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Application of a direct georeferencing 
method of drone images for smart farming
Ralph L. Stoop, Markus Sax, Dejan Seatovic, Thomas Anken

In smart farming, information collected by autonomous devices needs to be related to its 
exact field location, that is, georeferenced. In this work, we study the applicability and accu-
racy of a simplified direct georeferencing method of drone images for typical smart farming 
applications, such as weed detection. Based solely on an affine homography, the method 
results in accuracies < 0.82 m measured at 30 m above ground level even in the presence 
of pronounced steepness when applied to a real-time kinematic (RTK) enterprise drone (DJI 
Matrice 300 RTK). Our method uses only single images and does not rely on feature matching; 
therefore, it is inexpensive to compute. Depending on the targeted use case, the proposed 
georeferencing method yields errors in the order of the object of interest’s dimensions, which 
we demonstrate for our envisioned use case of dock plant (‘Rumex’) detection on meadows. 
The method may be seen as an upper bound for georeferencing errors that can be applied 
easily to other drone systems.
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Feeding the world’s population has always been a major challenge for humankind and is now com-
pounded by climate change and the loss of biodiversity, which are strongly complicating efforts to 
maintain agricultural productivity in the 21st century. To face these challenges, new concepts and 
methods are needed to achieve the sustainable intensification of agriculture. Smart farming aims to 
apply digital technologies on a large scale to agriculture and is considered one important ingredient 
toward this goal (Walter et al. 2017, Storm et al. 2024). It includes the use of intelligent systems, for 
example, autonomous vehicles, equipped with different sensors to provide spatio-temporal informa-
tion about the status of a crop field. Georeferencing is the process of associating a geographic location 
with a particular object or feature and is a crucial step in obtaining such spatio-temporal maps. It 
involves aligning data from various sources, such as maps, satellite and terrestrial imagery, and GPS 
coordinates, to create an accurate spatial reference of a feature. Therefore, georeferencing is essential 
for smart farming applications based on unmanned vehicles and intelligent systems.

Applied to standard RGB cameras, georeferencing associates a geographic location in the 3D world 
with each pixel in an image. However, this process is inherently limited by the fact that images are 
produced through the lossy mapping of the 3D world’s structural data to the 2D image plane, which is 
performed by the camera. This mapping, or transformation, is typically represented by a perspective 
projection, a specific type of 3D to 2D projection that also underlies the functioning of the human 
eye as well as many cameras. For example, perspective projection gives rise to the well-known phe-
nomenon in which railway lines observed by the engineer, despite being parallel in reality, appear 
to converge until they ultimately meet at a single point toward the horizon. The loss of information 
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that underlies such optical effects significantly complicates the reconstruction of a scene’s structure 
from a single image. Consequently, more information is required for this reconstruction task. In 
nature, most animals possess at least two eyes, and information from each can be combined to more 
accurately estimate the dimensions of objects and distances. Similarly, georeferencing methods seek 
to reconstruct and localize the scene of an image by integrating it with additional information, either 
derived from other sensor data or from additional images of the same scene captured from a slightly 
different position. Although there are many different georeferencing approaches, it is instructive to 
differentiate between direct georeferencing methods that are based solely on Global Navigation Sat-
ellite Systems (GNSS) data (direct georeferencing) and indirect georeferencing methods that require 
ground information collected in the field, also called aerial triangulation (Mian et al. 2016). 

In aerial triangulation, the required geospatial information stems from visual objects with accu-
rately known locations, usually provided by ground control points (GCPs). Based on this information, 
the scene can be reconstructed using standard aerial triangulation techniques, particularly bundle 
adjustments. Although these methods are accurate, tested, and established, the need for GCPs ham-
pers their applicability in cases of emergency scenarios, inaccessible terrain, and low-cost surveil-
lance (Syetiawan 2020). The latter typically applies to smart farming applications, where data collec-
tion must be as cost-effective as possible (Hemerly 2014, Xiang and Tian 2011).

Recently, direct georeferencing has emerged as an alternative approach that does not require 
GCPs. These methods combine the visual system with sensor readings from GNSS and inertial sys-
tems (Cucci et al. 2017, Gabrlik et al. 2018, Syetiawan et al. 2020). Although many different im-
plementations and methods for direct georeferencing exist, the usual pipeline consists of several 
steps. First, the camera position and orientation (camera pose) at each image snapshot are initialized 
based on the GNSS locations. Second, distinctive and comprehensive image regions are extracted for 
each image. These visual features offer a robust way to describe an image and relate it geometrically 
to other images depicting the same scene. This is achieved by comparing and matching the visual 
features of all images, which results in a comprehensive correspondence map. Third, from the initial 
camera poses and feature correspondences, a sparse point cloud containing the 3D coordinates of all 
feature points is calculated, and the camera poses are refined, typically simultaneously using bundle 
adjustment (Hartley and Zissermann 2004). In this step, the refinement of camera poses and scene 
feature points is typically formulated as a joint optimization problem, wherein bundle adjustment 
seeks to find a globally consistent configuration. Lastly, a densification step is applied to the point 
cloud to recover the dense structure of the scene. In the case of UAVs, a so-called orthomosaic is ob-
tained by reprojecting the dense model onto a common plane, thereby providing a highly accurate, 
rectified planar view of the area of interest typically used in arial surveillance. The high accuracy 
and precision of this process have made direct georeferencing an important technique that is widely 
implemented in commercial tools, such as Agisoft’s Metashape (Agisoft LLC, St. Petersburg, Russia) 
or Pix4D (Pix4D, Lausanne, Switzerland). Note that direct georeferencing can still be combined and 
refined using ground truth data from GCPs (Liu et al. 2022).

Despite the high accuracy of direct georeferencing, its practical application in agricultural ap-
plications is still hampered by their demand for high-quality data. State-of-the-art direct georefer-
encing methods require an extensive set of images with distinct and unambiguous visual features 
that remain constant throughout the entire flight of the UAV. Furthermore, high image overlaps of 
around 70 % are typically required to allow feature matching during bundle adjustment (Seifert et 
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al. 2019, Pix4D 2024). Another crucial aspect is the high computational complexity of 3D scene re-
construction. Given the high resolution of modern UAV images (e.g., 12–20 MP for consumer drones 
and 45 MP for enterprise drones with full-frame camera sensors), creating an orthomosaic may take 
hours or even days and has yet to meet real-time requirements. This is particularly unfortunate, as, 
for many applications, the provided accuracy of these methods might not even be needed, and less 
precise alternative approaches might be better suited. 

Recently, different mapping methods have been suggested to further achieve orthomosaics in real 
time. Bu et al. (2016) used simultaneous location and mapping (SLAM) to estimate the camera posi-
tion and attitude and combined it with an incremental stitching procedure to obtain a real-time map 
fusion. However, stitching is still done using only visual features. Hinzmann et al. (2017) further 
included a reconstruction of the surface structure to obtain a dense reconstruction of the scene. Kern 
et al. (2020) introduced their automated pipeline, ‘OpenREALM,’ which represents the first system ca-
pable of generating real-time orthomosaics. The pipeline incorporates state-of-the-art SLAM methods 
with dense reconstruction. Even though the proposed methods are capable of generating high-qual-
ity orthomosaics in real time, their performance still strongly depends on the quality of the feature 
matching, and they therefore require images with distinct visual features. Moreover, the quality of 
the orthomosaic is only a pertinent consideration in the context of applications that necessitate its 
utilization. However, in many agricultural applications of UAVs, such as weed detection, only the co-
ordinates of the specific object of interest are required, without the need for a full 3D reconstruction 
of the scene or the orthomosaic. Furthermore, the proposed methods for real-time orthomosaics still 
depend on visual feature matching, for which images with high overlaps are needed. Unfortunately, 
this increases the time the UAV requires to fully scan the area of interest. Since a human operator 
(“pilot”) is still usually required on the site to control the UAV, the flying time crucially determines 
the total cost of the service. 

Popović et al. (2017a) proposed a sophisticated informative path planning method that fuses im-
ages acquired at different flying altitudes to reduce flying time while maintaining acceptable classifi-
cation rates in the typical setting of UAV-based weed detection. Their multiresolution approach could 
be further extended to other sensory systems based on UAVs, such as temperature maps (Popović et 
al. 2017b). However, the 3D reconstruction and georeferencing are still done using standard struc-
ture-from-motion approaches using a commercial tool (Pix4D), with sufficient overlap of the images 
needed to reconstruct the scene (Pretto et al. 2021).

This work is based on practical considerations gained in the context of the “Rumex project,” which 
has been co-financed by Innosuisse (Innosuisse 2024). The objective is to develop an automated 
system for detecting Rumex plants on meadows using UAV images and estimating their position in 
the 3D world (Sax et al. 2023). The Rumex’s coordinates can then be sent to an autonomous vehicle 
for treatment in the future. For the approach to be useful in practice, it is necessary to maximize 
the quality of the binary classification (Rumex/no Rumex) of a unit cell, thereby maximizing the 
F1 score. In other words, the objective is to minimize false positives while maximizing the true pos-
itives. Our preliminary findings indicate that this requires acquiring images at a minimum of 12 m 
and maintaining a constant flying altitude. This maximizes the resolution of the images, which is 
needed to robustly detect the fine visual features of the plant. In light of these constraints, it is not 
feasible to alter the flying altitude as proposed by Popović et al. (2017a). Consequently, the only vi-
able option is to modify the side-overlap to further reduce the overall flying time. The dependency of 
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the flying time on the side-overlap can be approximated via hyperbolic dependence flying time ~ 1/
(1 − overlap), where ~ denotes equality up to a constant, as illustrated in Figure 1a. 

This is in accordance with experimental findings (Seifert et al. 2019). Typically, a side-lap of 70 % is 
recommended, which strongly increases the flying time (Pix4D 2024, Seifert et al. 2019). To address 
this issue, the proposed direct georeferencing approach does not depend on overlapping images. The 
method estimates the location of objects from their position in images using only the sensory data 
of the UAV in conjunction with an affine transformation. Therefore, only the location of the detected 
objects (in this case, the Rumex plants) is of interest, and no orthomap is provided. Our approach is 
largely based on previous work on single image-based, direct georeferencing that does not depend 
on feature matching (Helgesen et al. 2019, Hemerly 2014, Leira et al. 2015, Pfeifer et al. 2012, 
Xiang and Tian 2011). Although the problem is greatly simplified by treating it as 2-dimensional, the 
resulting accuracy is still satisfactory for many applications in precision farming, particularly in the 
detection of weed. Moreover, our approach does not assume precise camera calibration and minimizes 
the number of pre-processing steps typically employed to enhance predictions, such as sensor data 
fusion. Our approach is motivated by its straightforward implementation and simplicity for practical 
applications, offering a convenient estimate of the upper bound for georeferencing errors in typical 
smart farming applications. Such estimates may facilitate a more comprehensive understanding of 
the requirements for UAV georeferencing, which are necessary for the selection of parameters for 
UAV flights, including altitude, speed, and overlaps. To extend the applicability of the method to re-
gions with changing slopes, we combine the direct georeferencing approach with the region’s digital 
elevation map to correct for altitude errors.

Materials and Methods

Direct Georeferencing Model
To calculate the real-world coordinates of the target GCPs, we used the simplified camera model de-
picted in Figure 1b. The model assumes that the ground surface scene is a perfect plane parallel to 
the camera’s image plane. At any given moment of time, the model assumes that the optical axis of 
the camera is aligned with the vertical direction (nadir) and that the distance between the two planes 
is always constant (constant flying height or altitude above ground level, AGL). Under these assump-

Figure 1: a) Illustration of the flying time vs. side overlap, b) Schematic of the georeferencing method based on affine 
transformation, including anisotropic scaling sx, sy, rotation R, and translation T; the altitude above ground level 
(AGL) is either assumed to be fixed h = hinit (“Original”) or refined h = hrefined (“AGL-adjusted”) to account for the 
structure of the surface
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tions, the transformation of the two-dimensional (2D) image (i.e., pixel) coordinates pim = (xim,yim)T 
to the world coordinates pw = (xw,yw)T (in longitude, latitude) is given by a homography H: P² → P²; 
pim → pw = Hpim, with P² being the projective space. Using homogenous coordinates, H can be de-
scribed by a 3 × 3 matrix and is defined only up to scale (8 degrees of freedom, DOF). Assuming an 
affine transformation consisting of a single translation (tx,y, in the x and y directions, respectively), 
rotation about the z axis (yaw angle θ) and anistropic scaling (sx,y in the x and y directions) finally 
leads to the following homography with 5 DOF:

 (Eq. 1)

Given our constant AGL assumption, sx,y remain constant during a flight and are derived from 
the ground sampling distance (GSD) in the x and y directions. The assumption of the perfect nadir 
condition imposes roll and pitch angles to be zero. Therefore, the only IMU data considered is that 
of the yaw angle (θ) at each image taken. Lastly, tx,y are given by the GNSS RTK position of the UAV 
at each image point. Note that our model assumes that the GNSS RTK signal corresponds to the pro-
jection center of the camera and therefore neglects any offset that is typically present (Correia et al. 
2022). However, since all flights are carried out in RTK mode, the coordinates are already corrected 
by the offsets in the longitudinal, latitudinal, and vertical directions by the DJI’s internal processing. 
Furthermore, perfect time synchronization of all sensor readings is assumed.

Although the assumption of a perfectly flat scene might be sufficient in some applications, it 
seems too restrictive for many crop fields in practice, particularly for countries like Switzerland, 
where considerable elevation differences and slopes are often present. To handle these situations, 
the model can be applied iteratively to correct for some errors due to non-flat surfaces: initially, the 
pre-assumed flying height (here hinit = 30 m) is used with Equation 1 to estimate the position of the 
object of interest. Then, the actual vertical distance between the UAV and the object is refined using a 
publicly available digital terrain model (DTM) with 1 m resolution (Swisstopo, Wabern, Switzerland). 
The refined height is given as hrefined = zUAV − zpred, where zUAV is the UAV’s altitude measured by 
the drone’s GNSS, and zpred is the altitude value of the DTM at the location of the initial prediction. 
Finally, the refined position of the object of interest is calculated again using Equation 1, where hinit is 
updated by hrefined. Although this procedure can be applied multiple times, our findings indicate that 
one iteration is sufficient for our dataset, with convergence of the error occurring after one iteration.

Measurement Site and Flight Parameters
A DJI’s Matrice 300 RTK (Shenzhen, China) UAV was utilized in this study. This drone had a position-
al accuracy of 1 cm (horizontal) and 1.5 cm (vertical) when the RTK was fixed. A full-frame 45 MP 
camera (Zenmuse P1) with a 50 mm objective lens was connected to the drone via a corresponding 
gimbal (all components from DJI, Shenzhen, China) and set to nadir configuration. For flight planning, 
we used the commercial software UGCS (SPH Engineering, SIA, Riga, LV-1050, Lativa) in photogram-
metry mode, which ensured an approximately constant AGL that could be as small as 12 m. 
To evaluate the performance of the georeferencing method for different flight configurations, 28 GCPs 
were distributed over a total area of approximately 2.3 ha in location “Waldegg” (Lat/Long: 47.49290, 
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8.92094) near Aadorf, Switzerland (Figure 2a). The area’s topography consists of a flat region in the 
south-east and a steeper area toward the north-west (Figure 2b). The total height difference is roughly 
20 m. The ground-truth position of each GCP was measured using Trimble R780 with TDC600 (Trim-
ble Inc., Westminster, Colorado, USA).

Three subsequent flights at AGL = 30 m with different side and front overlaps (10–10, 20–50, 
70–80) were carried out, as shown in Figure 2c–e. For the selected flight speed of v = 2.5 m/s, the 
flight time was approximately 10 min for the 10–10 flight, 12 min for the 20–50 flight, and 27 min for 
the 70–80 flight. The camera trigger was set to automatic based on equal distances. For all flights at 
AGL = 30 m, the ground sampling distance was 0.26 cm. Given the typical noise present in the UAV’s 
trajectory, the 10–10 flight represents the non-overlapping case, in which each GCP was ideally seen 
only in a single image. The 70–80 flight represents the standard flight needed for photogrammetric 
processing, and each GCP was seen in approximately 4 (side overlap) × 5 (front overlap) images. The 
standard rectangular flying pattern, which was also employed in this work, necessitates that the UAV 
visit a GCP typically in four distinct flight lines. In these lines, groups of two are shifted, but they oth-

Figure 2: Experimental site ‘Waldegg’ reconstructed from the high overlap (70–80) flight via standard photogram-
metry (Pix4D), a) The 2D reconstruction of the scene (orthomosaic), b) The obtained surface model (digital surface 
model, DSM), black open circles indicate GCP positions, c)–e) UAV position at each image acquisition for three 
flights with different sides and front overlaps: 10–10 (c), 20–50 (d), and 70–80 (e), blue-filled circles indicate the 
GCP positions used to determine the accuracy of georeferencing
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erwise maintain the same horizontal orientation. In our case, the lines had an approximate angle of 
θ₁ ≈ 30° and θ₂ ≈ −150°, hence rotated by 180°. Note that GCPs located at the border of the surveyed 
area were usually seen in a lower number of images, since they were often only visited three times. 
Throughout all flights, the UAV translated at a constant speed of 2.5 meters per second (m/s).
To further validate our approach, we conducted additional measurements at a flat parking space 
in Tänikon (Aadorf, Switzerland) at an AGL = 12 m, GSD = 0.11 cm and a constant flying speed of 
1 m/s. The camera triggering mode was an equal distance. Using this configuration, the flight time 
was roughly 25 min/ha. Fifteen GCPs were distributed along two straight lines over a small area of 
roughly 300 m² and measured using a Trimble R8. The selected low AGL was identical to the one 
used in the Rumex project. Aligning all GCPs along two lines allowed for a better interpretation of the 
obtained accuracies.

Accuracy Analysis
GCP image coordinates pim (in pixel) were manually determined for each image containing at least 
one GCP. Due to their sparse distribution, only very few images contain more than one GCP, and 
most contain none. However, the opposite was not true, as the same GCP was typically seen in dif-
ferent images in the high overlap case. The resulting collection of images containing GCPs and their 
locations in the image were then used to assess the accuracy of georeferencing: for each GCP im-
age coordinate pim, we obtained metadata, such as longitude/latitude/altitude measured by the RTK 
GNSS and yaw angle of the corresponding image, which, together with the constant values for the 
sensor size and focal length, were used as input for the georeferencing method to return the esti-
mated longitude and latitude. Given the ground truth position of the GCPs, prediction errors were 
either determined by component-wise comparison, yielding the longitudinal and latitudinal errors 
∆Long = Longtarget − Longpred and ∆Lat = Lattarget − Latpred, or by the total error, determined via 
the Euclidian distance between error and prediction, E=√(∆Long² + ∆Lat² ). All differences in lon-
gitude and latitude were approximated by meters via the conversion clat → m = 111000.0 m/°Lat and 
clong →  m  = 111319.5  ∙ cos (Lat)m/°Long. Uncertainty in these scaling factors was approximately 
± 0.02 m.

Results and Discussion
For all three flights, the average and standard deviation of the total error for the original and AGL-ad-
justed georeferencing methods are summarized in Table 1. 

Table 1: Average and standard deviation of the total georeferencing error E for the original and AGL-adjusted 
 methods

Overlap  
(side-front)

Average of total 
error E:  

original method 
in m

Standard deviation 
of total error E:  
original method  

in m

Average of total  
error E: AGL- 

adjusted method  
in m

Standard deviation of 
total error E: AGL- 
adjusted method  

in m
Flight time  

in min

10–10 1.05 0.72 0.82 0.53 10
20–50 0.99 0.77 0.80 0.75 12
70–80 0.92 0.68 0.63 0.54 27

Values have an uncertainty ± 0.02 m for distances and < 1 min for time.
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The application of the AGL adjustment yielded a mean total error of E = 0.82, 0.80, and 0.63 m for the 
10–10, 20–50, and 70–80 flights, respectively. Thus, mean accuracies ≤ 0.82 m were reached, despite 
the strong assumptions imposed by our affine homography approach. Surprisingly, the average error 
was minimal for the highest overlap flight, which was unexpected, as our direct georeferencing meth-
od was based on only single images. However, this observation can be attributed to the very different 
sample sizes for the different flights, as high overlaps resulted in an increased number of samples. To 
better interpret the obtained accuracies, the histograms of ∆Lat and ∆Long for all three flights using 
only the predefined AGL of 30 m (blue) and the AGL-adjusted method (orange) are shown in Figure 3. 

Figure 3: Horizontal georeferencing errors for latitude (∆Lat, left) and longitude (∆Long, right) and for the initial 
(blue) and AGL-adjusted method (orange) for the 10–10 (a,b), 20–50 (c,d), and 70–80 (e,f) flights
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For each histogram, we estimated the parameters of a Gaussian distribution, its mean μ, and standard 
deviation σ (crossed lines in Figure 3). Assuming a Gaussian distribution of the errors is reasonable 
when full 3D reconstruction of the scene is conducted (Hartley et al. 2004). As shown in Figure 3, this 
assumption seems too restrictive for our georeferencing model, especially since symmetry around 
the distribution’s mode is generally not supported by our data, particularly for ∆Lat. However, for the 
sake of comparison with the standard photogrammetry literature, we nevertheless utilize the first two 
moments as the primary figure of merit in the remainder of this work. 

As with the total error, the AGL correction significantly enhanced the predictions for both latitude 
and longitude, as evidenced by a reduction in the absolute values of both moments, particularly the 
standard deviation. This finding suggests that a fixed value of AGL = 30 m does not always accurately 
represent the actual altitude of the UAV with respect to the GCP. For example, if the terrain-following 
mode does not maintain a fixed AGL, our initial assumption of AGL = 30 m will obviously be wrong. 
Even if the UAV has the correct AGL with respect to the surface point perpendicular to the UAV, the 
GCP of interest might still be shifted horizontally and therefore have a different altitude. A single iter-
ation of the adaptive height estimation using the actual altitude from the DTM of the GCP’s estimated 
position decreases the error significantly and underscores the importance of using terrain models to 
properly estimate the vertical height difference between the object of interest and the UAV. 

Interestingly, a clear difference between latitudinal and longitudinal errors was observed across 
all three flights. Specifically, a reduced standard deviation and sharper distribution for ∆Long, was 
evident. This observation can be primarily attributed to the emergence of a secondary peak around 
∆Lat = -1 m, most pronounced in the 70–80 flight (black arrow in Figure 3e). To better understand 
the origin of this peak, a revised histogram of the latitudinal (violet histogram bars) and longitudinal 
(green histogram bars) errors for the 70–80 overlap flight with the results for the two flying orienta-
tions θ₁ ≈ 30° and θ₂ ≈ −150° separated, is shown in Figure 4a and Figure 4b, respectively.
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We can fully attribute the emergence of the second peak in the latitudinal error histogram to the 
predictions from images acquired at a yaw angle of θ₁ ≈ 30°, indicated by the black arrow in Figure 
4a. At θ₂, no clear second peak was observed for the latitudinal error. Note that the longitude seems 
to follow a Gaussian or, at least, a monomodal distribution. To better understand this behavior, we 
show examples of UAV positions at image acquisition (filled circles) and corresponding predictions 
(crosses) for a specific GCP (‘GCP7’) in Figure 4c. The four different colors indicate the four different 
flying lines, where images are acquired consequentially and at a fixed θ. To facilitate comparison, the 
longitude and latitude values are approximated by LV95 coordinates, where the unit is expressed in 
meters. This allows for relating the distances from Figure 4c and 4d to the errors in the histograms of 
Figure 3 and 4. Depending on its position, each GCP was covered by four or three flying lines, leading 
to a varying number of resulting predictions, as shown in the red crossed-line rectangle of Figure 4c. 

To better investigate how the UAV position determines the prediction, a zoomed version of the 
rectangle’s area is shown in Figure 4d. As with many other GCPs, we find that the predictions from 
individual flying lines often show more variance along the longitudinal direction and less variation 
in their latitude. A pronounced example is given by the yellow predictions with θ = 30° in Figure 
4e, where the total spreading in the longitudinal direction is about 0.9 m compared to only 0.3 m in 
latitude. The opposite is observed when comparing the predictions from different flying lines. In this 
case, most of the variance is captured by the latitudinal direction. Both effects point toward contribu-
tions from drift: for each flying line, the yaw angle remains approximately constant and only tx,y (i.e. 
the UAV’s position) and px,y (i.e. the position of the GCP in the image) are changing. Note that most 

Figure 4: Flight angle-dependent prediction error for the 70–80 overlap flight for a) θ ≈ 30° and b) θ ≈ −150° , c) Ex-
ample of UAV positions (filled circles) and predictions (‘x’) for GCP7 show the flying pattern of the UAV with two yaw 
angles, d) Zoomed region of the red rectangle from c shows predictions from the georeferencing method together 
with the actual GCP position (‘target’), the triangle shows the position of the average overall predictions (‘predic-
tion’), and the filled circle indicates the target’s actual position, e) Total errors resulting from prediction averaging 
within clusters from individual GCPs
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of the change in pixel coordinates occurs in the y-component. The x-component only changes due to 
non-zero pitch and roll angles. Due to the linearity of our georeferencing model and the fact that tx,y 
only contributes as a translation, the resulting predictions were typically also correlated along a line 
with a yaw-dependent orientation in the xy plane. Overall, for a single GCP, the error variations in 
the latitudinal direction are often larger than in the longitude, which can be seen directly from the 
fact that the values for the latitude do not overlap in Figure 4e, while the ones for longitude do. This 
effect leads to a broader distribution of the latitudinal compared to the longitudinal error in Figure 
3e and 3f.

When flying with overlap, it is possible to utilize multiple predictions derived from disparate imag-
es showing the same object, provided that the object can be identified unambiguously. In the simplest 
case, the numerical average of all predictions of the object can be used. However, in a typical scenario, 
object identification is challenging and requires matching feature points between overlapping imag-
es, which our method aims to avoid. If the correspondence of predictions and objects is unknown, 
unsupervised clustering is the sole option for collecting predictions that are spatially close to each 
other. In the context of sparse object distribution, the present study employs an expectation-maxi-
mation algorithm („mean-shift“, Comaniciu and Meer 2002) with a bandwidth of approximately 5 m 
to cluster predictions of individual GCPs’ locations. Following our previous discussion on the spatial 
distribution of the predictions, it should be clear that the samples are not independently identically 
distributed (iid), and therefore their average will generally be biased, particularly in terms of their 
latitude for uneven numbers of flying lines. The resulting histogram for the total error of the 70–80 
flight is shown in Figure 4e. Averaging reduces the mean of the total error from 0.92 to 0.52 m for the 
constant AGL method, and from 0.63 to 0.34 m for the AGL-adjusted method.

Finally, our homography-based approach was applied to the typical setting of weed detection, in 
which we chose a very low AGL = 12 m. The low AGL ensures the robust detection of the rumex 
plants using convolutional neural networks. Given the systematic distribution of GCPs along two 
parallel lines with a distance of 2 m, a single flight line was sufficient, and no side overlap was used. 
The resulting histograms of ∆Lat and ∆Long are shown in Figure 5. We observed no clear difference 
between the original and AGL-adjusted methods, which is expected due to the flatness of the investi-

Figure 5: Histograms of the a) latitudinal and b) longitudinal error at AGL = 12 m for the original (blue) and  
AGL-adjusted (orange) georeferencing method
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gated area. Note that for Figure 5, we did not average the predictions of the same GCP from different 
images. The corresponding average total error E = 0.25 m is roughly a factor of three smaller than 
the value obtained at AGL = 30 m, in agreement with the linear dependence of the error on the AGL.

Conclusions
In this work, we demonstrate that ready-to-use UAV-based RTK GNSS are sufficient to provide < 0.82 m 
accuracy from 30 m height, even in the presence of noticeably variable terrain, even when using the 
simplest possible affine mapping in a purely direct georeferencing setting. Although the achieved 
accuracies at AGL = 30 m are not sufficient for direct spot spraying of herbicides, the rumex locations 
obtained from our simple method could be delivered directly to the farmer for surveillance or for more 
targeted manual removal in the context of organic farming. Lower flying heights result in georefer-
encing errors of 0.25 m at AGL = 12 m, which may be sufficient for automated treatment. However, 
any treatment device, particularly for hot water treatment of the rumex’ roots in organic farming, 
will likely require its own visual system. In this case, the approximate positions of the rumex plants 
computed by the proposed method could serve as the waypoints of the autonomous device and could 
be used for optimized path planning. Given the great simplicity of the approach with respect to flight 
operation and post-processing, it seems sufficient for many agricultural applications. Even though 
highly accurate direct georeferencing methods exist, their applicability to practical applications is 
often hampered by flight time or computation. As shown in this work, affine homographies are a good 
initial starting point, and more advanced techniques might only be considered when higher accura-
cies are needed, or sensory data are noisier. At AGL = 30 m and flight speed v = 2.5 m/s, the proposed 
georeferencing method allows for a reduction in flight time by almost a factor of three in comparison 
to flights with high side overlaps, given that only minimal side overlap (10 %) is required. 
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