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Abstract 

Wheat genetic resources hold the diversity required to mitigate agricultural challenges 
from climate change and reduced inputs. Using DArTseq, we genotype 461 wheat 
landraces and cultivars and evaluate them for powdery mildew resistance. By develop‑
ing a k‑mer‑based GWAS approach with fully assembled genomes of Triticum aestivum 
and its progenitors, we uncover 25% more resistance‑associated k‑mers than single‑ref‑
erence methods, outperforming SNP‑based GWAS in both loci detection and mapping 
precision. In total, we detect 34 powdery mildew resistance loci, including 27 poten‑
tially novel regions. Our approach underscores the importance of integrating multiple 
reference genomes to unlock the potential of wheat germplasm.

Background
Wheat production, which accounts for 18% of global calorie intake, is reduced by 20% 
annually due to pests and diseases [1]. One significant threat is wheat powdery mildew, 
caused by the obligate biotrophic ascomycete Blumeria graminis f. sp. tritici. This patho-
gen can reduce grain yield by 7.6–19.9% [2], leading to annual losses exceeding 4 billion 
euros worldwide despite the use of agrochemicals, adaptation of agronomic practices, 
and the deployment of resistance cultivars. Although more than a hundred powdery mil-
dew resistance genes (Pm) have been reported, only a few can provide effective resist-
ance in the main wheat-growing areas. For example, from the 16 molecularly cloned Pm 
genes, only a handful are efficient against wheat mildew races in three of the 17 agroeco-
logical zones where wheat is grown, leaving vast regions, like Europe and Central Asia, 
with no effective Pm resistance genes [3], forcing breeders to rely on challenging massive 
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evaluation of overall resistance, which remain challenging to implement in breeding 
programs due to the underlying genetic complexity.

This moderate efficacy of powdery mildew resistance loci in modern varieties is 
the result of pathogen adaptation as well as a consequence of the narrow genetic base 
imposed by the bottlenecks of hexaploidization and domestication, exacerbated during 
the Green Revolution with breeding activities based on few founders. This resulted in 
genetic erosion and increasing susceptibility and vulnerability to environmental stresses, 
pests, and diseases, forcing farmers to increasingly rely on pesticides to control wheat 
diseases, such as powdery mildew. However, chemical control via pesticides is costly, 
harmful to ecosystems, and increasingly ineffective due to global fungicide resistance 
[4]. Additionally, the European Commission aims to reduce pesticide usage by 50% by 
2030 [5]. In this context, resistance breeding is critical for sustainably controlling pests 
and pathogens while reducing pesticide dependency.

Plant disease resistance is molecularly diverse and categorized as either race-specific 
or quantitative resistance (QR). Race-specific resistance provides mostly complete resist-
ance to some pathogen races and only occurs in the presence of a resistance (R) gene in 
the plant, and the corresponding effector-encoding avirulence (Avr) gene in the patho-
gen [6]. In contrast, QR provides partial quantitative resistance at the adult plant stage 
to all races of a pathogen species, independent of rapidly evolving pathogen effectors 
[7]. There are only ~ 460 wheat resistance genes genetically defined [8] that are currently 
being used in breeding. However, based on pan-genome analyses, not representative of 
all the wheat diversity, up to 7000 resistance genes could be present in the wheat gene 
pool (Walkowiak et  al., 2020). This means that there is a putatively large, unexplored 
diversity of Pm genes stored in wheat gene banks that await being uncovered and used 
for resistance breeding. In this context, crop wild relatives (CWR) and landraces, geneti-
cally diverse populations traditionally cultivated in low-input systems and adapted to 
different ecoclimatic conditions, represent a valuable genetic resource for improving 
crops against the occurring climate change.

As an alternative to traditional quantitative trait locus (QTL) mapping, genome-wide 
association studies (GWAS) offer a faster approach to identifying statistical associations 
between phenotypic and genetic variations. This method bypasses the need to create 
segregating populations, significantly reducing the time required. However, there is a 
notable lack of assessment of the genetic and, in particular, phenotypic diversity of CWR 
and landraces, limiting their use in breeding [9]. Although genome sequencing costs 
have dramatically declined, generating reference-quality assemblies of a species like 
wheat, with its 15-Gb genome, remains both expensive and computationally demanding. 
Alternatively, various array- and sequencing-based genotyping platforms have emerged 
to interrogate the genome-wide diversity of wheat genomes. One such method is single-
nucleotide polymorphism (SNP)-based arrays, which have proven useful in identifying 
disease resistance genes in wheat germplasms. However, they typically rely on a single 
reference genome (or a few accessions), dramatically limiting the SNP set that can be 
detected [10], and they can only detect SNPs but not the remaining structural varia-
tions (SVs), such as insertions, deletions, duplications, copy number variants (CNVs), or 
translocations that have been shown to underlie relevant traits, such as stress tolerance 
or disease resistance [11].
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To overcome these limitations inherent to SNP-based arrays, alternative genotyping 
approaches were developed, e.g., Diversity Array Technology sequencing, or DArTseq 
(http:// www. diver sitya rrays. com/) [9, 12], which produces short sequence fragments 
by restriction enzyme-mediated genome complexity reduction [13]. This technology 
selects predominantly low-copy number regions of the genome and by sequencing small 
regions, typically 200–300 bp, with high coverage, it enables the calling of high-quality 
SNPs [14]. The resulting SNP information allows interrogating the diversity of hundreds 
of wheat genotypes at an affordable cost. Such an approach has been successfully applied 
to wheat in multiple studies [9, 12].

In many model species, only one reference genome is used, and wheat is no excep-
tion. Most studies involving wheat genotyping define SNPs or other variations relative 
to the Chinese Spring (CS) reference genome. GWAS based on single reference genomes 
is restricted to the discovery of genes and variations present in that specific reference 
genome [15]. However, plants have been shown to have extensive structural variation 
[16, 17] which cannot be represented by a single reference genome, highlighting the 
need for more diversity. Further, resistance genes are often part of introgressions from 
wild relatives or they show presence/absence polymorphism. Consequently, a single ref-
erence genome is unlikely to capture all genetic variants [18, 19]. To avoid these two 
biases, one can use multiple reference genomes to increase the variation detected [20].

Alternatively, an alignment-free approach can be used. This approach differs from 
the classical SNP-based markers as it directly correlates the presence/absence of small 
sequences (typically 31 bp), called k-mers, with phenotypes. Using k-mers as markers 
allows the detection of almost any type of structural variant, including insertions, dele-
tions, or transpositions in addition to classical SNPs [21]. However, one limitation of 
alignment-free approaches is the challenge of linking k-mers with causal genes.

To leverage the untapped genetic diversity of wheat accessions and establish a broadly 
applicable workflow for plant genomics (Fig. 1), we assembled a diverse collection of 461 
Swiss bread wheat accessions (Fig.  1A) and developed a k-mer-based GWAS pipeline 
using multiple wheat reference genomes inspired by work done in flowering plants [21] 
(Fig. 1B–D). We mapped the raw reads onto ten Triticum aestivum reference genomes 
generated in the 10 + Wheat Genome Project [22], as well as multiple wheat progenitors 
(Fig. 1E). With this approach, we demonstrated that we could detect a larger diversity 
of segregating loci involved in powdery mildew resistance that would have been missed 
using a single reference genome. The association mapping detected the known Pm genes 
Pm1, Pm2, Pm60, or Pm4b, but also novel regions associated with powdery mildew 
resistance in chromosomes 3D, 5D, and 6 A, totaling 34 potential genomic regions of 
interest spread across all the subgenomes.

Of note, unlike standard GWAS, our method identifies associations with structural 
variations and sites not present in a single reference genome, highlighting the relevance 
of landraces and old cultivars stored in genebanks as a source of novel genetic variation 
important not only for mildew resistance but any other agronomic trait important for 
adaptation to a changing environment.

http://www.diversityarrays.com/
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Results
A Swiss wheat collection shows variation in powdery mildew resistance to 10 Bgt iso-
lates with different virulence profiles.

Powdery mildew isolates differ in avirulence gene content and, therefore, the 
observed reaction to wheat Pm resistance genes is isolate-dependent. High-through-
put sequencing technologies allow a prediction of effector gene content. As most 
avirulence genes are still unknown at the molecular level, there are no straightfor-
ward tools to select Bgt isolates with functional effectors without prior functional 
validation or extensive phenotyping in tester lines. Therefore, we picked Bgt isolates 
prioritizing diversity, avirulence/virulence spectra, and availability from a global col-
lection [23], ensuring representation from different regions where wheat is cultivated 
to support a wide search of potential host-resistance components (Fig. 2A).

Fig. 1 Workflow to identify the genetic basis of resistance in the wheat powdery mildew pathosystem. A All 
accessions from the Swiss wheat collection were phenotyped using 10 Bgt isolates from around the globe. 
B All accessions from the collection were sequenced using DArTseq. C From the raw reads of the DArTseq, 
31‑bp k‑mers were generated, and a presence/absence matrix was used to run GWAS. D Using the k‑mer 
matrix and the phenotyping data, GWAS was used to find k‑mers significantly associated with the phenotype. 
E All the DArTseq raw data were mapped to ten Triticum aestivum genomes as well as three progenitor 
genomes and the genome of T. spelta. F Manhattan plots were generated for each genome of reference. The 
significant peaks were extracted to select candidate genes
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We selected nine Blumeria graminis f. sp. tritici isolates from six of the nine popu-
lations representing geographical origins detected by [23]. These include two Swiss 
isolates (CHE_96224 and CHE_97251) from the European cluster, and one from Eng-
land (GRB_JIW2), Poland (POL_3), Turkey (TUR_1c), Iran (IRN_GOR5), Kazakhstan 
(KAZ_1b), Argentina (ARG_4_2), and Japan (JPN_CHIKA) each (Fig. 2A). An additional 
isolate from Poland (THUN12) is a hybrid between wheat and rye mildew, which was 
not part of the PCA analysis presented in Fig. 2A [23]. The geographic origin of those 10 
isolates is shown in Fig. 1A.

Fig. 2 Phenotyping of the Swiss wheat collection with 10 powdery mildew isolates representative of the 
global genetic diversity of Blumeria graminis f. sp. tritici. A PCA of 400 Bgt isolates with 9 of the 10 isolates used 
in this study highlighted. B Avirulence (blue) and virulence (red) pattern of the 10 isolates across 37 Pm‑tester 
lines [24]. C Phenotype distribution of the isolate CHE_96224 on the Swiss wheat collection. Pictures 
represent example phenotypes for fully resistant, partially resistant, and fully susceptible seedling reactions. D 
Correlation plot of the phenotype of all accessions for each isolate. Background color represents the Pearson 
correlation value. E Heatmap representing the phenotype of each accession of the Swiss collection for the 
ten Bgt isolates sorted the same way as B. The three main clusters were split
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To assess the potential of the selected Bgt isolates to search for resistance genes, we 
first determined their avirulence/virulence pattern on 37 Pm-tester lines (Fig. 2B). Such 
tester genotypes have been generated through different crosses, usually involving a wild 
relative of wheat with a susceptible hexaploid wheat genotype, to ensure the sole pres-
ence of a specific Pm gene for pathogenicity tests. Across all Pm-tester lines, each of the 
ten isolates revealed a different resistance pattern. Interestingly, only the Pm13 tester 
line was resistant to all isolates. In contrast, Pm9, Pm5b, Pm20, and Pm3g were suscepti-
ble to all ten isolates. Overall, we observed a large variation between the Pm-tester lines 
across the isolates, demonstrating the potential of the chosen Bgt isolates for detecting a 
wide variety of powdery mildew resistance genes (Fig. 2B).

Using the ten chosen Bgt isolates, we then phenotyped a collection of Swiss accessions, 
consisting of 139 and 276 spring and winter accessions, respectively, together with 46 
accessions of undefined growth habit (growing in both conditions), totaling 461 acces-
sions. Those accessions include old cultivars and landraces and represent a selection 
of the diversity held in the Swiss genebank. Mildew resistance phenotyping revealed a 
large variation in powdery mildew resistance among the collection (Additional file  2: 
Table S1). Across the 10 isolates, an average of 80 accessions were resistant to individual 
Bgt isolates, while, on average, 354 were susceptible to single Bgt isolates (Additional 
file 2: Table S1). The most virulent Bgt isolate, POL_3, had only 32 resistant accessions, 
while the most avirulent Bgt isolate, ARG_4_2, had over 25% (n = 146) of the accessions 
showing resistance. Additionally, 206 accessions were susceptible to all Bgt isolates, 
while only 28 were resistant to all (full data in Additional file 2: Table S1). The latter are 
of great interest to discover potential broad-spectrum resistance genes.

We developed a Shiny app (https:// benji app. shiny apps. io/ Map_ agent_ pheno/) to 
explore the resistance distribution for each Bgt isolate. As an example, the resistance 
distribution is shown for isolate CHE_96224, a very avirulent Bgt isolate widely used 
[25, 26] (Fig.  2C). One hundred thirty-eight accessions showed resistance (≤20% leaf 
covered) to CHE_96224, whereas 94 accessions were fully susceptible (=100), with 229 
accessions showing an intermediate phenotype.

To further explore the commonality between the isolates, we looked at the correlation 
of their virulence/avirulence patterns across the Swiss collection (Fig. 2D). The highest 
correlations were observed between JPN_CHIKA and ARG_4_2 (r = 0.76) and between 
CHE_96224 and IRN_GOR5 (r = 0.81), with POL_3 being the most distinct Bgt isolate 
with an average correlation value of 0.42 to all other isolates. There was no particular 
correlation between the geographical origin of the isolate and the virulence/avirulence 
pattern. For example, the virulence/avirulence patterns of the two isolates from Switzer-
land, as well as the two from Poland, are poorly correlated with each other compared to 
the other isolates. Further, we compared the genetic distance (IBS) between isolates and 
their correlation based on the virulence/avirulence patterns (Additional file 1: Fig. S1), 
without detecting any significant correlation.

When grouping based on the phenotypic responses to Bgt isolates, wheat acces-
sions were grouped into three main clusters. The first and biggest cluster (315 acces-
sions) consists of mostly susceptible accessions to all Bgt (Fig. 2E). The second cluster 
(105 accessions) has mostly accessions resistant to all isolates or accessions susceptible 
to CHE_96224, IRN_GOR5, POL_3, and TUR_1C Bgt isolates. When comparing with 

https://benjiapp.shinyapps.io/Map_agent_pheno/
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the Pm-tester lines, such a pattern of accessions being only susceptible to CHE_96224, 
IRN_GOR5, POL_3, and TUR_1C perfectly matches with the virulence/avirulence pat-
terns of the lines containing Pm1e, a, and d, which suggests that these accessions might 
contain the Pm1 locus. The third cluster was formed by 64 accessions that are all resist-
ant to CHE_96224, IRN_GOR5, ARG_4_2, and JPN_CHIKA, while a subset of them are 
also resistant to THUN12 and TUR_1C. Comparison with the Pm-tester lines resistance 
spectra shows that such a pattern corresponds to Pm4b and Pm2 or Pm32-containing 
lines and indicates that the Pm2, Pm4b, or Pm32 genes are likely to be present in the 
Swiss collection.

The Pm2 and Pm4b race-specific resistance genes are widely present in the Swiss 
collection.

Pm4 and Pm2 are key genes used in breeding programs involved in powdery mildew 
resistance [27, 28] and have been detected in several wheat populations globally [29, 
30]. To investigate whether local wheat hexaploid landraces and old cultivars from the 
Swiss collection contain these genes as suggested by the phenotyping analysis described 
above, we tested for the presence of Pm4b and Pm2 using haplotype markers and further 
sequencing [27, 31]. Out of 461 accessions, 50 and 31 contained Pm2 and Pm4b, respec-
tively, with eight accessions having both genes. Whereas most of the accessions contain-
ing Pm4b showed the expected resistance to CHE_96224, IRN_GOR5, JPN_CHIKA, 
THUN12, and TUR_1C [27], few accessions did not match this pattern (Additional 
file 1: Fig. S2). In the case of expanded resistance, such accessions might contain addi-
tional resistance genes, while the lack of resistance is most likely due to the presence of 
the non-functional Pm4f allele [27, 32].

On the other hand, most accessions containing the Pm2 gene had a resistance spec-
trum matching the expected pattern of the Pm2 near isogenic lines (NIL), being resistant 
against CHE_96224, IRN_GOR5, ARG_4_2, and JPN_CHIKA. The avirulence/viru-
lence pattern of mildew isolates on a Pm2 NIL perfectly matched the presence/absence 
of AvrPm2 in the isolates as determined from whole genome sequences (Additional 
file 1: Fig. S3). There were a few wheat genotypes without the Pm2 gene but resistant to 
AvrPm2-containing isolates, which is possibly the result of the presence of other resist-
ance genes. Given the two examples of Pm2 and Pm4, it is very likely that additional 
sources of resistance are present in the Swiss wheat collection. To discover new genes 
involved in powdery mildew resistance, we set out to perform GWAS analyses.

Interrogating genetic diversity in the Swiss wheat collection using DArTseq genotyping

All accessions from the Swiss wheat collection were genotyped using DArTseq. This 
genotyping by sequencing (GBS) method aims to reduce the proportion of repetitive 
sequences, keeping genome coverage more homogenous [13]. To assess this, we ana-
lyzed the distribution of the sequencing reads across the Chinese Spring IWGSC_2.1 
reference genome (CS, [33]). We observe that at the population level 40% of the genes 
contain at least one read in their coding regions and when including ±10 kb there 
are 72% of the genes with at least one read in the region (Additional file 1: Fig. S4). 
While this does not directly reflect the robustness of locus discovery, it illustrates 
the genomic breadth captured across genic and intergenic regions. Additionally, the 
distribution of reads was similar between homologous chromosomes with 1,491,774, 
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1,605,237, and 1,350,862 reads mapping to the subgenomes A, B, and D, respectively 
(Additional file  1: Fig. S5). As in all GBS methods, DArTseq covers a small part of 
the genome and produced on average 1.4M reads per sample (Supplemental Table 1, 
sheet 3). Additionally, we observe that on average, 2.3% of the reads per accession did 
not map to the CS genome. AG-392 had the fewest mapped reads, with 8.8% not map-
ping to the CS genome.

The collection was also genotyped with the 12k Illumina Infinium 15 K wheat SNP 
array (TraitGenetics GmbH, Gatersleben, Germany). After filtering, 11,252 SNPs were 
kept (see “Methods”). In addition to the SNP array, a matrix of 10,068 SNPs was gen-
erated by mapping the DArTseq reads to the CS genome. When comparing the num-
ber of SNPs per chromosome for each matrix, the D subgenome showed the expected 
lower number of SNPs (Additional file 1: Fig. S6). This reduced diversity is due to a 
strong bottleneck in the formation of hexaploid wheat [34]. Importantly, while the 
SNP matrix derived from DArTseq data, containing 10,068 SNPs, tagged 2789 genes, 
using k-mers, ~ 85,000 genes (72%) with ± 10 kb window are tagged (Additional file 1: 
Fig. S4). In addition to the two SNP matrices, we generated a presence/absence matrix 
of 176 million unique k-mers of length 31 bp. We then used these two SNP-based 
matrices (DArTseq, the SNP-chip) and the k-mer matrix—to perform GWAS. Using 
the SNPs, we also performed a population structure analysis of the Swiss collection 
using ADMIXTURE. Through the different criteria presented in Additional file 1: Fig. 
S7, we do not detect multiple populations in our dataset.

K-mer-based association mapping outperforms GWAS based on SNP matrices.
To perform a comparative analysis of the performance of GWAS when using the dif-

ferent genotyping methods, we set up a pipeline allowing the use of the three matrices 
and the mildew resistance as phenotype. The GWAS results using the two SNP matrices 
showed very similar results (Additional file 1: Figs. S8 and S9). With both SNP matri-
ces, for the Bgt isolate POL_3, no significant regions were detected. Significance when 
using the SNP matrix was set based on the Bonferroni threshold, with any SNP above 
this threshold considered significantly associated with the phenotype. We also evaluated 
the fit of the GWAS model to our data and generated QQ plots (Additional file 1: Fig. 
S10) for all the isolates using the SNPs chip dataset. In all cases, the distribution of p 
values fits well the theoretical distribution of the linear mixed model. Combining the 
GWAS results from all the other isolates, we detected 241 and 53 significantly associ-
ated SNPs from the DArTseq and the SNP-chip, respectively. They were embedded in 
seven genomic regions, with two regions standing out above the rest: one located at the 
beginning of chromosome 5D for resistance to CHE_96224 and IRN_GOR5, and one 
at the end of chromosome 7 A for resistance to ARG_4_2, CHE_97251, GRB_JIW2, 
JPN_CHIKA, KAZ_1b, and THUN12 (Fig. 3A). Those two regions are known to contain 
Pm genes: Pm2, located at the beginning of chromosome 5D around 43.4 Mb [35], and 
Pm1 and Pm60 are located at the end of chromosome 7 A [36, 37]. We observed that the 
corresponding regions on homoeologous chromosomes also showed significantly asso-
ciated SNPs. This is most likely due to the homology of sequences between the chromo-
somes and/or linkage disequilibrium. Based on the phenotyping clustering as well as the 
comparison with Pm-tester lines, Pm1/Pm60 and Pm2 were expected to be present in 
the Swiss wheat collection. Surprisingly, we did not detect Pm4 using the SNP matrices.
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Fig. 3 k‑mer GWAS results. A Summary of the GWAS results based on CS for Pm1, Pm2, and Pm4 for all three 
matrices for all the isolates, as well as two regions only found using k‑mers. The colors blue, brown, and 
purple respectively represent the SNP‑Chip, the SNPs generated from the DArTseq data, and the k-mers. Filled 
squares represent the presence of an associated region. B UpSet plot for all k‑mers significantly associated 
with resistance using the resistance phenotype of each of the 10 isolates. The biggest set of common 
significantly associated k‑mers (5594) was found between the isolates ARG_4_2 and JPN_CHIKA, GRB_JIW2, 
CHE_97251, THUN12, and KAZ_1b. The first 14 groups are colored. The entire data set can be explored in the 
Shiny app at https:// benji app. shiny apps. io/ Manha ttan_ plot/. C Circular plot representing Manhattan plots 
comparing three matrices used for the GWAS of Bgt isolate CHE_96224. The inner circle in blue represents 
the SNP matrix generated using DArTseq, and the middle circle in orange represents the matrix from the 
SNP‑chip. The outer circle represents the k‑mer‑GWAS where only k‑mers significantly associated with 
resistance are displayed. The y‑axis is the same for all three plots. D 3D dot plot of the different Manhattan 
plots for the region of Pm4 (red arrow on C). The color legends are as in A. The k‑mer‑GWAS SY Mattis 
represents the k‑mer‑GWAS using the SY Mattis genomes as a reference. The line is at the position of the Pm4 
gene in the SY Mattis genome. E Proportion of k‑mers mapping to all the Triticum aestivum genomes (red), 
some of the genomes (blue), and none of the genomes (gray). F Proportion of reads that do not map to any 
of the T. aestivum genomes, but map to genomes of wheat progenitors or relatives. The other 40% do not 
map to any (light blue) and only 0.02% map to all four genomes

https://benjiapp.shinyapps.io/Manhattan_plot/
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To test whether the output of the GWAS analysis could be improved by using a ref-
erence-free approach, we adapted a previously published k-mer GWAS approach [21]. 
The GWAS using k-mers as genotype yielded 16,895 k-mers significantly associated with 
resistance, with an average of 5876 k-mers per isolate. k-mers significantly associated 
with resistance were defined as those exceeding the − log10 threshold for the 5% fam-
ily-wise error rate [21]. Isolate KAZ_1b had the highest number of significant k-mers 
(12,806) associated with resistance, and TUR_1C, the lowest number (1819) (Fig. 3B). 
Similar to the SNPs, no k-mers significantly associated with resistance were detected for 
the POL_3 isolate (summary in Additional file 2: Table S3). Using the SNP matrices, the 
classical outputs are lists of significant SNPs; for k-mers, the output is a list of significant 
k-mers, of 31 bp in length. To position these k-mers within a genome, several steps are 
needed: after retrieving the reads containing the k-mers, these reads are aligned to the 
genome and then the k-mer p value can be linked to a genome position (see Fig. 1 for the 
pipeline).

k-mer GWAS identified the same resistance-associated regions as the two SNP matri-
ces, plus additional novel associations. For example, we detected an associated region on 
chromosome 2A that corresponds to the location of the Pm4 gene (Fig. 3C, D). Based on 
the resistance pattern analysis of the phenotypic data and the haplotype analysis (Addi-
tional file 1: Fig. S2), this gene is present in the Swiss wheat collection. To better under-
stand why such a region is only detected using k-mers, we zoomed into the Pm4 region 
and plotted the results of the three approaches together (Fig. 3D). This revealed that the 
higher resolution of the k-mer GWAS was due to the higher number of markers in the 
region: there are 165, 141, and 1627 markers for the DArTseq, the SNP-chip, and the 
k-mer-GWAS, respectively.

Using k-mer GWAS approach, we detected additional associated regions 2 A and 5D 
(Fig. 3A). In total, using Chinese Spring as reference, we identified 21 associated regions 
that do not overlap with known Pm genes (coordinates summarized in Additional file 2: 
Tables S8 and S9). Manhattan plots containing all the significantly associated regions 
for all the isolates are presented in Additional file 1: Fig. S12. These results demonstrate 
that k-mer-based GWAS outperforms approaches based on SNPs, and the comparative 
analysis highlights that the increased number of markers is mostly the reason for this 
improvement.

Multiple reference genomes improve the positions of k-mers significantly associated 
with resistance and refine genomic region definitions.

Of the 16,895 k-mers significantly associated with resistance, 68% (11,570) were 
mapped to the CS reference genome. In contrast, while only 2.3% of the overall reads did 
not map to the CS genome, a much larger proportion, i.e., 32% of the k-mers significantly 
associated with resistance, did not map to the CS genome. This suggests a significant 
enrichment of non-mapping k-mers among those identified as significantly associated 
with resistance, compared to the general read mapping. Such a difference is most likely 
caused by introgressions and/or presence/absence polymorphisms that are frequently 
the origin of resistance to powdery mildew [38]. If such an introgressed region is not 
present in CS, reads containing significantly associated k-mers would not map. To inves-
tigate the possible origin of the non-mapped k-mers, we used 10 additional Triticum aes-
tivum genomes [22] as reference genomes. Using this set of genomes, we found that 53% 
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(8969) of the k-mers significantly associated with resistance were mapped in all genomes 
(Fig. 3E). We considered a k-mer mapped when at least one of the reads containing such 
k-mers mapped to one or more genomes. A further 30% (5003) were mapped in some 
but not all of the genomes, and the remaining 17% (2923) did not map to any of the 10 
Triticum aestivum genomes (Fig. 3E). Thus, by adding the 10 genomes as references, we 
could map 83% of the k-mers, compared to 68% when using only CS as a reference. Some 
of the k-mers that do not map to CS map to new regions of interest in other reference 
genomes. Besides, some k-mers also map to regions that have already been detected 
using CS, but reduce the width and increase the precision of the peak. Taking Pm4 as 
an example, we found that when using SY Mattis as a reference genome, the associated 
region perfectly overlaps with the position of the annotated Pm4 gene, which is not the 
case for CS (Fig. 3D). The Pm4 gene is known to originate from an introgression from 
tetraploid wheat [27], and blast analysis shows that the gene is present in SY Mattis and 
absent in CS. This explains the higher precision when using SY Mattis as a reference 
genome. Using the k-mer approach, we pinpointed narrower peaks, allowing us to define 
more precisely genomic regions harboring genetic loci of interest (Fig. 3D).

Progenitor genomes allow mapping an additional 8% of the significant k-mers.
Many introgressions derived from wild relatives in bread wheat have been described to 

contain resistance genes [39, 40]. Therefore, to investigate the possible origin of the 17% 
non-mapped reads, we selected a set of genomes representing close relatives of bread 
wheat as well as ancestors/progenitors of hexaploid wheat, including Aegilops tauschii, 
Triticum turgidum, Triticum urartu, and Triticum spelta (Fig. 1). By implementing this 
step, we mapped an additional 60% (1742) of the 2923 non-mapped k-mers (Fig. 3E, F). 
Combining all reference genomes, we could unambiguously assign a physical position to 
approximately 93% of the k-mers, which is 25% more of the resistance-associated k-mers 
compared to using only CS as a reference genome. In summary, our analysis demon-
strates the advantage of using multiple reference genomes: starting from the same set of 
raw genotypic data, an additional 25% of all significant k-mers were mapped, resulting in 
novel associations and improved resolution of associated genomic regions.

k-mer GWAS allows to detect multiple known Pm genes present in the Swiss wheat 
collection.

To identify resistance genes acting against multiple Bgt isolates, we analyzed resist-
ance-associated k-mers shared among multiple isolates (Fig. 3B). Due to the complex-
ity of displaying association data from multiple isolates across different genomes, we 
developed a Shiny app, accessible at https:// benji app. shiny apps. io/ Manha ttan_ plot/. To 
generate a Manhattan plot, users must follow the following steps: (i) select a reference 
genome, (ii) choose an isolate, and (iii) specify the chromosome (s) to display. While 
only one genome can be visualized at a time, multiple isolates can be compared simul-
taneously by stacking multiple plots. For a more detailed view of an associated region, 
users can zoom in by specifying the coordinates of a region of interest. An annotated 
screenshot is shown in Additional file 1: Fig. S13.

The largest group of common resistance-associated k-mers (n = 5594) is shared among 
the isolates ARG_4_2, JPN_CHIKA, GRB_JIW2, CHE_97251, THUN12, and KAZ_1b. 
These k-mers predominantly cluster at the end of chromosome 7 A, a region known 
to harbor the Pm1 and Pm60 resistance genes, and is characterized by suppressed 

https://benjiapp.shinyapps.io/Manhattan_plot/
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recombination [37]. This clustering aligns perfectly with the phenotype of the Pm1d/a/e 
tester lines, which exhibits resistance to the abovementioned isolates and susceptibility 
to the rest (Fig. 2B). Furthermore, k-mers from this group also tag other loci of inter-
est, such as on chromosomes 2B and 6B. Extending this to all the reference genomes 
we found, for instance, that an associated region at the beginning of chromosome 3D 
was only detected when using Renan, Lancer, and CS as reference genomes. Out of the 
34 main regions detected across the 10 reference genomes and the 10 isolates, only 15 
are shared in all reference genomes. Such comparative analysis across multiple genomes 
highlights the limitations of using a single genome reference, as many significant regions 
would be missed.

The first four groups (groups 1–4) in Fig. 3B represent the largest groups of common 
k-mers and are formed by a similar set of isolates with minimal variation. Group 5 com-
prises k-mers private to KAZ_1b, while groups 6 and 8 contrast with the first four groups 
as they contain k-mers found significant for isolates TUR_1C, CHE_96224, and IRN_
GOR5. THUN12 isolate is the only member common among all these groups. Group 7 
includes significant k-mers solely from IRN_GOR5 (Fig. 3B). This pattern correlates well 
with the correlation matrix between the phenotypes shown in Fig. 2C.

Interestingly, we observed two distinct, non-overlapping groups of isolates sharing 
common k-mers. One group includes Bgt isolates GRB_JIW2, CHE_97251, and KAZ_1b, 
while the other group comprises Bgt isolates TURC_1C, CHE_96224, and IRN_GOR5. 
Comparing these data with the pattern of Pm-tester lines, we found that a combination 
of multiple Pm genes could explain this distribution. In particular, Pm2a and Pm4a con-
fer resistance to TURC_1C, CHE_96224, and IRN_GOR5, while showing susceptibility 
to the other isolates, except for JPN_CHIKA. Conversely, various Pm1 alleles exhib-
ited resistance to GRB_JIW2, CHE_97251, and KAZ_1b. Examining the mapping of the 
significantly associated k-mers from different groups revealed a clear correlation with 
the expected Pm genes. Groups 1–4 predominantly map to the end of chromosome 7, 
around the Pm1 and Pm60 region. For example, for the isolate CHE_97251, out of the 
1457 significantly associated k-mers mapping to the CS genome, 888 (61%) are located 
at the end of Chr7A-B-D that contain the resistance genes Pm1 and Pm60. k-mers 
from groups 6 and 8 almost exclusively tag the Pm2 and Pm4 regions. For the isolate 
CHE_96224, out of the 285 significantly associated k-mers mapping to the SY Mattis 
genome, 250 (87%) map to chromosome 2 A in the Pm4 region. While we detected asso-
ciated regions for Pm2 and Pm1/Pm60 in all the ten reference genomes, the Pm4 region 
is not detected in the Lancer genome.

Such grouping together with the mapping to multiple genomes shows that we can 
detect clear and strong signals from specific Pm genes. Zooming into the region of Pm4 
and Pm2 using SY Mattis as reference genome shows that those signals are directly on 
top of the position of the genes (Fig. 4A and B).

New candidate Pm genes identified in the Swiss wheat collection.
To discover new potential candidate genes for mildew resistance, we focused on all 

regions detected having significant k-mer associations not overlapping with previously 
known Pm genes (Additional file 1: Fig. S12). Such comparison with known Pm genes 
combined with LD decay analysis allowed us to define new potential loci involved in 
powdery mildew resistance based on the CS genome. Defining borders of associated 
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regions from a GWAS output can be difficult and is strongly influenced by linkage dis-
equilibrium (LD) around the corresponding genomic region. For instance, a comparison 
between the Pm2 and Pm4 regions (Fig. 4A, B) shows that the LD landscape can vary 
significantly between different regions of the genome. Even though previous studies have 
calculated LD decay over entire subgenomes [41], we observe that large regions of high 
LD are present (Additional file 1: Fig. S11), making the half LD decay measure for our 
approach not suitable.

Several of the potentially novel loci we report are located on chromosomes where no 
Pm genes have been previously described. For all the rest, located on the same chro-
mosome as a previously described Pm gene, we only considered those loci as novel 
that mapped much beyond the half-maximal LD thresholds described in Supplemen-
tal Fig. 11. As each region is a specific case and to allow users to explore the variation 
of LD for a region of interest, we developed a Shiny app (https:// benji app. shiny apps. io/ 
LD_ plot/) (Additional file  1: Fig. S14) that displays the LD plot of a region of interest 
along with the k-mers of the region that are significantly associated with resistance. For 
the cases presented here, no big insertions/deletions were observed, and thus, for those 
regions, we extracted all protein sequences within 1 Mb around each detected peak. 
Nonetheless, we recommend following a case-by-case approach to define the extent of 
the region around a peak.

We then used BLASTp for all those genes to infer gene function. After several filtering 
steps (see “Methods” for details), Manhattan plots for each of the genomes combining 
the different isolates, as well as a summary table of the main associated regions, are pre-
sented in Additional file 1: Fig. S15. The table shows the presence of the main regions in 
the different genomes used as reference. As the genomic coordinates for each genome 
cannot be directly compared, the correspondence of the region of association between 
the genomes is arbitrary and some similar regions might not be the same in another 
genome. For in-depth analysis of candidates of choice, alignment between the genomes 
of the region of interest will be required.

As an example, we present a resistance-associated region located at the beginning of 
the short arm of chromosome 3D and was only detected when using Lancer, Renan, and 
CS as reference genomes (Fig. 4C). Its presence in these three genomes is not consist-
ent with phenotypic observations: while Renan and Lancer are resistant to many of the 

(See figure on next page.)
Fig. 4 Identification of known Pm genes and new candidate genes for powdery mildew resistance. 
Manhattan plot for the Bgt isolate CHE_96224 and the chromosomes 2 A (A) and 5D (B) of the SY Mattis 
genome. The zoom‑in of each of the regions of interest also shows the position of two of the Pm genes 
known to confer powdery mildew resistance as well as the LD pattern of the region. C Table summarizing 
the presence of the three copies of the Werner‑like candidate genes across 11 assembled wheat genomes 
(gray part). Phenotypes of the same 11 genotypes for the 9 [10] isolates used in this study. Blue represents 
resistance, red susceptibility, and white is missing data. D Alignment of the genomic regions (15 Mb) on 
chromosome 2B containing the Werner‑like exonuclease gene candidate for genomes containing the 
candidate gene (CS, Landmark, Norin 61, and Stanley), as well as other genomes not containing it (Renan, 
Mace, SY Mattis, and Lancer). E Presence/absence pattern of the associated region at the beginning of Chr3D 
for 11 genomes and for each of the isolates used in this study. F Alignment of the genomic region around the 
candidate gene at the beginning of chromosome 3D (4 to 6 Mb). The position of the GWAS peak, as well as 
the best gene candidates, is marked with a triangle. A longer alignment of the 12 first Mb of chromosome 3D 
is in Supplemental Fig. 16

https://benjiapp.shinyapps.io/LD_plot/
https://benjiapp.shinyapps.io/LD_plot/
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tested powdery mildew isolates, CS is not resistant to any. To further explore this region, 
the 2 Mb around the most associated k-mer was extracted and aligned with all the 
genomes. This region is conserved between CS, Lancer, and Renan but not for the other 
genomes (Fig. 4D). Given that CS is not resistant, it is expected that haplotype diversity 
occurs in the region between Lancer/Renan and CS. Indeed, we observed such diversity 
within the first 500 kb of the region, which shows considerable variation between CS and 

Fig. 4 (See legend on previous page.)
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Lancer, but is almost fully conserved between Lancer, Renan, and Norin 61 (Fig.  4D). 
While Lancer is resistant to 8 of 10 isolates, Renan is only resistant to CHE_96224, 
IRN_GOR5, THUN12, JPN_CHIKA, and TUR_1C, and Norin 61 is susceptible to all 
isolates. After extracting all the genes annotated in the region from the Lancer genome, 
we blasted them to all other genomes to find how conserved each of the genes were. The 
heatmap in Additional file 1: Fig. S17 summarizes the results of this analysis.

Each of the protein sequences has been also blasted to the NCBI database to extract 
possible functions. Thirteen genes are found to be NBS-LRR genes, although all of them 
are fully conserved between Lancer and Norin 61, including ±2 kb of the coding region. 
Because Norin 61 is fully susceptible such genes are likely not responsible for the resist-
ance observed in Lancer. We found 10 genes present only in Lancer (Additional file 1: 
Fig. S17), out of those five are uncharacterized proteins, two are wax ester synthase like 
proteins, one is a fatty acyl-CoA reductase, one is a glucomannan 4-beta-mannosyl-
transferase, and one is a receptor like prot12. Waxes are part of the cuticle and protect 
different organs from biotic and well as abiotic stresses [42]. Even though such genes 
have not been described in resistance to powdery mildew, their presence/absence pat-
tern between the genomes makes this gene family a solid candidate. Thus, using k-mer 
GWAS we detected new candidate genes and further analysis of the identified regions 
and the candidate genes will reveal a possible role of those genes in resistance.

k-mers allow to trace candidate genes across multiple genomes and examine their 
structural variation.

One intriguing region was identified when we mapped significantly associated k-mers 
with Bgt isolate CHE_96224 onto different wheat reference genomes using as basis the 
mapping to the SY Mattis genome to assign k-mers specific to Pm2 and Pm4 genes 
(Additional file 1: Fig. S18). Since SY Mattis carries Pm2 and Pm4, we can tag the k-mers 
mapping at the region of Pm4 and Pm2 and predict their presence in other genomes. 
We would expect them to map onto other wheat reference genomes that also contain 
the Pm2 and Pm4 genes, as indicated by GWAS peaks in Landmark (Pm2) and Stanley 
(Pm4) (Additional file 1: Fig. S15). However, k-mers that are not associated with Pm4 or 
Pm2 (in black) form prominent peaks on chromosomes 3 A and 3D in Julius, Fielder, and 
Lancer and can reveal new potential candidate genes.

These k-mers were directly located within a Werner-like exonuclease gene (TraesJU-
L3A03G01434660). However, both Julius and Fielder are susceptible to CHE_96224. To 
explain this apparent contradiction, we investigated whether the Werner-like exonucle-
ase gene exhibits copy number variation across wheat reference genomes. This gene is 
conserved in homeologous groups 3 and 7 in all wheat genotypes. However, its pres-
ence/absence pattern on chromosome 2B suggests a potential role in increased suscepti-
bility to wheat powdery mildew (Fig. 4E). Specifically, the gene is present in the genomes 
of CS, Landmark, Norin 61, and Stanley—all susceptible cultivars—but absent in all 
resistant cultivars, Renan, Mace, and SY Mattis (Fig. 4F).

Interestingly, a Werner-like exonuclease coding gene has been identified in a DAP-
seq (DNA affinity purification sequencing) experiment searching for TaZF binding sites. 
TaZF proteins have been implicated in powdery mildew resistance by recruiting both 
Pm2a and AvrPm2 from the cytosol to the nucleus [25]. While future functional valida-
tion is required to confirm whether the Werner-like gene contributes to susceptibility, 
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this case highlights how association mapping based on k-mers enables the examination 
of structural variation of candidate genes across different genomes.

Using progenitor genomes allows the discovery of new associated regions with powdery 

mildew resistance

To find the location of the k-mers absent in all tested Triticum aestivum genomes, we 
mapped the reads to four progenitor genomes of wheat. The resulting Manhattan plots 
are represented in Additional file 1: Fig. S19. To compare with the location of the known 
Pm genes, we also blasted all the cloned Pm genes to the four genomes and their location 
is indicated in the Manhattan plot (Additional file 1: Fig. S19). In Aegilops tauschii, Triti-
cum urartu, and Triticum spelta, we detected a region overlapping with the position of 
Pm2 or its homolog on chromosome 5A. Pm2 was originally described as a gene intro-
gressed from A. tauschii into chromosome 2D [43]. For all four genomes, we detected 
a region at the end of chromosome 7 that tags the region of Pm1 and Pm60, originally 
from Triticum aestivum, as well as Triticum monocucum and Triticum urartu, respec-
tively. For all the other regions, we used the approach based on the blast described above 
to annotate the gene within the 1 Mb around each peak. After filtering the blast results, 
we ended up with 4, 6, 2, and 15, significantly associated regions containing candidate 
genes in Aegilops tauschii, Triticum spelta, Triticum turgidum, and Triticum urartu, 
respectively. Except for the significantly associated regions on chromosomes 7, 5, and 
2, overlapping with Pm1/Pm60 and Pm2 and Pm4, respectively, all the other associated 
regions do not overlap with previously detected regions using the 10 Triticum aestivum 
genotypes as reference genomes. For example, new associated regions were detected at 
the end of chromosome 5D and 5 A in Aegilops tauschii and Triticum urartu, respec-
tively, or at the start of chromosome 3D, 3 A, and 3A/3B for Aegilops tauschii, Triticum 
urartu, and Triticum turgidum, respectively (Additional file 1: Fig. S19). Therefore, the 
use of wild relative genomes as reference revealed additional potential resistance genes 
undetected in hexaploid wheats, suggesting that resistance genes were left behind or 
introgressed during breeding of hexaploid wheat.

k-mer GWAS allow the discovery of potentially new candidate genes for adult-stage 
resistance to wheat powdery mildew.

We evaluated our panel under field conditions for adult plant resistance against pow-
dery mildew over 2 years. As the panel included spring and winter wheat accessions and 
the AUDPC (area under the disease progress curve) values cannot be compared between 
these two groups, the collection was split in winter (276 accessions) and spring wheat 
(139 accessions), both showing high Pearson correlation coefficient (r) of AUDPC val-
ues, 0.68 and 0.87 between the two environments (years), respectively (Fig. 5A).

The identification of genomic regions associated with adult plant resistance in GWAS 
studies is challenging. Such resistances often involve several genes, reducing their 
respective association with the observed phenotypes and making it more difficult to be 
detected by GWAS. To test whether our k-mer approach outperforms standard pipe-
lines, we performed a GWAS for adult-stage resistance comparing the k-mer and the 
two SNP matrices using field phenotypes. Here, we focus on the Spring Wheat 2024 
trial as an example (Fig. 5B). We identified a significantly associated region at the end 
of chromosome 5D (around 500 Mb) using the SNP set obtained through DArTseq. The 
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associated region on chromosome 5D does not overlap with the region found using the 
other matrices (SNPs chip and k-mers). Moreover, the k-mer GWAS identified multiple, 
narrower associated regions on chromosomes 5 A, B, D, and 1D. To compare the GWAS 
results between two different years, we aligned two Manhattan plots together (Fig. 5C). 
We found that most regions consistently appeared in both years even though some 
regions only passed the significance threshold in one of the 2 years. We observed a simi-
lar pattern for the winter wheat data where the same associated regions were detected in 
both years (Additional file 1: Fig. S20). This is expected considering the high correlation 
between the phenotypes for the 2 years.

Adding the 10 genomes of Triticum aestivum as a reference, we again detected addi-
tional associated regions present in only one or few genomes. For example, one region 
on chromosome 4B was only present when Julius’ genome was used as a reference 
(Additional file 1: Fig. S21). We conclude that, despite a limited number of accessions 
and challenging field phenotyping for adult plant resistance to powdery mildew, using 
k-mers and multiple reference genomes greatly improved the precision and power of 
GWAS in detecting resistance loci compared to standard pipelines.

Fig. 5 Genetic basis of wheat resistance at adult stage. A Correlation between the 2 years of field 
phenotyping for spring (black) and winter (green) wheat. r represents the Pearson coefficient. B GWAS 
using Spring Wheat 2024 for phenotypic values and for comparison of three genotype matrices. The inner 
circle is DArTseq SNP, the middle SNPs chip, and the outer k‑mer GWAS. All SNPs are plotted for the two 
innermost circles, but only the k‑mers above − log10(p value) of 3 are plotted in the outermost circle. Red 
arrows represent the main significantly associated regions. C Double Manhattan plot comparing k‑mer GWAS 
from the 2 years of Spring wheat phenotyping. 2023 at the top and 2024 at the bottom. Only k‑mer with a 
significance above − log10(p value) of 3 is displayed. The colors are representing the different subgenomes of 
wheat. Light, dark, and blue represent the A, B, and D genomes, respectively
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Discussion
To fully leverage germplasm collections for valuable alleles that can enhance crop resil-
ience, comprehensive genetic and phenotypic characterization is crucial—an endeavor 
that has only recently begun to be undertaken [9, 30, 44]. However, recovering rare 
alleles from the vast genetic landscape of global diversity panels can be challenging [45, 
46]. Alternatively, the use of local or regional diversity panels, better adapted to local 
agroecosystems [47, 48], may be more suitable for specific breeding applications. In our 
work here, we address this gap by assembling a collection of 461 wheat landraces and old 
cultivars, representative of the wheat gene pool in Switzerland, to characterize landscape 
of resistance to wheat powdery mildew, a persistent disease in Swiss wheat fields and 
that has evolved across decades [49].

While some association mapping studies in search of all-stage powdery mildew resist-
ance are limited by the use of a single mildew isolate [50–52] or just a few with simi-
lar virulence patterns [53], our study significantly broadens the analysis by testing the 
disease resistance to ten wheat powdery mildews from diverse geographic regions, each 
exhibiting contrasting virulence patterns based on the disease responses of 37 Pm-tester 
lines. On average, 80 accessions (17% of the collection) were resistant to single Bgt. This 
contrasts to similar studies evaluating seedling resistance to wheat powdery mildew. For 
example, Li and colleagues [53] tested 1292 accessions, where only 4% were resistant to 
the tested Bgt isolate, or [51], who reported overall susceptibility at the seedling stage 
among 8316 winter wheats of the German Federal ex situ gene bank. Our results under-
score the suitability of our collection as a source of resistance to wheat powdery mildew.

By comparing response patterns derived from the interaction between wheat landraces 
and the set of 10 Bgt isolates with known virulence/avirulence spectra based on 37 Pm-
tester lines, the presence of Pm1, Pm2, Pm4, and Pm60 resistance genes could be pos-
tulated. Further, the presence of Pm2 and Pm4 could subsequently be confirmed using 
diagnostic molecular markers. Of note, the 28 landraces fully resistant to the 10 tested 
Bgt isolates have the same pattern as the Pm13 and Pm36 tester lines. Both Pm13 and 
Pm36 genes have been recently cloned and encode kinase-fused resistance proteins [54, 
55], a new resistance gene family private to Triticeae that provides resistance to different 
fungal diseases in major cereal crops [56]. Further work is needed to confirm if Pm13 
and Pm36 resistance genes are responsible for the “all isolate” resistance observed in the 
28 landraces, or if novel, unknown Pm genes are causing this broad-spectrum resistance. 
If the presence of these resistance genes is confirmed in hexaploid wheat landraces, they 
could be used more broadly in breeding programs. Pm13 was cloned from Ae. longis-
sima [54], while Pm36 presence has only been documented in a few wild emmer wheat 
accessions [55], making its practical use in breeding programs challenging. As landraces 
are sexually fully crossable with bread wheat, these resistance loci could be directly 
cross-bred into modern cultivars, sidestepping long and laborious backcrossing with 
wild relatives like Ae. longissima.

As the bimodal-like distribution of seedling response to wheat powdery mildew sug-
gested the presence of major genes controlling resistance, we performed a GWAS with 
genotyping data generated with the Illumina Infinium 15K wheat SNP array (Trait-
Genetics GmbH, Gatersleben, Germany). Association mapping analysis revealed 53 sig-
nificant SNPs, pinpointing seven genomic regions associated with all-stage resistance, 
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two of them corresponding to the Pm1 (or Pm60) and Pm2 resistance genes. This appar-
ent limited capacity of detecting resistance loci may be explained by the intrinsic nature 
of the SNP-chip. First, the chip can only detect SNPs. However, SVs such as insertions, 
deletions, duplications, CNVs, and translocations have been reported to underlie dis-
ease resistance phenotypes [57]. Second, SNP-chip design relied on a single reference 
genome, Chinese Spring, and a few accessions, limiting the SNP set that can be detected 
[58].

To overcome these limitations, we further genotyped the collection with DArT-
seq technology, a genotyping technology that is not biased by reference genomes, as it 
sequences restriction fragments produced by restriction enzyme-mediated genome 
complexity reduction, which theoretically increases its capacity to detect loci of inter-
est compared to the SNP-chip [14]. Using such data and CS as a reference genome, a 
SNP matrix containing 10,068 SNPs was generated. The use of these two SNP matri-
ces resulted in significant association with wheat mildew resistance overlapping with the 
presence of known Pm genes like Pm2 and Pm4 (Fig. 3) [27, 28]. Interestingly, although 
the SNP matrix derived from DArTseq contained less SNPs compared with the SNPs 
chip, it resulted in sharper peaks. Such associated regions contain SNPs with a high pro-
portion of missing data and only when including SNPs with 80% missing data, all SNPs 
were included for GWAS and more association could be detected. This is not surprising 
knowing that wheat genomes contain many introgressions [40] that would result in such 
a pattern.

In order to avoid the bias of the reference genome, we generated a matrix of k-mers 
from the raw data of DArTseq. This led to 176 million unique k-mers of length 31 bp. 
Such k-mers can tag SNPs, as well as other structural variations [21], and it is known 
that, especially in plant genomes, an important part of genetic diversity is due to struc-
tural variations in different forms, such as presence/absence variants (PAVs), CNVs, 
insertions, or deletions [59]. The disadvantage of using k-mer is that the location in the 
genome is not known. When using Illumina sequencing data, reads containing k-mers 
can be assembled into larger segments and subsequently Blast or sequence alignment 
can be used to find the corresponding gene [21]. However, the nature of DArTseq data 
does not allow such an approach. To circumvent this limitation and being capable of 
comparing with the SNP GWAS, we mapped the DArTseq raw reads to CS. We could 
detect all the associated regions already detected using SNP matrices as well as new ones 
on chromosomes 2 A and 5D. However, only 68% of the significantly associated k-mers 
could be mapped using the reference genome Chinese Spring. The discrepancy with the 
number of reads mapping (97.3%) again points towards the fact that introgressions are 
well-known to harbor genuinely new alleles of agronomic interest [38]. To overcome 
this, we used multiple reference genomes: ten bread wheat genomes and four genomes 
from the progenitors of wheat to capture as much variation as possible. Still, the main 
disadvantage of k-mer-based GWAS approaches is the lack of standardized methods for 
conducting such analyses. This is in sharp contrast to user-friendly programs like TAS-
SEL [60] or GAPIT [61] that have been developed for SNP-based GWAS pipelines. To 
apply the k-mer-based association mapping analysis to multiple genomes, we developed 
a pipeline. With this, we increased from 11,570 significant k-mers when using CS as a 
reference genome to 15,712 significant k-mers. This translated into the identification 
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of 27 potential additional new regions associated with resistance to powdery mildew. 
The inclusion of more reference genomes allowed us to map 25% more k-mers reaching 
93% of all the significantly associated k-mers detected using GWAS (Fig. 3). Among the 
27 regions, we focused on two of the most promising candidates: a gene annotated as 
a Werner-like exonuclease and a wax ester synthase gene in chromosomes 2B and 3D, 
respectively. Notably, none of the two regions was revealed when using the SNP matri-
ces and also does not overlap known Pm loci, which highlights the higher discrimina-
tion power of the k-mer-based approach. This also suggests that these genes’ presence or 
absence may be attributed to introgressions.

In humans, Werner-like exonucleases have been shown to degrade DNA in a struc-
ture-dependent manner [62]. In Arabidopsis thaliana, Werner-like exonucleases have 
been shown to interact with the Ku heterodimer which is required for the non-homol-
ogous end joining pathway of DNA repair [63]. However, no studies to date report their 
involvement in plant immunity. The correlation with the phenotype shows that the pres-
ence of the gene is associated with susceptibility to four B. graminis isolates, CHE_96224, 
IRN_GOR5, JPN_CHIKA, and TUR_1C as well as THUN12 (Fig. 5). The genomes of CS, 
Landmark, Norin 61, and Stanley contain the two copies of the Werner-like exonuclease 
gene on chromosome 2B, while the other genomes do not have any. Susceptibility fac-
tors are rare, but some prominent examples have been described in cereal immunity. 
For instance, the well-known natural mutation of the Mlo gene in barley provides broad-
spectrum resistance against barley powdery mildew [64], while the pi21 recessive muta-
tion is linked to long-lasting resistance to rice blast [65]. More recently, genome-edition 
of the wheat Mlo orthologue has proven to confer resistance to wheat powdery mildew 
without growth penalties [66], while the inactivation of a target for rust effectors, the 
wheat kinase TaPsIPK1, confers broad-spectrum resistance to rust fungi. CRISPR/Cas9 
mutations of the two copies of the gene on chromosome 2B would clarify if the Werner-
like gene is a susceptibility factor, which if proven, would be the second report of a dis-
ease susceptibility gene to wheat powdery mildew, opening up new avenues to control 
the disease.

The region around 5 Mb of chromosome 3D is present in four out of all the genomes 
tested, namely CS, Renan, Norin 61, and Lancer. Such patterns correspond to a possi-
ble introgression that is strongly associated with resistance to powdery mildew. As the 
resistance pattern observed on Renan genome can be fully explained by the presence 
of a functional allele of Pm4, and CS as well as Norin 61 is fully susceptible, we focused 
on genes solely present in Lancer. We found that 3 of the 12 genes present in Lancer in 
these regions are involved in wax synthesis. Even so they are not known to be directly 
involved in resistance to powdery mildew, waxes of the cuticle are forming a physical 
and chemical barrier to biotic and abiotic stresses [42]. Further functional and molecular 
analyses are required to confirm the possible role of such genes in plant defense.

Adult plant resistance to diseases is genetically complex, usually controlled by several 
genes associated with genomic regions called quantitative trait loci (QTL), resulting from 
the effect of each QTL acting—with small or larger effects—leading to a partial pheno-
typic resistance. Detection of minor-effect QTLs is highly challenging [7]. To further test 
the detection power of our k-mer-based GWAS approach over the SNP-based approach, 
we performed association analysis using adult plant resistance to wheat powdery mildew 
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collected under field conditions over two seasons. We found that when using SNP matri-
ces, no significantly associated regions to mildew resistance were detected, while the 
use of our k-mer GWAS allowed the detection of multiple regions of interest. With our 
approach, we show that the capacity to detect those small QTLs is achieved compared 
to the commonly used SNP-based approaches. Implementing our pipeline to future field 
studies would result in more accurate and larger detection of QTLs, allowing breeders to 
accumulate major- and minor-effect loci that can be used for the improvement of wheat 
powdery mildew (and virtually any other disease) resistance.

The k-mer-based pipeline presented here offers several advantages over conventional 
SNP-based association mapping analysis. First, k-mers allow for the assessment of 
almost all types of variations [21]. While SNP matrices can only detect SNPs, k-mers 
can interrogate diversity given by SVs, such as large indels or introgressions. This led 
to the discovery of loci associated with resistance that would have been missed using 
SNP matrices. Second, by utilizing k-mers directly from raw sequencing data, we could 
bypass error-prone stages of variant discovery and genotyping, thereby facilitating the 
identification of causal variants. Third, the inclusion of multiple reference genomes 
notably expanded the number of potential loci associated with resistance by interrogat-
ing broader diversity [20]. All these improvements translate into greater efficiency on the 
same phenotypic and genotypic basis, both expensive and labor-intensive to get.

With the increase in the number of genomes being sequenced, we foresee that our 
approach can become very popular as pan-genome GWAS using SNPs has not yet been 
implemented. Our k-mer GWAS approach proves to be a better choice than relying on 
SNP markers as k-mers can more accurately represent genome diversity, and detailed 
comparison between available reference genomes would lead to the identification of use-
ful alleles and allele stacking strategies to sustain resistance breeding activities.

Conclusions
We present a scalable k-mer-based GWAS framework that leverages multiple reference 
genomes to capture variation and improve trait mapping in complex plant genomes 
such as hexaploid wheat. By accessing a broader spectrum of genetic diversity—includ-
ing structural variants and introgressions—our method surpasses traditional SNP-based 
approaches in both resolution and discovery potential. This enhanced mapping capabil-
ity emphasizes the value of landraces and historical cultivars as rich reservoirs of genetic 
variation. As the number of high-quality reference genomes continues to expand, our 
approach will enable a more comprehensive exploration of pan-genomic diversity and 
support the identification of alleles relevant to a wide range of agronomic traits. These 
advances provide a flexible and efficient foundation for trait dissection and the informed 
use of germplasm in modern crop improvement programs.

Methods
DNA extraction and genotyping

The 461 accessions from the Swiss collection have been genotyped using Diversity 
Arrays Technology Pty Ltd (http:// www. diver sitya rrays. com/) for sequencing and 
marker identification as a batch of the AGENT project. All the data have been uploaded 
and can be found as BioProject PRJEB81686. Seeds were provided by the Swiss gene 

http://www.diversityarrays.com/
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bank at Agroscope. Individual plants for DNA extraction were grown in a climate cham-
ber cycled at 20 °C/16 °C, 16/8 h photoperiod with 60% relative humidity. Two segments 
of the first leaf (each approximately 3 cm long and 0.3 to 0.5 cm wide) were placed in 
2.2-ml tubes with two 4-mm glass beads (ROTH). Samples were frozen in liquid nitro-
gen and ground with a Geno/Grinder (SPEX SamplePrep) at 1500 rpm for 1 min. Subse-
quent steps for DNA binding, washing, and elution were carried out using the automated 
KingFisher™ Apex Purification System (ThermoFisher) as described in [67, 68]. Purified 
DNA was dissolved in 10 mM Tris HCl pH 8.0 and shipped frozen with a blue icepack.

SNP‑chip generation

Plants were genotyped using an Illumina Infinium 15K wheat SNP array (TraitGenetics 
GmbH, Gatersleben, Germany) composed of 13,006 SNPs. The sequences and the posi-
tion of the molecular markers on the IWGSC CS RefSeq v2.1 were retrieved from the 
90K iSelect (Kansas State University, Manhattan, USA) and the Breeders’ 35K Axiom® 
arrays (Axiom, Santa Clara, USA) from which originated the Illumina Infinium 15 wheat 
SNP array. This led to unambiguous positioning of 11,983 markers out of the 13,006 
SNPs. One thousand twenty-three markers remained with unclarified physical position, 
either because (i) originally not mapped to any chromosome (41 markers) or (ii) mapped 
to two or more positions often on the three wheat homoeologous chromosomes (982 
markers). These unmapped or not precisely mapped markers were blasted against the 
IWGSC Cs RefSeq v2.1 using GrainGenes online tools (available at https:// wheat. pw. 
usda. gov/ GG3/, accessed 12/08/2024). The physical location associated with the lowest 
E value was retained. This leads to unambiguous positioning of 981 additional SNP on 
the reference genome sequence representing a total of 12,964 SNPs. Moreover, 415 SNP 
markers containing more than 25% of missing information were trimmed-off the SNP 
matrix. The remaining SNP table was imputed using Beagle 5.4 [69] and 733 SNPs with 
a minor allele frequency (MAF) of less than 5% were removed. After the different clean-
ing operations, 882 SNPs (on a total of 11,816 SNPs) could be reassigned by BLASTING 
to unambiguous position IWGSC CS RefSeq v2.1 and could serve as a genotypic table 
obtained after 15K Chip genotyping.

Mapping

The fastq files containing the sequencing data from DArTseq were mapped to the dif-
ferent genomes using BWA mem [70]. While duplicated reads were marked by Mark-
duplicates from Picard (v1.101; http:// broad insti tute. github. io/ picard/), samtools (v1.13) 
was used for file format conversions like sorting and indexing [71]. The transformation 
from the obtained “.bam” files to “.bed” files was done using BEDtools v2.30.0 [72]. Such 
files were further processed for different analyses using R. The scripts are available on 
GitHub.

Read processing and variant calling from the DArTseq data

Adapter sequences from raw reads obtained from DArTseq sequencing were trimmed 
using cutadapt (v1.9.1) [73] with a minimum read length of 30 bp. Reads were aligned 
against the hexaploid wheat reference genome assembly cv. Chinese Spring (RefSeq 
v2.1) [33] using BWA-MEM (v0.7.15) [74] with default parameters and the output was 

https://wheat.pw.usda.gov/GG3/
https://wheat.pw.usda.gov/GG3/
http://broadinstitute.github.io/picard/
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converted to binary alignment map (BAM) format using SAMtools (v1.3) [71]. BAM 
sorting was performed using NovoSort (V3.06.05). Variant calling was performed using 
the mpileup and call functions with the multiallelic-caller (-m) from BCFtools (v1.12) 
[75] with a minimum read quality (-q) cutoff of 20 and retaining allelic depth and the 
number of high-quality bases (-a AD,DP) for variant sites. SNPs were further filtered for 
minimum QUAL ≥ 40, minimum read depth for homozygous calls ≥ 2, minimum read 
depth for heterozygous calls ≥ 4, and a minimum presence rate of 80% using a custom 
awk script.

Population structure analysis

As input, we used a SNP file (vcf ) generated from the DArTseq data, containing 10,068 
SNPs. We used the ADMIXTURE program [76] to analyze the data. To generate the 
different plots presented in Additional file 1: Fig. S7, we used R following the pipeline 
available at https:// github. com/ speci ation genom ics/ scrip ts/ blob/ master/ plotA DMIXT 
URE.r.

The Swiss collection and Pm-tester lines.
The Swiss collection consists of 461 accessions: 139 are classified as spring wheat and 

276 as winter wheat; the rest are of unknown growth habit. Accessions were named after 
villages in Switzerland. Their location of each accession has been extracted based on 
the corresponding village name in Switzerland. These are approximations, as no precise 
locations are available for those accessions. Full details of the accessions are available in 
Additional file 2: Table S2. The set of tester lines consists of 37 different lines that carry 
24 different Pm resistance genes. The genotyping of the Pm4b and Pm2 across all the 
accessions was performed by PCR using haplotype specific markers as described by [27] 
and [31], respectively.

Powdery mildew isolates and phenotyping infections

Prioritizing genetic diversity (from section “Powdery mildew isolates genetic analy-
sis”), and maximizing contrasting virulence/avirulence patterns on Pm-tester lines, 
we selected the following available and alive powdery mildew isolates: CHE_96224, 
KAZ_1b, JPN_CHIKA, GRB_JIW2, ARG_4_2, TUR_1C, and POL_3 are described in 
[23]. Additionally, CHE_97251 [27], THUN12 [77], and IRN_GOR5 [78].

The infection of the leaf segments was done as described in [30]. Disease assessment 
was conducted 8–10 days after inoculation using a discrete percentage scale, based on 
visual evaluation by human eye, where 0% no visible disease symptoms and 100% rep-
resented complete coverage of the leaf with sporulating colonies [79]. Accessions were 
considered resistant with a score below 20 and susceptible with a score above 20 (Leber 
et al.). Some examples of samples are shown in Fig. 1A.

Powdery mildew isolate genetic analysis

The raw Illumina reads were filtered, mapped, and haplotype-called to the CHE_96224 
reference genome as previously described [23]. Following the same methods from before, 
the generated SNPs were filtered with vcftools (v0.1.16) with the following parameters: 
–minDP 3, –maxDP 1000, –maf 0.01 (minor allele frequency), –max-missing 0.999, 
excluding all SNPs on chromosome Unknown, removing InDels, and keeping only 

https://github.com/speciationgenomics/scripts/blob/master/plotADMIXTURE.r
https://github.com/speciationgenomics/scripts/blob/master/plotADMIXTURE.r
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biallelic SNPs. In order to look at the genomic diversity of the wheat powdery mildew 
isolates, we performed a PCA on all the available isolates and then excluded the popula-
tions for which we did not eventually choose any representatives (i.e., CHN, AUS, and 
USA wheat mildew populations), resulting in 265 isolates. We performed the PCA anal-
ysis of these isolates using vcftools (v0.1.16). We then visualized the PCA via the R pack-
ages tidyverse (v2.0.0), ggplot2 (v3.5.1), ggrepel (v0.9.5), and rcartocolor (v2.1.1) [80–83]. 
The raw sequences of the datasets used in this study can be found in the SRA (Short 
Read Archive) of the National Center for Biotechnology Information (NCBI) under the 
accession project numbers found in the papers: [23, 84] BioProject PRJNA625429.

From the original dataset containing 389 wheat powdery mildew isolates, we kept 
only the nine isolates of interest using vcftools (v0.1.16). We then used plink2 (v2.00a3 
64-bit (17 Feb 2020)) with the parameters “–indep-pairwise 50 10 0.1” to find the posi-
tions of SNPs that were not very close to each other. Next, we kept only the pruned SNPs 
using the “—extract” parameter in plink1.9 (v1.90b6.16 64-bit (17 Feb 2020)). Finally, we 
used plink1.9 with the parameter “—genome” to create an identity-by-descent report 
(IBD) between these isolates. The analysis was conducted using nine isolates (exclud-
ing THUN_12 as it is a hybrid) and ended up with 93,652 SNPs (excluding InDels, Chr-
Un) and keeping only biallelic SNPs, and including only sites with minor allele frequency 
≥ 0.01 and a proportion of missing data > 0.999. LD pruning as described above was also 
applied.

Field phenotyping

Field setup and phenotyping were performed as described in [85]. All accessions were 
sown for Winter wheat 2023: 11.10.22, Spring wheat 2023: 2.3.23, Winter wheat 2024: 
11.10.23, and Spring wheat 2024: 26.3.24. In short, each accession was planted in 4 repli-
cates/blocks of 1.5 × 1 m. Those blocks were randomized across the field. Powdery mil-
dew scoring was performed as in [86, 87] over the spring and summer years 2023 and 
2024. In 2023, spring and winter wheat were phenotyped at 6 and 4 time points over 
36 and 20 days, respectively. In 2024, 5 and 6 time points spanning 21 and 42 days for 
spring and winter wheat, respectively (Additional file 1: Fig. S22).

Genomes used as references

For each of the 10 Triticum aestivum as well as the 4 progenitor genomes used as refer-
ence in this study, the full genome sequence as well as the annotation as gff3, and the 
protein sequence of the genes were downloaded from https:// plants. ensem bl. org/ info/ 
data/ ftp/ index. html. The genomes used are as follows: from Triticum aestivum: Julius, 
Renan, SY Mattis, Lancer, Chinese Spring, Fielder, Jagger, Landmark, Mace, Stanley, 
Norin 61 and Triticum urartu, Triticum turgidum, Aegilops tauschii, Triticum spelta. A 
list of all the genomes with the links to the genome sequence/annotation and protein 
sequence can be found in Additional file 2: Table S6.

Generating k-mers.
DArTseq produces a high coverage of reads, but for short regions, the first step before 

generating the k-mers was to remove all the perfectly duplicated reads. The program 
Clumpify (part of the package bbmap) v39.00 [88] was used, with default parameters 

https://plants.ensembl.org/info/data/ftp/index.html
https://plants.ensembl.org/info/data/ftp/index.html
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(zl=9 and dedupe=t). This decreased the number of retained reads by about half. This 
was done as two identical reads will produce the same k-mers.

Based on the pipeline developed by [21], k-mers of length 31 bp were generated from 
the filtered fastq files for each accession using KMC v3 [89]. All parameters were kept to 
default except for the -Ci, which sets the threshold for how many times a k-mer needs 
to occur to be counted. Values of 1, 2, and 3 were tested (Additional file 2: Table S3) and 
similar proportions and associated regions were found for all. We used the 5% family-
wide threshold to select the significant k-mers. The adapted pipeline can be found on 
https:// github. com/ benjj 212/ Kmer_ GWAS_ AGENT.

GWAS

K-mer GWAS was performed on 10 traits corresponding to the 10 Bgt isolates follow-
ing the methodology described in [21]. This pipeline uses GEMMA with a linear mixed 
model, correcting for population structure using a kinship matrix. The default minor 
allele count (MAC) of 5 was used. For the SNP GWAS, the GEMMA software was used 
[90] with option -lmm 2 and -maf 0.05. The Manhattan plots and QQ plots were gener-
ated using the package qqman (version 0.1.9) [91].

k-mer analysis.
The k-mers passing the 5% threshold were used for the 10 isolates, while all k-mers 

were used for the field dataset. These include all k-mers that exceed the − log10 thresh-
old for the 5% family-wise error rate [21]. The number of k-mers as well as the − log10 
threshold for each isolate is presented in Additional file 2: Table S3. From those k-mers, 
the list of reads names containing the corresponding sequences was extracted from 
the raw fastq files using the fetch_reads_with_kmers-master from https:// github. com/ 
voich ek/ kmers GWAS. The adapted pipeline is available at https:// github. com/ benjj 212/ 
Kmer_ GWAS_ AGENT. Using the read names, the bam files were filtered to retain only 
those specific reads. The filtered bam files were then transformed to BED format using 
the bamtobed function from the bedtools package [72]. Files containing the sequence of 
each significant k-mer, their p values, and the coordinates of the corresponding genomes 
were used for the generation of the Manhattan plot, as well as downstream analyses.

SyRI

First, the different Fasta sequences were aligned using Minimap2.1 [92] with -ax asm5 
-eqx to generate a.sam file. Once the alignments were generated, we used SyRI 1.6.3 
[93] to generate the comparison files and detect the different types of structural variants 
between the two sequences of interest. We then used the function plotsr 1.1.1 [94] to 
generate the output plot. An example of such a pipeline can be found at https:// github. 
com/ benjj 212/ Kmer_ GWAS_ AGENT.

Map/plots correlations/UpSet plot

All maps and plots were generated using R. Scripts used to generate the plots from the 
different figures are available on https:// github. com/ benjj 212/ Kmer_ GWAS_ AGENT. 
For some of the Manhattan plot, the package CMplot have been used [95].

https://github.com/benjj212/Kmer_GWAS_AGENT
https://github.com/voichek/kmersGWAS
https://github.com/voichek/kmersGWAS
https://github.com/benjj212/Kmer_GWAS_AGENT
https://github.com/benjj212/Kmer_GWAS_AGENT
https://github.com/benjj212/Kmer_GWAS_AGENT
https://github.com/benjj212/Kmer_GWAS_AGENT
https://github.com/benjj212/Kmer_GWAS_AGENT
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Shiny app for data visualization

Manhattan plot: https:// benji app. shiny apps. io/ Manha ttan_ plot/. Plot for the phenotype 
distribution: https:// benji app. shiny apps. io/ Map_ agent_ pheno/. Package of the Shiny 
app with all the data are also available on https:// github. com/ benjj 212/ Kmer_ GWAS_ 
AGENT. The LD_plot, https:// benji app. shiny apps. io/ LD_ plot/, is based on the LDheat-
map [96] package and the snpStats [97]. Screenshot with explanation is presented in 
Additional file 1: Fig. S14.

Candidate gene selection

For each genome, we combined coordinates of reads containing k-mers with the p 
value from each isolate to detect the main peaks and generate Manhattan plots. Going 
through the genomes with a window of 1 Mb, all the windows containing at least 10 sig-
nificant k-mers were extracted. Then from each region, all the protein sequences of the 
annotated genes within the region were saved. Each of the protein sequences was blasted 
to the plant NCBI database (taxid:3193). The blast has been automated using a Python 
script available on https:// github. com/ benjj 212/ Kmer_ GWAS_ AGENT. For each blast, 
the first two results were extracted and listed. The regions known to contain already 
characterized Pm genes were then tagged. The different steps are graphically explained 
in Additional file 1: Fig. S23.
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