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A B S T R A C T

Poultry diets are routinely under- or over-formulated. Precision feeding aims to address this inefficiency. 
Miniaturized near-infrared spectrometers (micro-NIRS) may provide the necessary accurate and timely knowl-
edge on the nutritional composition of feed ingredients and diets. In this study, we present the Pocket NIR, a 
novel micro-NIRS based on a unique optical arrangement of two complementary MEMS (micro-electrome-
chanical system) Fabry-Pérot interferometers oriented toward the same focal spot. We developed 30 partial least 
squares regression models to demonstrate its analytical potential for rapid on-site analysis of protein, fat, fiber, 
water-soluble carbohydrates (WSC), moisture, and ash in poultry feed, corn, wheat, soybean, and DDGS (dis-
tillers’ dried grains with solubles). A library of 1437 reference samples, 248–358 samples per material, was used 
for calibration and hold-out validation of these models. Cross-validation was used to select the best spectra pre- 
processing steps from the commonly used methods for transformation, scatter correction, smoothing, and dif-
ferentiation of NIRS spectra. With exceptions, models for protein, fat, and moisture had a ratio of performance to 
deviation (RPD) larger than 3 on a held-out dataset. Model performances with an RPD > 2 were observed for the 
majority of models for fiber, WSC, and ash. The heterogeneity of the material and the variability of the nutrient 
parameters co-determined the models’ performance. With its mobile app and cloud-based backend, the Pocket 
NIR could in the future assist precision feeding by offering nutritional advice and diet formulation suggestions 
based on its data, and considering ingredient availability, costs, traceability of supplier, and production 
management.

1. Introduction

Driven by population growth, rising incomes, and urbanization, 
poultry production is the world’s fastest-growing livestock sector [1,2]. 
It is of major importance to global food security and nutrition and is 
expected to provide 62 % of total meat production in 2032 [2]. Poultry 
production and its waste products are associated with greenhouse gas 
emissions and contamination of air, soil, and water [3]. Feed is often 
reported as the largest cost factor in poultry production [4] and as the 
most important contributor to the environmental footprint of the final 
products of the poultry supply chain [5]. Optimizing feeding strategies 
and diet formulations is therefore important for both economic 

efficiency and for reducing the environmental footprint. Energy density 
and protein content are the most important feed characteristics for 
improving the (economic) feed conversion efficiency, taking into ac-
count the nutrient requirements of the animals in different growth 
phases [6]. The protein content of the feed is also of particular focus with 
respect to the environmental footprint, as it is highly correlated with 
nitrogen in animal excreta, which is a major source of N-containing 
greenhouse gas (N2O) and environmental pollutants [7,8].

Due to the large variability in the quality of feed ingredients and the 
reliance on nutritional feed tables, diets are routinely under- or over- 
formulated [9]. Precision feeding aims to replace this inefficient prac-
tice by using frequent analyses of nutrient contents of the feeds to match 
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the diet to the dynamic nutrient requirements of the animals. This can 
reduce production costs, improve productivity and animal health, and 
reduce the environmental footprint [9,10]. Van Kempen and Simmins 
[11] studied overformulation practice versus precision feeding with 
respect to nitrogen in poultry excreta. They found that overformulation 
of 7.5 % more amino acids than necessary was needed to reduce the risk 
of nutritionally inadequate diets to 20 %. As a result, a large excess of 
dietary amino acids was excreted. By contrast, precision feeding using 
diets formulated with nutritional contents determined by near infrared 
spectroscopy (NIRS) instead of using average values from tables resulted 
in a 13 % decrease in the ratio of nitrogen excretion to nitrogen accre-
tion [11].

Precision feeding at the feed mill and farm levels requires accurate 
and timely knowledge of the nutritional value of feed ingredients and 
diets [9]. In the laboratory, benchtop NIRS instruments are routinely 
used to analyze nutritional composition of feeds and feed ingredients, 
replacing costly and labor-intensive conventional wet chemical analysis. 
Recently available miniaturized NIRS (micro-NIRS) are highly prom-
ising for precision feeding, as they are portable and may allow rapid and 
frequent on-site analysis of feed and feed ingredients. The mature design 
of benchtop NIRS instruments is predominantly based on Fourier 
transform spectrometers with a Michelson interferometer or a polari-
zation interferometer [12]. Most micro-NIRS devices are based on 
distinct technologies that use a wide variety of working principles for 
both Fourier transform and dispersion-based spectrometers with 
dispersive optics or narrowband filters [13]. Their still rapidly evolving 
designs include diverse light sources, wavelength selectors, detectors, 
and optical materials (reviewed in [12,14]). The wavelength selectors in 
micro-NIRS are typically miniaturized through micro-electromechanical 
systems (MEMS), which are mass produced using technology similar to 
microchip manufacturing [12]. Micro-NIRS devices are compact and 
portable. They can be affordable and suitable for the consumer market. 
Therefore, they might contribute to democratizing the access to feed 
analyses methods. However, compared to benchtop instruments, they 
typically operate in a narrower spectral range, with lower spectral res-
olutions, smaller dynamic ranges, and inferior signal-to-noise ratios. 
This results in varying performances and underlines the need for sys-
tematic evaluation in terms of performance and analytical potential for 
different target applications [15]. Such evaluation of micro-NIRS de-
vices was, for example, conducted for nutritional analysis of poultry feed 
[16], diverse compound feeds for various animals [17], oilseed meal as 
livestock feed [18], sugar cane forage [19], and grass, alfalfa, and clover 
as single or mixed forage [20–25].

In this study, we present the Pocket NIR, a novel micro-NIRS with a 
unique optical arrangement of two complementary MEMS Fabry-Pérot 
interferometers (MEMS-FPI) oriented toward the same focal spot. This 
affordable, portable device can enable on-site feed analysis for precision 
feeding. The goal of this study was to investigate the analytical potential 

and performance of this novel micro-NIRS in analyzing the nutritional 
composition of poultry feed and feed ingredients. We therefore devel-
oped calibrations for the prediction of crude protein, crude fat, crude 
fiber, water-soluble carbohydrates, moisture, and crude ash in poultry 
feed, corn, wheat, soybean, and distillers’ dried grains with solubles 
(DDGS). We also compared the analytical performance of the Pocket NIR 
with a benchtop NIRS instrument.

2. Materials and methods

2.1. The pocket NIR

The Pocket NIR developed by aikemy GmbH is a portable, battery- 
powered micro-NIRS system (Fig. 1A). When fully charged, its 
lithium-ion battery (1000 mAh) is sufficient for approximately 5000 
scans, which corresponds to the analysis of around 80 samples according 
to the protocol described below. Full charging via USB-C takes approx-
imately 3.5 h. The device connects via Bluetooth LE (low energy) to a 
mobile app (iOS, Android) with a cloud backend. The backend provides 
the infrastructure for running prediction models and storing results in a 
database. The mobile app configures the micro-NIRS and collects spec-
tral data, which is transmitted to the cloud-based backend for processing 
and prediction. The results are transmitted back to the mobile app for 
presentation to the user.

The micro-NIRS is equipped with two tungsten filament bulbs that 
emit broad spectrum (white) light. The emitted light is guided by an 
internal aluminum structure which reflects and directs it to a mineral 
glass scanning window. This configuration produces an illuminated area 
of approximately 6 mm in diameter on the scanning window and sample 
respectively. Two tunable single-pixel MEMS Fabry-Perot in-
terferometers (MEMS-FPIs) are aligned to detect light reflected from the 
same spot of approximately 1 mm in diameter, located in the center of 
the illuminated area. They operate in complementary wavelength 
ranges of 1550–1850 nm and 1750–2150 nm, respectively, with an 
overlap from 1750 nm to 1850 nm (Fig. 2, Fig. S1 in the Supplementary 
Information). The spectral resolution at 1850 nm is approximately 20 
nm FWHM (full width at half maximum). The signal-to-noise ratio across 
the spectral range averages approximately 1300:1. The sequential 
wavelength-by-wavelength data acquisition (1 nm interval) takes 1 s for 
a full scan of the 702 data points. Ten consecutive scans are automati-
cally taken and averaged to yield one spectrum. The micro-NIRS has an 
aluminum housing with an O-ring to facilitate attachment to the grinder 
container or the sample cup (Fig. 1A). The housing has a cylindrical 
shape with a diameter of 7.5 cm and a height of 3 cm. The scanning 
window with a diameter of 14 mm is located in the center.

The operation procedure of the Pocket NIR for the analysis of poultry 
feed and feed ingredients is as follows. Samples are analyzed as ground 
solids or powders. Samples in other forms, such as whole grains or 

Fig. 1. The Pocket NIR with accessories. (A) Pocket NIR with glass window for scanning of the sample, O-ring for connection to the grinder container or sample cup, 
USB-C connector for charging, and LED indicator for on/off and battery status. Bluetooth logo indicates communication to the mobile app via Bluetooth LE. (B) 
Battery-driven grinder for sample preparation. (C) Pocket NIR connected to the grinder container. On the left, the situation with the Pocket NIR on top and the sample 
in the grinder container, i.e., the situation when displacing the sample by shaking. On the right, the situation with the Pocket NIR on the bottom and the sample on 
the Pocket NIR scanning window, i.e., the situation during a measurement. See the description of the measurement procedure in the main text.
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pellets, are ground to a particle size of smaller than 0.3 mm with the 
battery-powered grinder (two to three times 20 s grinding) provided as 
an accessory (Fig. 1B). The Pocket NIR is directly attached to the grinder 
container (or a sample cup if no grinding is needed). The whole setup is 
turned upside down, allowing the sample in the grinder to fall onto the 
scanning window (Fig. 1C). A spectrum is acquired for the first ‘spot’. 
The setup is then turned and shaken to displace the sample before 
acquiring a second spectrum at a different spot. The process is repeated 
to acquire in total six spectra from different spots. The mobile app guides 
the user step by step through this procedure.

2.2. Development of prediction models

2.2.1. Reference samples library
A sample library with five different sample materials was collected, 

including poultry feed (compound feed for different types of poultry as 
grains, flakes, marshes, crumbles, pellets, and flour), corn, wheat (intact 
grains, flakes, marsh, crumbles, and flour), soybean (intact beans, soy-
bean cake, and soybean meal), and DDGS. The latter is a byproduct of 
ethanol production, with the largest quantities coming from the biofuel 
industry. The primary source is corn, but wheat, barley, rye, and sor-
ghum, or combinations of these grains, are sometimes also used [26]. 
Our DDGS sample collection included corn and wheat DDGS.

The sample library was created by collecting “original” samples from 
stakeholders and research institutions and by purchasing from various 
suppliers. The origin of the samples was Europe and the USA. Care was 
taken to collect samples with as much diversity as possible, looking for 
samples rich in energy and protein, as well as samples with low nutrient 
content. Once the nutritional composition of the original samples was 
analyzed, binary mixtures (“mixed” samples) of the two original samples 
were prepared. The purpose of these mixed samples was to minimize 
sample gaps in terms of the nutrient parameters, in order to achieve as 
even a distribution of reference values as possible.

Mixed samples were prepared according to the following procedure: 
Original samples (ground to <1 mm) were homogenized for 3 min with a 
3D shaker-mixer (Turbula® T2F, WAB-Group, Switzerland) before 
weighing the required mass. The resulting mixed samples were also 
homogenized for 3 min. In this way, for every 2 original samples adja-
cent in protein content, mixed samples were prepared on a 50/50 mass 
ratio basis. Whenever possible, any remaining gaps in protein, fat, fiber, 
WSC, and ash were then filled with 20/80, 25/75, 30/70, and 40/60 
mass ratio mixes.

The total number of samples in the sample library per material was 
between 248 and 358, of which 104–233 were original samples, and 
125–144 were mixed samples (Table 1). For poultry feed, corn, and 
wheat, the ranges in nutritional composition were similar to those in the 
Agroscope database of the official controlling of feeds in Switzerland, 
indicating good coverage of typical values (Table S1 in the Supple-
mentary Information; soybean and DDGS are not available in the 
Agroscope database).

2.2.2. Reference chemical analyses
The nutritional composition of the original samples, i.e., dry matter, 

crude ash (ash), crude protein (protein), crude fat (fat), crude fiber 
(fiber), and water soluble carbohydrates (WSC), was analyzed by the 
accredited analytical laboratory of Agroscope, Posieux, according to 
Swiss official methods for feed analysis. All non-powder samples were 
ground with a rotary cutting mill (880804, Brabender, Duisburg, Ger-
many) to pass a 1 mm sieve. Protein was determined via the Dumas 
method (LECO TruMac), ISO 16634, with protein calculated as nitrogen 
× 6.25. Fat was determined via a modification of ISO 6492 by pres-
surized solvent extraction after acid hydrolysis (Büchi, Speed Extractor 
916, using petrol ether). Fiber was determined according to ISO 6865 
with a Fibretherm, Gerhard FT-12. The WSC was determined in glucose 
equivalents via a potassium ferricyanide reducing sugar test after H2SO4 
treatment (San System Skalar, glucose calibration curve). Dry matter 
and ash were determined, according to ISO 6496 and 5984, respectively, 
via thermogravimetry by heating the sample to a constant mass (Precisa 
Instruments AG) at 103 ◦C for moisture and then at 550 ◦C for ash. 
Moisture content was calculated by subtracting the dry matter weight 
from the initial as-fed weight. The uncertainties of the laboratory for all 
reference chemical analyses used in this study are given in Table S2 in 
the Supplementary Information. The nutritional composition of the 
mixed samples was calculated from the nutritional composition of the 
two original samples according to the mass fractions in the mix.

2.2.3. Chemometrics
Partial least squares regression (PLSR) models for the Pocket NIR 

were developed in Python v.3.10 with the machine-learning framework 
scikit-learn v.1.2.2 [27]. Spectra pretreatment methods and sample set 
splitting strategies were implemented as scikit-learn compatible custom 
components. Scikit-learn ‘pipelines’ [28] were used throughout the 
model development as well as for subsequent model deployment.

For each of the five materials, PLSR models were developed to pre-
dict protein, fat, fiber, WSC, moisture, and ash content (30 models in 
total). Models were developed using spectra from six spots per sample, 

Fig. 2. NIR absorbance spectra of a poultry feed sample collected with the 
Pocket NIR and the NIRFlex N-500 as average of 10 and 32 scans, respectively. 
Absorbance was calculated as log(1/R) transformation of the reflectance.

Table 1 
Feed and feed ingredient sample library with ranges in nutrient content. The majority, but not all, of the samples were analyzed for the full set of nutrient parameters, i. 
e., the number of samples (n) does not always reflect the number of samples available for the development of individual prediction models (see Results section).

Material n min–max in g kg-1

Protein Fat Fiber WSC Moisture Ash

Poultry feed 358 (233) 71–414 17–92 17–77 18–90 63–136 10–350
Corn 275 (158) 51–113 22–93 6–33 14–35 71–155 7–27
Wheat 263 (126) 98–159 17–26 16–31 18–42 53–140 12–20
Soybean 293 (157) 352–875 6–249 2–94 17–123 34–131 32–88
DDGS 248 (104) 179–403 38–134 27–82 14–81 70–128 41–145

n = total number of samples (number of original samples in parentheses).
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and model performance was accordingly assessed with predicted values 
as the average of the individual predictions of 6 spots. Using a variant of 
the so-called venetian blinds sampling (Fig. S2A in the Supplementary 
Information), the dataset was split into a training set used for calibration 
(~2/3 of available samples) and a test set used for validation (~1/3 of 
available samples). When splitting into training and test set, the sample 
was treated as an entity, ensuring that the spectra of the 6 spots of a 
sample were exclusively assigned to the either the training or the test set. 
The samples with the two smallest and two largest values of the nutrient 
parameter of interest were assigned to the training set, i.e., the training 
set covers the range of the test set. The test set was exclusively used to 
evaluate the generalization performance. We calculated the root mean 
square error (RMSE), the relative root mean square error (%RMSE =
RMSE divided by the mean of reference values × 100), and the ratio of 
performance to deviation (RPD = standard deviation of reference values 
divided by RMSE; formulas in Supplementary Information). Addition-
ally, we visually inspected reference (y-axis) versus predicted (x-axis) 
scatter plots with linear regression lines [29].

The training dataset was exclusively used for model development. 

We use the term ‘model’ to refer to all mathematical steps from the raw 
spectra to the prediction, i.e., all pretreatment steps and the PLSR 
(Fig. 3A). In our model, the spectra of the two MEMS are pre-processed 
individually and then concatenated and standardized to zero mean and 
unit variance (‘standard scaling’) before being used in PLSR. This allows 
the best pre-processing steps and settings to be selected individually for 
the two MEMS (Fig. 3A). The choice of pretreatment steps, their settings, 
and the number of components used in the PLSR were all treated as 
tunable hyperparameters. As an optional first step, log(1/R) trans-
formation of the reflectance spectra to an apparent absorption spectra 
was considered. As a second step, pre-processing always included scatter 
correction and a smoothing procedure to obtain the smoothed spectra or 
a derivative thereof. We considered scatter correction before and after 
smoothing, conducted either by standard normal variate (SNV; [30]) or 
multiplicative scatter correction (MSC; [31]) using the mean training 
spectrum as the reference spectrum. Smoothing with/without first or 
second order derivative was conducted with Savizki-Golay [32] or the 
gap-segment derivative [33] method.

Hyperparameter tuning was done in several steps (Fig. 3B), each 

Fig. 3. (A) Schematic representation of the prediction models. Options for the individual pre-processing steps and options in the ordering of these steps (double-sided 
arrow) are shown. (B) Schematic representation of the hyperparameter tuning and model validation strategy. Blue: datasets; red: hyperparameter combinations up 
for testing; green: best combination of hyperparameters and fitted model. Gray shaded area with “one-MEMS model” indicates that these steps are conducted with a 
model as in panel A but with one MEMS only. For clarity, we do not show that to select the best hyperparameters (after CV with one-MEMS model), we also consider 
the other nutrient parameter models of the same material, eventually sharing the same hyperparameters across models for the same material (see main text).
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using a grid search with 3-fold venetian blinds cross-validation (CV, 
Fig. S2B in the Supplementary Information) and RMSE as the perfor-
mance metric.

The pretreatment hyperparameters were tuned separately for the 
two MEMS, with the model as in Fig. 3A but with one MEMS only. 
However, we selected the same pre-treatment for all six nutrient 
parameter models for a given material in order to increase the robust-
ness of the models at the expense of a minor sacrifice in performance. 
First, for each of the six nutrient parameters of a material, CV perfor-
mance of the different combinations of pretreatment hyperparameters 
was determined. The number of components in PLSR was allowed to 
vary to allow each of the pretreatment hyperparameter combinations to 
show its best CV performance. For each nutrient parameter, we then 
ranked all tested pretreatment hyperparameter combinations and 
selected the settings with the best median rank across the nutrient pa-
rameters to be used for all nutrient parameters (of the same material).

Unlike the pretreatment hyperparameters, the number of compo-
nents in the final PLSR was selected individually for all 30 models. We 
followed the ‘one-standard error’ rule [34] and chose the most parsi-
monious model, that is, the model with the least number of PLS com-
ponents, whose performance fell within 1 standard error of the CV 
performance of the best model (i.e., within mean ± standard error as 
calculated from the RMSE values of the three CV folds). Finally, with all 
hyperparameters tuned, the model was refitted to the full training set 
before subjecting it to validation on the test set. The tuned hyper-
parameters are given in Fig. S3 in the Supplementary Information.

2.3. Comparison with a benchtop instrument

We compared the performance of the Pocket NIR to the performance 
of a benchtop Fourier transform NIR spectrometer with a polarization 
interferometer (NIRFlex N-500, Büchi, Flawil, Switzerland). The 

benchtop NIR spectrometer was equipped with a rotating sample cup 10 
cm in diameter, which allowed a large part of the cup perimeter to be 
scanned. Spectra were recorded in the region 10,000 cm-1 to 4000 cm − 1 

(1000 to 2500 nm) in diffuse reflectance mode, with a spectral resolu-
tion of 8 cm-1, and a sample point interval of 4 cm-1, resulting in 1501 
data points per spectrum. Three replicate spectra were obtained, each 
representing an average of 32 scans. Samples were analyzed at room 
temperature (~22 ◦C) not more than two months after the analysis with 
the Pocket NIR.

PLSR prediction models for the benchtop instrument were built with 
the Büchi NIRCal 1.5.6000 software by an experienced scientist in 
Agroscope’s analytical laboratory (S. Ampuero Kragten), following the 
software’s typical workflow for selecting suitable spectra pre-processing 
and PLSR settings. Prediction models for soybean and DDGS were built 
from the ground up, while preexisting in-house models were updated 
with additional samples in the case of corn, wheat, and poultry feed. 
Similar to the Pocket NIR, ~1/3 of our sample library was held out for 
validation (test set), while the other ~2/3 were used for building or 
updating the prediction models (training set). The sample was treated as 
an entity, ensuring that the three replicate spectra were assigned 
exclusively to either the training or the test set.

3. Results

The performances of the Pocket NIR, as determined by RMSE, % 
RMSE, and RPD, are listed in Table 2. Reference versus prediction plots 
are shown in Figs. 4–9. Descriptive statistics of the reference values of 
the training and test sets are listed in Table S3 in the Supplementary 
Information. With respect to the reference values, the corresponding 
training and test sets showed very similar ranges, means, and standard 
deviations (Table S3). The performance determined on the test set was, 
with a few exceptions, close to the corresponding performance on the 

Table 2 
Performance of the Pocket NIR in predicting nutrient contents of poultry feed and feed ingredients, with performance of a benchtop instrument (last two columns) for 
comparison. Subscripts C and V indicate calibration and validation, respectively. RMSE in g kg-1.

Calibration (training set) Validation (test set) N-500*

nC RMSEC %RMSEC RPDC nV RMSEV %RMSEV RPDV RMSEV RPDV

Protein Poultry feed 226 15.1 8.0 3.1 114 15.7 8.3 2.7 5.06 5.8
Corn 182 4.2 5.4 3.5 90 4.0 5.2 3.6 1.61 8.9
Wheat 176 3.3 2.9 3.7 87 3.6 3.2 3.3 2.02 6.4
Soybean 186 14.4 3.0 6.2 92 13.5 2.8 6.3 7.73 10.1
DDGS 163 6.1 2.2 6.0 80 6.7 2.4 5.3 3.32 10.7

Fat Poultry feed 236 3.9 7.2 3.7 116 4.3 8.0 3.3 2.87 5.3
Corn 176 4.7 11.1 2.1 87 4.1 9.8 2.3 3.28 2.8
Wheat 175 1.0 4.6 1.6 86 1.0 4.6 1.6 0.90 1.7
Soybean 187 7.0 13.6 8.7 92 7.0 14.0 8.4 3.26 17.4
DDGS 165 3.6 4.4 3.3 82 3.2 3.9 3.3 1.90 5.5

Fiber Poultry feed 234 6.9 19.0 1.4 116 6.8 18.8 1.4 3.32 2.4
Corn 184 2.6 14.9 1.9 90 3.3 18.7 1.5 2.09 2.5
Wheat 176 2.2 10.2 1.3 86 2.3 10.8 1.2 2.45 1.2
Soybean 191 8.1 21.7 2.2 94 8.3 22.2 2.1 4.26 4.2
DDGS 164 2.9 4.6 3.1 81 3.2 5.0 2.7 2.18 3.7

WSC Poultry feed 136 4.9 10.4 2.6 68 6.0 13.0 2.0 2.65 3.8
Corn 183 2.7 11.9 1.6 90 2.6 11.8 1.5 1.57 2.6
Wheat 171 3.3 10.7 1.2 82 3.3 10.7 1.1 2.18 1.7
Soybean 177 6.0 6.6 3.2 91 6.7 7.2 2.8 3.74 4.7
DDGS 160 3.3 9.4 5.2 78 3.5 10.0 4.8 2.87 5.9

Moisture Poultry feed 234 6.4 6.1 1.9 116 6.3 6.1 1.8 5.10 2.2
Corn 178 5.2 4.4 3.2 89 4.3 3.6 3.8 3.35 5.0
Wheat 168 3.2 2.7 4.8 84 4.1 3.5 3.5 4.42 3.1
Soybean 194 6.1 6.2 3.5 96 6.6 6.7 3.2 5.05 4.2
DDGS 166 2.9 3.0 3.8 81 3.0 3.0 3.7 2.42 4.6

Ash Poultry feed 230 30.3 33.2 1.9 115 35.0 38.5 1.5 9.67 5.1
Corn 183 1.6 12.8 2.2 91 1.4 11.5 2.3 0.85 4.5
Wheat 175 1.0 6.3 1.5 88 1.1 7.1 1.3 0.94 1.5
Soybean 192 3.9 6.6 2.0 94 3.7 6.3 2.0 2.14 3.2
DDGS 164 3.9 7.0 4.9 82 3.7 6.7 4.8 2.23 7.8

n = number of data points.
* NIRFlex N-500 benchtop instrument.
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Fig. 4. Reference versus prediction scatter plot for the determination of protein content of poultry feed and feed ingredients with the Pocket NIR and a benchtop 
instrument (NIRFlex N-500). Colored lines are linear regression lines fitted to the data shown.

Fig. 5. Reference versus prediction scatter plot for the determination of fat content of poultry feed and feed ingredients with the Pocket NIR and a benchtop in-
strument (NIRFlex N-500). Colored lines are linear regression lines fitted to the data shown.
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Fig. 6. Reference versus prediction scatter plot for the determination of fiber content of poultry feed and feed ingredients with the Pocket NIR and a benchtop 
instrument (NIRFlex N-500). Colored lines are linear regression lines fitted to the data shown.

Fig. 7. Reference versus prediction scatter plot for the determination of WSC contents of poultry feed and feed ingredients with the Pocket NIR and a benchtop 
instrument (NIRFlex N-500). Colored lines are linear regression lines fitted to the data shown.
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Fig. 8. Reference versus prediction scatter plot for the determination of moisture content of poultry feed and feed ingredients with the Pocket NIR and a benchtop 
instrument (NIRFlex N-500). Colored lines are linear regression lines fitted to the data shown.

Fig. 9. Reference versus prediction scatter plot for the determination of ash content of poultry feed and feed ingredients with the Pocket NIR and a benchtop in-
strument (NIRFlex N-500). Colored lines are linear regression lines fitted to the data shown.
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training set, indicating the absence of substantial overfitting (Table 2). 
The RPDV values ranged from 1.1 to 8.4 for the different parameters and 
materials, with a median of 2.7. The benchtop instrument outperformed 
the Pocket NIR in terms of RMSEV and RPDV (Table 2, last two columns) 
for all parameters and materials, except for moisture and fiber in wheat, 
for which both instruments showed comparable performance. Trends in 
the RPDV and %RMSEV values for the Pocket NIR were mirrored in those 
for the benchtop instrument; across all parameters and materials, RPDV 
values between the two instruments were correlated with a Spearman’s 
ρ of 0.86 and %RMSEV values were correlated with ρ of 0.89 (Fig. S4 in 
the Supplementary Information).

In similar studies on the use of NIRS for the nutritional analysis of 
forages [35–37], calibration performance was classified as “excellent” 
for RPD > 2.5, “good” for RPD at 2–2.5, “moderate” for RPD at 1.5–2, 
and “poor” for RPD < 1.5. However, depending on the field or sample 
type, different classifications have been used in previous studies, with 
more stringent classifications typically used for physically simpler 
sample types and less stringent classifications (such as the one 
mentioned) for physically more complex sample types. In any case, RPD 
depends on the range of values in the set of samples, different data 
structures can give rise to the same RPD, and single individual samples 
of high and low values can inflate RPD [38]. Therefore, we refrain from 
strict RPD classification and also consider the reference versus predic-
tion plots.

RPDV values for the prediction of protein in the different materials 
ranged from 2.72 to 6.28, increasing in the order poultry feed < wheat <
corn < DDGS < soybean (Table 2, Fig. 4). RMSEV values were around 15 
g kg-1 for poultry feed and soybean and < 7 g kg-1 for corn, wheat, and 
DDGS. In relative terms, expressed as %RMSEV, these errors were ≤ 5.2 
%, except for poultry feed, which had 8.3 %. As described below also for 
other nutrient parameters, the nutritional contents of poultry feed seem 
more challenging to predict compared to the contents of individual pure 
ingredients. Additionally, considering the reference versus prediction 
plots, with the even distribution of reference values, the slope of the 
reference versus prediction regression line close to 1, and the narrow 
spread of predictions around this line, we consider the performance of 
the Pocket NIR in predicting protein very satisfactory.

RPDV values for the prediction of fat in the different materials 
increased in the order wheat < corn < poultry feed < DDGS < soybean 
(Table 2, Fig. 5), the latter three having an RPDV ≥ 3.3, whereas wheat 
and corn had lower RPDV of 2.3 and 1.6, respectively. RMSEV values 
were ≤ 7 g kg-1, and %RMSEV were ≤ 14 %. Predicting the fat content of 
soybean showed an RPDV of 8.4, the largest, despite comparably high 
error in terms of RMSEV (7 g kg-1), reflecting the large variability of the 
reference values in the dataset (relative standard deviation %SD of 118 
% for both test and training dataset, Table S3). The low RPDV in pre-
dicting the fat content of wheat is related to the generally low levels 
(mean of 20.8 g kg-1) and the lack of variability of fat in wheat in our 
sample sets (Table S3), particularly when viewed in the context of the 
uncertainty of the laboratory for the corresponding wet chemical 
reference method (Table S2). For corn fat content prediction, the vari-
ability in the reference values in terms of SD was larger than for wheat, 
resulting in a larger RPDV despite its RMSEV being larger. However, the 
distribution of the values revealed a few high values separated from 
most of the rest of the data (Fig. 5). In such cases, it might be justified to 
consider RPDV to be unjustifiably inflated by these values.

Regarding the prediction of fiber, the RPDV was 2.7 for DDGS, 2.1 for 
soybean, and ≤1.5 for poultry feed, corn, and wheat (Table 2, Fig. 6). 
Predicting DDGS fiber content showed an RMSEV of 3.2 g kg-1, and the % 
RMSEV was the lowest, at 5 %. For the fiber content of wheat, the % 
RMSEV was 10.8 %, while that of poultry feed, corn, and soybean was as 
high as around 20 %. For corn, the ratio of RMSEV to RMSEC was 1.26, 
considerably larger than 1, which might indicate an undesirable degree 
of overfitting. However, the test set containing harder-to-predict sam-
ples than the training set is always a plausible explanation for this 
observation. Overall, fiber appeared to be the most difficult nutrient 

parameter to determine with the Pocket NIR, which was also true with 
the benchtop instrument.

Concerning WSC, the RPDV was 4.8 for DDGS, 2.0 and 2.8 for poultry 
feed and soybean, respectively, and < 1.5 for corn and wheat (Table 2, 
Fig. 7). RMSEV values were between 2.6 and 6.7 g kg-1, and %RMSEV 
values were ≤13 %. For the WSC of poultry feed, the ratio of RMSEV to 
RMSEC was 1.25, significantly greater than 1, which could indicate an 
undesirable degree of overfitting.

Regarding predicting moisture, the RPDV was between 3.2 and 3.8 
for corn, wheat, soybean, and DDGS (Table 2, Fig. 8), whereas it was 
considerably lower for poultry feed, at 1.8. RMSEV values were < 6.6 g 
kg-1, and %RMSE values were < 6.7 %. Except for poultry feed, we 
consider these calibrations to be very good for a micro-NIRS, with RPD >
3 and slope of the reference versus prediction regression line close to 1 
(Fig. 8). After protein, moisture seems to be the property that is most 
consistently well-predicted across the different materials.

Regarding ash content, the RPDV was 4.8 for DDGS, 2.0 and 2.3 for 
soybean and corn, respectively (Table 2, Fig. 9), and ≤ 1.5 for poultry 
feed and wheat. With the exception of poultry feed, RMSEV values were 
between 1.1 and 3.7 g kg-1, while %RMSEV values were ≤ 11.5 %. For 
the ash content of poultry feed, the error was considerably larger, with 
RMSEV of 35.0 g kg-1 and %RMSEV of 38.5 %.

4. Discussion

We presented the Pocket NIR, a micro-NIRS with a unique configu-
ration with 2 MEMS-FPIs. Using a library of poultry feed and feed 
ingredient samples analyzed by wet chemical reference methods, we 
established prediction models for the Pocket NIR using PLSR and spectra 
pre-treatment methods selected through extensive hyperparameter 
tuning. Test set validation using a hold-out dataset was conducted to 
determine generalization performance. Ranking for each material the 
nutrient parameters according to the achieved performance in terms of 
RPDV (rank 1 being best) and subsequently calculating the mean of these 
ranks across the materials, we observed the sequence: protein (mean 
rank 1.8), moisture (2.6), fat (2.8), WSC (4.0), ash (4.2), and fiber (5.6). 
Apparently, for protein, moisture, and fat, we were more successful in 
developing performant prediction models. The RPDV was consistently >
3.2 for these nutrient parameters, with the exception of poultry feed for 
protein and moisture (RPDV 2.7 and 1.8) and corn and wheat for fat 
(RPDV 2.3 and 1.6; Table 2). Considering also the visual inspection of 
reference versus prediction plots in our assessment, we consider these 
models to be very good for a micro-NIR, clearly demonstrating the 
promising analytical potential of the Pocket NIR for nutritional analysis 
of feeds and feed ingredients (Fig. 4–9). In predicting ash, WSC, and 
fiber content, the models’ performances were more variable, with 8 of 
15 models exhibiting RPDV > 2 and the best performance achieved for 
DDGS, which had RPDV 2.7, 4.8, and 4.8, respectively. Many of the 
lower RPDV values were related to the limited variability of the nutrient 
parameters in the respective material in our dataset. Possibly more 
samples extending and filling the range of observed values could help 
improve these prediction models.

Modern formulation of poultry diet is based on the nitrogen- 
corrected apparent metabolizable energy (AMEn) of the feeds and the 
requirements of the animals in their current growing phase [39]. AMEn 
can be calculated from proximate nutrient analyses such as those 
determined with NIRS, using established multivariate empirical re-
lationships [40]. For example, AMEn for corn and soybean can be 
calculated using the nutrient parameters for which we developed pre-
diction models for the Pocket NIR in this study [41]. However, for the 
calculation of AMEn in wheat or other starch-rich cereal grains, 
knowledge of the starch content is needed [41]. The same is true for the 
calculation of AMEn in mixed poultry feeds, such as according to EU and 
Swiss regulations on feedstuffs (EC 152/2009 annex VII; FMBV annex 
III). Starch is a common parameter determined with benchtop and 
micro-NIRS (e.g., [16]). Follow-up work with the Pocket NIR will thus 
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develop prediction models for starch.
Besides energy, dietary protein is of high importance in poultry feed 

formulation. The protein prediction models for the Pocket NIR were very 
good, and we therefore suppose that the Pocket NIR might excel in 
frequent and accurate dietary protein level monitoring. This might be 
particularly helpful in the challenging formulation of low-protein diets, 
with the potential to lower nitrogen emissions and reduce soybean 
usage. The latter is being sought in Europe, which is dependent on 
soybean imports from the Americas, which have a large environmental 
footprint (e.g., [42]). In this context, many alternative protein sources, 
such as grain legumes [43], insects [44], oil-seed by-products [45], or 
microalgae [46] are examined. Micro-NIRS systems, such as the Pocket 
NIR, could assist in adjusting diet formulations when dynamically 
choosing alternative protein sources, depending on the requirements of 
the animals in the given growth phase, availability, prices, and envi-
ronmental footprint. However, prediction models for potentially many 
alternative ingredients would have to be developed for the Pocket NIR. 
Instead of developing many small prediction models, one for each ma-
terial, it might be preferable to develop a single model for a group of 
materials. Linearity between the spectral signal and the nutrient pa-
rameters likely breaks down for a multi-material dataset. Thus, PLSR 
would have to be replaced by non-linear calibration algorithms, such as 
artificial neural networks (ANN). Given training on enough data for a 
group of feed ingredients, such an ANN might perform competitively 
after updating with fewer samples of a new material as compared to a 
separate calibration, as it can learn from similar examples. The 
multi-material calibrations that FOSS offers ready-made for its benchtop 
instruments are an example of such ANN-based calibrations [47].

In addition to the total protein, the contents of individual amino 
acids are important in feed formulation. In focus are the amino acids that 
either cannot be synthesized by poultry at all or not at sufficient rate to 
meet metabolic requirements [40]. These must be taken up via dietary 
protein or from added feed-grade amino acids. Benchtop NIRS in-
struments have been successfully calibrated to predict these amino acids 
(e.g., [48,49]), but similar reports using micro-NIRS are missing. The 
National Research Council [40] published two methods to estimate 
digestible amino acids in poultry feed ingredients using empirical re-
lationships to the nutrient variables we determined with the Pocket NIR 
in this study. The first method uses protein content, and the second 
method uses protein, fat, fiber, and ash content. We implemented the 
second method in the Pocket NIR, returning the estimates of amino acids 
together with the nutrient composition predicted (more directly) from 
the spectra. In the future, similar empirical relationships established by 
other authors could be added to the Pocket NIR, from which users could 
then choose.

Ranking for each nutrient parameter the materials according to 
achieved performance in terms of RPDV (rank 1 being best), and sub-
sequently calculating the mean of these ranks across the nutrient pa-
rameters, we observed the following sequence: DDGS (mean rank 1.5), 
soybean (2.2), corn (2.8), poultry feed (4.0), and wheat (4.5). For DDGS, 
we were most successful in achieving good calibrations with high RPDV. 
DDGS is a very homogeneous material, as it is obtained as a byproduct of 
dry-mill ethanol production after extensive processing (grinding, cook-
ing, enzymatic treatment for starch hydrolysis, fermentation, distilla-
tion, and finally drying; [26]). Furthermore, nutrient contents of DDGS 
vary largely [26], which is also reflected in our dataset. Both the ho-
mogeneity of the material and the large variability in the nutrient pa-
rameters will have helped with more performant prediction models. 
Poultry feed and wheat were apparently the most challenging materials. 
However, for wheat, the ranges and variability were lower than those of 
the other materials, hampering the achievement of good prediction 
models with high RPDV. For poultry feed, the comparatively lower 
performance of the prediction models may be related to the more diverse 
matrix across the samples (different ingredients in different ratios) and 
the more heterogeneous matrix of the individual samples (mixtures of 
ingredients) compared to the pure ingredients.

These results highlight a major challenge in micro-NIRS devices in 
obtaining representative measurements of heterogeneous materials. For 
a fast and on-site method such as the Pocket NIR, it would be desirable to 
analyze feed and feed ingredients in their as-fed form, including whole 
grains and pellets. Benchtop instruments can be used to analyze whole 
grains (e.g., [50]). With micro-NIRS, such samples are typically 
analyzed after grinding, although this additional sample preparation 
step limits the portability of the analytical method. One major reason for 
this is the smaller sample area that is scanned compared to benchtop 
devices. Benchtop instruments come with accessories to rotate the 
sample during the measurements. Different parts of a larger sample are 
scanned, averaging out inhomogeneities, thereby achieving a higher 
representativeness of a heterogeneous sample. Such accessories are 
challenging to build with a highly portable, rugged, and affordable 
design but successful examples exist, e.g., the Rotator-Kit for the Prox-
yScout handheld NIRS [51]. The Pocket NIR does not rely on an acces-
sory to automatically rotate the sample. Instead, its measurement 
operation procedure requires the user to displace the sample manually. 
The procedure was defined based on a series of tests with poultry feed 
samples. We developed sets of preliminary calibrations (not shown in 
this publication) using different protocols. Reducing sample heteroge-
neity by grinding was found to considerably improve achievable per-
formance and was thus deemed a prerequisite for reducing sample 
heterogeneity. The user is required to displace the sample several times, 
thereby taking spectra from different spots, which are individually used 
to obtain preliminary predictions that are subsequently averaged to 
obtain the final prediction. We found six spots to be a good compromise 
between obtainable accuracy and the time it takes to analyze one sam-
ple. For materials less heterogeneous than poultry feed (e.g., DDGS), we 
expect to have answered this trade-off more in favor of accuracy.

We claim that the Pocket NIR will allow fast on-site analysis. 
Whether this holds true is ultimately determined by the portability of the 
device, as well as by the overall procedure, from taking the sample to 
receiving the results. The Pocket NIR and all its accessories, including 
the grinder, are highly portable; they are lightweight, small size, battery- 
driven devices. The ‘lab’ can therefore come on-site to the sample, rather 
than the usual way of sample to lab. For a sample needing grinding (two 
to three times 20 s), we found that the measurement procedure, 
including sample preparation, takes about 5–10 min, which we would 
consider rapid for this kind of analysis.

The Pocket NIR is intended to be used with ready-made prediction 
models. To be affordable, these prediction models cannot be developed 
individually for each Pocket NIR device but should be usable with many 
devices. Therefore, developing an appropriate calibration transfer 
strategy to account for instrument-to-instrument differences is an 
essential next step.

5. Conclusion

We demonstrated the analytical potential of the Pocket NIR micro- 
NIRS system in analyzing poultry feed and feed ingredients. The per-
formance of the prediction models for protein, fat, and moisture in the 
different materials was, with view exceptions, characterized by RPDV >

3. A performance of RPDV > 2 was observed for the majority of models 
for predicting fiber, WSC, and ash. Both the variability of the values of 
the nutrient parameters and the heterogeneity of the material were 
indicated to have co-determined the achieved performances; poultry 
feed, the most heterogeneous material, was the most challenging, and 
DDGS, a very homogeneous material with large variability in nutrient 
contents, was the least challenging. The trends in performance across 
materials and nutrient parameters observed with the Pocket NIR 
mirrored the trends observed with the benchtop instrument. Extending 
the training dataset, potentially in combination with exploring novel 
chemometric algorithms, will further improve the performance and 
robustness of the Pocket NIR. With the cloud-based backend, the Pocket 
NIR opens a wide variety of possibilities for future features assisting 
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precision feeding, such as nutritional advice and suggestions of diet 
formulation based on the data obtained with the device and considering 
information on ingredient availability, costs, traceability of suppliers, 
and production management.
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[12] K.B. Beć, J. Grabska, C.W. Huck, Miniaturized NIR spectroscopy in food analysis 
and quality control: promises, challenges, and perspectives, Foods. 11 (2022) 
1465, https://doi.org/10.3390/foods11101465.

[13] Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan, Miniaturization of optical 
spectrometers, Science 371 (2021), https://doi.org/10.1126/science.abe0722 
eabe0722.
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