (previous study)

General

- Impact overall distribution of scores on indices : "Kappa paradox"
- Importance of training (MSH: improved results from 3rd horse; ROC: improved results for 2 most trained raters)

Cross-sectional study : vibrissae

Cross-sectional study: MSH

			Total MSH score	Coefficient
			mean (sd)	est. [95% CI]
Strata	Shoes	Barefoot	46.6 (8.7)	-
		2 shoes	49.5 (7.4)	2.35 [-0.73; 5.44]
		4 shoes	49.6 (8.1)	2.04 [-0.21; 4.30
	Training frequency	Less than once a week	47.2 (9.3)	1.24 [-1.30; 3.77]
		Once a week	46.0 (7.5)	-
		Twice a week	47.4 (8.1)	0.42 [-2.4 ; 3.33]
		Three to four times a week	46.5 (7.9)	0.10 [-2.57; 2.76]
		Five times or more a week	50.7 (9.2)	4.75 [1.36; 8.15]
	Age		47.3 (8.6)	0.42 [0.30; 0.54]
Dispenser characteristics	RatioMinHeightForage		47.3 (8.6)	0.12 [0.01; 0.22]

Cross-sectional study : gingiva

			A			
			Gingiva colour - redness	Gingiva colour - redness (NH)	Gingiva margin	Gingiva margin (NH)
			OR [2.5-97.5% CI]	OR [2.5-97.5% CI]	OR [2.5-97.5% CI]	OR [2.5-97.5% CI]
Cohort	Cohort	СН	1		1	
		NH	3.45 [1.67; 7.54]		3.38 [2.23; 5.18]	
Strata	Housing	Outside	1			/
		Inside	2.1 [0.9; 4.95]			/
	Shoes	Barefoot	1	1	1	
		Shod	2.4 [1.34; 4.28]	2.46 [1.2; 5.03]	1.97 [1.24; 3.18]	
	Training frequency	Less than once a week				0.67 [0.25; 1.7]
		Once a week				1
		Twice a week				2.23 [0.69; 7.47]
		Three to four times a week				0.75 [0.25; 2.26]
		Five times or more a week				4.21 [1.13; 17.25]
	Age	/	1.04 [1; 1.09]		1.04 [1.01; 1.07]	1.04 [0.99; 1.09]
Dispenser characteritics	Number of dispenser(s) in use	One type of dispenser only	1			
		At least two different dispensers	2.58 [1.14; 6]			
	Inclination of dispenser(s)	Horizontal	1			1
		Vertical	2.29 [0.59; 8.48]			0.53 [0.12; 2.54]
		Both	0.63 [0.32; 1.2]			0.39 [0.18; 0.83]
	Mobility of dispenser(s)	Fixed only (or ground)		1		
		With Mobility		4.3 [1.3; 14.76]		
	Various height	Yes	0.46 [0.21; 0.98]	0.31 [0.12; 0.74]		
		No	1	1		
	Min. limit of dispenser(s)	/	1.01 [1; 1.03]	1.03 [1.01; 1.06]	0.99 [0.98; 1]	0.98 [0.96; 1]
	Metrics	C-statistics	0.76	0.712	0.68	0.68
		H&L	Chi-sq(8)=7.75, p=0.46	Chi-sq(8)=13.76, p=0.09	Chi-sq(8)=3.08, p=0.93	Chi-sq(8)=5.70, p=0.68

Feeding management - Obs

	Repeat 1	Repeat 2	Repeat 3	Total number per group
Group 1	Observations = 16	Observations = 15	Observations = 14	Observations = 45
	Scans = 79	Scans = 69	Scans = 74	Scans = 222
Group 2	Observations = 17	Observations = 14	Observations = 12	Observations = 43
	Scans = 74	Scans = 69	Scans = 76	Scans = 219
Group 3	Observations = 17	Observations = 15	Observations = 16	Observations = 48
	Scans = 80	Scans = 64	Scans = 69	Scans = 213
Group 4	Observations = 16	Observations = 15	Observations = 13	Observations = 44
	Scans = 76	Scans = 67	Scans = 74	Scans = 217
Total number per	Observations = 66	Observations = 59	Observations = 55	Observations = 180
repeat	Scans = 309	Scans = 269	Scans = 293	Scans = 871

Feeding management - Space

Feeding management - TD/PO

Feeding management lying behaviour

Fixed effects (estimate ± SE) | [upper; lower 95%CI]

Intercept

Treatment

Portioned

Traditional

Random effects (variance ± SD)

Group:Horse

Repeat:Day

Residual

1.79 ± 0.336	[1.12; 2.46]
- 0.54 ± 0.134	[-0.80; -0.28]
0.25 ± 0.133	[-0.01; 0.51]
1.68 ± 1.294	[0.93; 1.83]
0.37 ± 0.608	[0.24; 0.84]
1.25 ± 1.120	[1.05; 1.40]
•	