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Abstract
In variety testing and breeding of wheat (Triticum aestivum L.), it is crucial to know

the timing of phenological stages and the senescence behavior of genotypes to select

for locally adapted varieties. Sound knowledge of the timing of phenological stages

also allows for a more meaningful interpretation of measurements such as yield, qual-

ity, or disease ratings. In the presence of stresses, only a combined characterization of

phenology and environmental conditions can allow for insights into unraveling stress

resistance and stress avoidance. Capturing these traits visually in the field is very

time-consuming. Here, a semimobile PhenoCam setup was used to track phenology

and senescence from ear emergence to full maturity. PhenoCams mounted on field

masts took images of wheat plot trials on a daily basis. In a partial least squares regres-

sion analysis, the temporal features of multiple vegetation indices were combined in

one model to track phenology and senescence. The method was compared with visual

reference methods and repeated drone flights with a multispectral camera. The Pear-

son’s correlation between visual reference methods and PhenoCam predictions was

stronger than 0.8, often above 0.9, for most stages. An economic analysis showed

that PhenoCams are economically interesting, especially for observing remote exper-

imental sites. Thus, PhenoCams offer a cost-effective replacement for visual ratings

of phenology and senescence, particularly in the context of multienvironment trials.

Plain Language Summary
When testing and breeding wheat varieties, it is crucial to know when important

stages of plant development occur. In different environments, early, mid or late

varieties may be better adapted to local conditions. Visual assessment of plant devel-

opment in the field is very time consuming, requiring multiple field visits during the

Abbreviations: DAS, days after sowing; DN, digital number; loess, locally estimated scatter plot smoothing; RGB, red-green-blue; RGBVI, red-green-blue
vegetation index; RMSE, root mean square error; PLSR, Partial least squares regression; SIFT, scale-invariant feature transformation; VI, vegetation index.
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varieties better adapted to varying biotic and
abiotic conditions and to more sustainable
crop management practices, Grant/Award
Number: 817970

growing season. Here, a PhenoCam setup was used to track plant development from

the time when wheat ears emerge to full maturity. Solar-powered cameras mounted on

field poles captured daily images of wheat plot trials. The dynamic color changes of

the different varieties on the images were used to track the development of the plants.

We could show that PhenoCams are suitable for tracking plant development. They

offer a cost-effective substitute to visual reference methods, especially for distant trial

fields, as it is not necessary to visit the fields several times during the growing season

when using PhenoCams.

1 INTRODUCTION

In variety testing, breeding, and research of bread wheat
genotypes (Triticum aestivum L.), it is crucial to know the
timing of phenological stages and the senescence behavior
of the individual genotypes. The temporal characterization of
plant development allows the selection of genotypes better
adapted to local climates and soils. For example, early flow-
ering behavior allows plants to escape early summer drought
and heat stress during the sensitive stage around meiosis (e.g.,
Rogger et al., 2021), whereas later flowering behavior allows
plants to escape late frosts around meiosis (Langer et al.,
2014). As the climatic conditions in Central Europe are chang-
ing, the use of adapted wheat genotypes can be a strategy
to mitigate adverse effects on yield and reduce production
risks (Holzkämper et al., 2015; Rogger et al., 2021). Accord-
ing to Asseng et al. (2013), wheat yield is more prone to
uncertainty with increasing levels of CO2 and temperature.
For every 1°C increase in temperature above the temperature
optimum, there is an estimated decrease of 6% in wheat yield,
and yield becomes more variable in space and time (Asseng
et al., 2015). Consequently, a diversity of wheat germplasms
must be maintained and developed to provide a diverse set of
adaption strategies to grow wheat in future climate conditions
(Kahiluoto et al., 2019).

In field experiments, genotypes with different phenolog-
ical development may not be exposed to the same stresses
in the same year. Accurate knowledge of the timing of the
phenological stages thus allows for a more meaningful inter-
pretation of other measurements, such as yield. For example,
low radiation at jointing, booting (Jia et al., 2021), young
microspore stage (10–12 days before heading; Yang et al.,
2020), ear emergence (Welbank et al., 1968), anthesis (Ford &
Thorne, 1975), and throughout grain filling (Jia et al., 2021)
can significantly reduce yield, mainly due to a lower number
of grains per ear and, therefore, a reduced sink size for car-
bon accumulation. The young microspore stage is generally
sensitive to stresses (Dong et al., 2017; Yang et al., 2020),
and heat or drought during anthesis also adversely affect yield
(Farooq et al., 2014; Mahrookashani et al., 2017). Thus, in
years with low radiation, heat, or drought conditions, some

genotypes could avoid adverse conditions by an earlier or later
phenological development.

Regarding the characterization of disease resistance of dif-
ferent genotypes, specific weather conditions are conducive
to various wheat diseases during specific phenological stages
(e.g., Ferrigo et al., 2016). Only a combined characteri-
zation of phenology and environmental conditions, that is,
a thorough envirotyping, will permit a disentanglement of
disease resistance from disease avoidance due to different
phenological development. As a complement to standard-
ized agronomic measurements, such as yield, baking quality,
overwintering, plant height, 1000-kernel weight, or disease
ratings (WBF, 2021), vegetation indices (VI), obtained from
spectral measurements, are increasingly being used to esti-
mate crop productivity. VIs have been shown to be best
correlated with yield at specific phenological stages, usually
shortly after flowering in the case of wheat. In this context,
knowing the phenology is also critical for comparing VIs
(e.g., Longchamps & Philpot, 2023; Naito et al., 2017; D.
Wang et al., 2022). Such comparisons allow for a tempo-
ral normalization of spectral measurements, as the spectral
signatures depend not only on genotypes but also on the
phenological stages.

Similar to phenology, the senescence behavior of wheat
has been shown to be a selection criterion for higher yielding
genotypes (Hund et al., 2019). Genotypes showing a late onset
of senescence followed by a rapid progression of senescence
produce higher grain yields under water-limited conditions.
The so-called stay-green behavior combines a prolonged pho-
tosynthetic activity with a rapid and efficient translocation
of nutrients and sugars from other plant organs to the grain
(Anderegg et al., 2020; Cao et al., 2021; Christopher et al.,
2014, 2016). By contrast, maintaining a green canopy late into
the growing season, but without a rapid and efficient translo-
cation of sugars and nutrients, can be associated with a lower
yield in the absence of water-limited conditions (Anderegg
et al., 2020; Kipp et al., 2014). Knowing the end of senes-
cence is important, as the varieties in breeding and variety
testing trials do not mature or reach senescence at the same
time but are typically all harvested on the same date. A geno-
type that has been senescent for, for example, 10 days before
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harvest but remains in the field in humid conditions could
yield grains of low quality and have higher loads of mycotox-
ins due to black head molds (Hershman, 2011; Lorenz, 1986;
Poursafar et al., 2016). Furthermore, particularly when humid
conditions occur in combination with cooler temperatures, the
breaking of seed dormancy could lead to preharvest sprouting
(Gao et al., 2013; Zhou et al., 2017), and consequently to the
degradation of starch, lipids, and proteins in grains (Yan et al.,
2023). Genotypes senescent for a longer period before harvest
can also be prone to grain shedding (Aasen et al., 2020).

Finally, it is also important to know the maturity behav-
ior of a genotype to plan optimal crop rotations (Montazeaud
et al., 2016). For example, a wheat genotype with early matu-
rity may allow for subsequent legume cover crop to develop
more biomass (Blackshaw et al., 2010). In double-crop sys-
tems with wheat and soybean, as is widely used in the United
States, a wheat harvested earlier can be followed by an ear-
lier soybean sowing, increasing both the growth and yield of
the latter (Parvej et al., 2020). For all these reasons, it is cru-
cial not only to perform an adequate envirotyping but also to
associate information on environmental conditions with the
phenological characterization of genotypes (Costa-Neto et al.,
2023; Elmerich et al., 2023) for a comprehensive view of
differences in yield and quality.

Estimating the timing of the phenological and senescence
stages visually in the field requires frequent field visits of
experts during the period when these stages usually occur.
This is very time-consuming and therefore expensive (Mon-
tazeaud et al., 2016; Velumani et al., 2020), especially as
breeding and variety testing trials are usually conducted in
several locations to account for genotype by environment (G
× E) interactions. These visual assessments also suffer from
observation bias in case the assessments are done by different
experts. To overcome the drawbacks of visual field ratings,
methods are being developed to screen the progression of
plant development in a more automated and objective man-
ner. Adamsen et al. (1999) used a digital camera to describe
wheat senescence 20 years ago. Sadeghi-Tehran et al. (2017)
used digital images generated with a field scanner to detect
wheat heading and flowering. Christopher et al. (2014, 2016)
and Montazeaud et al. (2016) used a hand-held Greenseeker to
measure the normalized difference vegetation index (NDVI)
and applied dynamic models to describe the stay-green prop-
erties of wheat, such as delayed onset of senescence and an
accelerated senescence rate. In the study by Anderegg et al.
(2020), the senescence dynamics of more than 300 winter
wheat varieties were tracked with a radio spectrometer. The
authors stated that compared with spectral tracking, visual
assessment remains the gold standard method, as it showed
a closer correlation with yield than the VIs derived with the
spectral methods, but the latter offer the potential for upscal-
ing to very large breeding trials, where visual ratings are no
longer feasible.

Core Ideas
∙ PhenoCams tracked phenology and senescence in

a wheat variety testing trial for three consecutive
seasons.

∙ Phenology from heading onward and plant/flag
leaf senescence was predicted with high accuracy
(r > 0.8).

∙ The PLSR prediction was based on multiple tem-
poral features of vegetation indices (VI) instead of
VI values.

∙ Drone based approaches are slightly more accurate,
but PhenoCams are cheaper, as less field visits are
needed.

∙ PhenoCams are cost-effective lean-phenotyping
method for phenology and senescence in multi-
environment trials.

All the methods mentioned so far still require measur-
ing each plot individually and on several dates. To measure
multiple plots at once, Burkart et al. (2018) extracted sim-
ple VI dynamics from single images taken with a drone
100m above a barley field throughout the growing season
and then compared these dynamics with the timing of the
phenological stages. Cao et al. (2021) compared the ability
of more expensive drone-based multispectral cameras with
cheaper drone-based red-green-blue (RGB) cameras to track
senescence and stay-green. They concluded that however
multispectral sensors allow for a more accurate character-
ization of senescence parameters (e.g., early, middle, and
late senescence and senescence rate), cheaper RGB sen-
sors also allow for tracking senescence behavior. Although
these approaches showed promising results, they all still
need frequent field visits. In addition, radio spectrometers
and multispectral drone-based sensors are expensive, and for
drone-based approaches, the images have to be processed with
specific photogrammetric software.

The need for frequent visits to the study site can be
overcome by monitoring plants with fixed-position cam-
eras that take images at a high frequency (typically several
times a day). Such fixed-position systems were applied to
derive information on dynamic traits of plants (e.g., timing
of phenological stages); yet, most of these PhenoCam stud-
ies focused on forests, ecology, or ecophysiology of larger
systems. Typically, these studies are based on camera plat-
forms installed above tree canopies (e.g., Ahrends et al., 2009;
Keenan et al., 2014; Richardson et al., 2007, 2009), inside
canopies (e.g., Kurc & Benton, 2010), or opportunistically
profit from webcams pointing at relevant vegetation (e.g.,
Graham et al., 2010; Ide and Oguma, 2010). Richardson et al.
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(2013, 2018) based their work on the PhenoCam Network
(https://phenocam.nau.edu/).

In agriculture, there is vast amount of research describ-
ing protocols for obtaining information on crop state (e.g.,
Adamsen et al., 1999; Hunt et al., 2013), morphology (e.g.,
Hasan et al., 2019), and performance (e.g., Jensen et al., 2007;
Gracia-Romero et al., 2017; Yue et al., 2019; H. Wang et al.,
2020) based on digital images derived from different sources.
The use of fixed-position digital repeat PhenoCams is also
gaining interest in agriculture. Naito et al. (2017) used Phe-
noCams mounted on masts at 8m above rice fields, which
combined RGB and NDVI images and took images daily
from the late vegetative stage to the dough stage. They esti-
mated traits related to rice yield, such as shoot biomass and
grain weight under different nitrogen treatments. Bhatti et al.
(2024) installed an NDVI PhenoCam at 6m above ground for
gap filling of satellite-based NDVI time series. Thereby, they
improved the classification of crops on satellite maps.

A limited number of studies have applied PhenoCams to
track phenology in agricultural experiments. Most of these
phenology studies featured one genotype of one species per
image, and the literature on the application of digital repeat
photography in the context of variety characterization is
sparse (Aasen et al., 2020). Taylor and Browning (2021) used
opportunistic images of the PhenoCam network to estimate
different phenological stages of corn, wheat/barley, soybean,
and alfalfa. Guo et al. (2022) tracked maize phenology in
RGB images from masts of different heights. Liu et al. (2022)
installed RGB timelapse cameras on sticks 1.5 m above the
canopy to estimate the effects of cropping systems on crop
phenology. On wheat, Zhu et al. (2016) established a fixed-
position digital repeat imaging workflow on three varieties
sown in three environments. In their approach, cameras were
installed 5 m above the ground, and high-resolution images
were analyzed with computer vision algorithms to detect ears
upon emergence. Velumani et al. (2020) installed 47 fixed-
position cameras in four different environments. With each
camera covering only a relatively small area of one single vari-
ety, the authors generated high-resolution images that were
analyzed with deep learning algorithms to detect heading
and flowering. Brocks et al. (2016) and Brocks and Bareth
(2018) mounted a pair of two RGB PhenoCams on a plat-
form at 10 m above the ground and applied stereo vision to
create three-dimensional surface models to estimate above-
ground biomass on nine barley cultivars but not to track
plant development.

The platforms mentioned so far were permanently installed
or limited in height to several meters above ground (∼ 6 m)
when a more mobile setup was used. Field trials, especially
in the context of multilocation trials, are usually conducted
in different fields in subsequent seasons to allow for ade-
quate crop rotation. Therefore, a PhenoCam should be ideally
mounted on masts that allow for an easy set up and dismount-

ing. The masts should also be relatively high to cover a larger
area with multiple genotypes at once. To our knowledge, only
Aasen et al. (2020) used PhenoCams to describe the timing of
the phenological stages of multiple genotypes of a crop that
all appeared on the same image instead of individual images
per genotype. However, they used cable-connected cameras
on permanent masts. Thus, PhenoCams have been applied to
track crop status, phenology, and senescence but not in setups
with day-to-day applicability for variety testing. There are
promising drone-based approaches, but they still need field
visits for every measurement, which is time-consuming and
can complicate seasonal measurements logistics.

Scenarios with more distance between the camera and the
plot call for cameras with better spatial resolution. In recent
years, there has been significant improvement in digital imag-
ing technology, with increases in the signal-to-noise ratio and
spatial resolution of cameras. Moreover, solar-powered cam-
eras are now available, and the data storage capacity has
increased. Thus, there are commercially available compact
and fully autonomous time-lapse cameras that can work for
weeks up to months without any intervention. Such cameras
can be used for digital repeat imagery, mounted on easily dis-
mountable, yet relatively high masts, and combined with the
application of bespoke image analysis protocols, thus allow-
ing for deriving information on plants with a high temporal
resolution at relatively low hardware costs and without the
need for frequent field visits. Such a PhenoCam setup can
therefore offer breeders and examination offices opportunities
for continuous information on the dynamics of crop growth
and senescence with high temporal resolution and precision
(Aasen et al., 2020).

Previous studies have often focused on one VI at a time
to track plant development and senescence (e.g., Anderegg
et al., 2020; Cao et al., 2021). For PhenoCam examinations,
images were typically taken throughout the growing season
at high temporal resolution, that is, daily or several times per
day (Aasen et al., 2020). The greenness, or in general, the
dynamic of the color changes of the plant canopy, is then
tracked with the help of VIs (Hufkens et al., 2016; Richardson
et al., 2009), such as the green chromatic coordinate (GCC),
and the VI dynamics are analyzed (e.g., Ide and Oguma, 2010;
Migliavacca et al., 2011; Browning et al., 2017). The progres-
sion of phenology and senescence usually leads to different
changes in plants at different stages. For example, chlorophyll
breakdown may be difficult to visually detect at the begin-
ning of senescence, where 50% of leaf chlorophyll can be lost
before visual yellowing and chlorosis (Chapman et al., 2021).
At the same time, chlorophyll breakdown is a very dominant
visual feature during later stages of senescence. It may be
well tracked with visible band VIs, such as GCC, as well as
with multispectral VIs, such as NDVI, which are both related
to chlorophyll absorbance. Anthocyanins, carotenoids, and
sometimes colorless chlorophyll breakdown products (Fischer
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& Feller, 1994; Hörtensteiner, 2006) or changes in water con-
tent can lead to a change of the spectral signature beyond
changes in greenness. Therefore, VIs that focus not only
on greenness and chlorophyll, but also on changes in other
spectral bands in the visible and non-visible spectrum, could
confer complementary information on the development of the
plant (Anderegg et al., 2020; Cao et al., 2021). As an exam-
ple of a VI that reflects the dynamics of the breakdown of
two pigment types, the plant senescence reflectance index
(PSRI) uses chlorophyll/carotenoid ratio (Anderegg et al.,
2020; Merzlyak et al., 1999).

VIs can also be combined. For example, Anderegg et al.
(2020) used a random forest regression based on multiple VI-
derived senescence dynamics parameters to predict yield and
grain protein content. Guo et al. (2022) integrated textural
and spectral dynamics of RGB images into a single analy-
sis to track the phenology of maize. Longchamps and Philpot
(2023) applied pairs of normalized difference metrics of two
VIs, one primarily related to chlorophyll concentration and
one primarily related to water content, to track the phenol-
ogy of corn and soybean. VIs are often highly correlated, and
random forests are prone to overfitting in such cases (e.g.,
Gregorutti et al., 2016). Therefore, as an alternative approach
to combine multiple correlated VI dynamics at once, partial
least squares regression (PLSR) was used in this study instead
of random forest regression.

The aim of this study is to establish and evaluate a
PhenoCam-based lean phenotyping workflow to monitor
wheat phenology and senescence. Overall, the hypothesis
tested is that such a workflow can offer superior per-
formance compared to conventional approaches in variety
testing. Specifically, (I) we introduce a non-stationary mast-
based PhenoCam setup that is suitable for high-throughput
field phenotyping of phenology and senescence of entire
wheat variety testing trials. (II) We suggest a method for
preprocessing and analyzing multiple VI dynamics at once,
thus supporting the prediction of the timing of different
stages of plant development. (III) We compare the Phe-
noCam method with different types of visual reference
field ratings and VIs based on drone images (RGB and
multispectral). (IV) The cost effectiveness of the different
methods is analyzed using a simple economic calculation
example.

2 MATERIALS AND METHODS

This study was carried out on a wheat variety testing trial
over three consecutive seasons (2020–2021, 2021–2022,
2022–2023). During this period, the fields were observed
with PhenoCams, and visual field ratings were collected as
reference measurements. As technical benchmark methods,
additional drone flights were conducted. The methods were

compared to each other in terms of performance and cost. A
conceptual overview of the study is provided in Figure 1.

2.1 Field experiments

The winter wheat variety testing experiment (Figure 2a) was
sown at Agroscope’s agricultural research station, Changins,
Switzerland (46˚23′55.4″ N, 6˚ 14′ 20.4″ E, 425 m.a.s.l., the
World Geodetic System [WGS] 84). The soil of the exper-
imental site is a shallow Calcaric Cambisol (Baxter, 2007;
de Cárcer et al., 2019). The trial consisted of 30 modern
registered European winter wheat varieties and is further
referred to as the EuVar trial. The same varieties were sown
in three different treatment regimes for the three seasons. In
the “maximal” regimen, one growth regulator and one fungi-
cide treatment were applied. In the “medium” regimen, there
was only the growth regulator application and not the fungi-
cide application. In the “minimal” regimen, neither a growth
regulator nor a fungicide was applied. Tables S1 and S2 give
a detailed overview of the different treatments. Fertilizers and
herbicides were applied in three splits and at equal rates to all
treatments according to the Proof of Ecological Performance
certification guidelines (Swiss Federal Council, 2013), which
represent a minimal standard of good practice for agricul-
ture in Switzerland. Each variety-treatment combination was
repeated on three plots. Within single plots, a wheat geno-
type was sown in eight rows, with a spacing of 15cm between
them, resulting in an observable canopy of about 1.25 m ×
6.7 m each. Within blocks of 3 by 10 plots, the genotypes
were randomly distributed, and these blocks were randomly
nested within three treatment replicates. Each replicate con-
tained three blocks, and each block was treated with one of
the three treatments. The 270 plots of the experiment spanned
27 rows (which followed the tractor track direction) and 10
columns (Figure S1). In total, the experiments were 79 m long
(in tractor track direction) and about 55 m wide. The first two
seasons of this experiment were first described by Treier et al.
(2024), but the main characteristics are also described here
for clarity.

2.2 PhenoCam setup

Tikee PRO 2 / 2+ (Enlaps SAS) solar powered autonomous
time lapse camera systems (Figure 2b) were installed in the
field on TekMast VMS-21-M mobile field masts (Teksam
Company NV) at 12 m aboveground (Figure 2a). The masts
were stabilized with ropes from three sides and the anchor
pins were reinforced with ground screws (Figure S2). Each
camera system carried two cameras with CMOS RGB sensors
(4608 × 3456 pixels), which had a fixed horizontal angle of
90˚ between them. According to full width at half maximum
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correlation & heritability)
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hardware, storage

services etc.)

PhenoCam:

JPEG
DNG raw
Reflectance

Drone:

RGB (TIFF raw)
Multispectral (TIFF raw)

Visual field reference ratings:

Phenology (BBCH)
Flag leaf senescence (%)
Plant senescence (%)

b)

a)

c)

d)

e)

f)

PhenoCam
based VIs from

JPEG raw format

PhenoCam
based VIs from

DNG reflectance

JPEG
Reflectance

Adjust mask for
perspective view

Adjusted
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Input Intermediate and
final results

Steps/
Processes

F I G U R E 1 Overview of the workflow of the study. (a) Image data were acquired with PhenoCams and converted to different image and data
types. Drone images were aligned into orthomosaics. For PhenoCams and drone data, plot masks were created. (b) From all plots on all images,
various vegetation indices (VIs) were calculated. (c) From VI values, semiparametric and parametric temporal features were derived. (d) Visual field
reference ratings were carried out for three types of ratings (phenology, flag leaf senescence, and plant senescence). VI based temporal features were
then used to predict the timing of visual ratings in partial least squares regression (PLSR) models. These models also allowed to determine the most
relevant temporal features for PLSR prediction. (e) To also compare the cost structure of the different methods, conceptual economic modeling was
carried out. (f) The methods were compared to each other in terms of performance and cost.
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TREIER ET AL. 7 of 39

F I G U R E 2 Overview of the PhenoCam setup and data. Masts (a) were installed in the field carrying camera systems (b) to create at least five
images a day (c and e–g). (d) Two masts with two camera systems pointing toward the experiment of interest were installed at the narrow side of the
experiment, partially covering the same plots from different angles as indicated by the opaque areas. In the back of (d), an orthomosaic is shown as
created for every drone flight. Plot masks were created and adjusted for perspective view for PhenoCam images (c) or adjusted to field plots for
drone-based orthomosaics (d). The colors of the masks in (c) and (d) indicate whether a plot was part of the experiment (blue) or a border plot to
separate different treatments (red).

specifications, the spectral sensitivity of the sensors was high-
est from 430 nm to 500 nm for the blue spectral band (B), from
475 nm to 600 nm for the green band (G) and from 580 nm to
660 nm for the red band (R). The two cameras of one system
together covered an angle of 220˚ horizontally and overlapped
for central parts of these 220˚ regions (Figure 2d). We had two
masts with two camera systems on each mast (eight cameras
in total), which were set up on the narrow side of the exper-
iment at a distance of 30 m (in 2022) to 45 m (in 2021 and
2023) from each other, but only four cameras covered differ-
ent parts of the EuVar experiments. These four cameras were
oriented from north-east to south-west. With a vertical open-
ing angle of 90˚, the cameras were installed obliquely pointing
toward the ground, covering at least the region from the base

of the masts to the edge of the fields in the direction of the
horizon.

The masts were installed in the field shortly after sowing
and uninstalled when the wheat was mature, 1 day before har-
vest or after harvest. The cameras were programmed to take
images every 2 h in the period from 7:00 a.m. to 5:00 p.m.
every day to cover the period of daylight from spring onward.
Images were saved in DNG (Digital Negative) raw format on
SD (Secure Digital) cards plugged into the cameras. As the
Tikee PRO 2 camera model allowed for a maximal memory
size of 128 GB, the cards had to be replaced once during the
duration of the experiment, for which the masts had to be
lowered. This was done about 2 weeks before the expected
heading date.
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8 of 39 TREIER ET AL.

Images were saved in 16-bit DNG raw format. This for-
mat is data-heavy (34 MB/image), and to test whether the
lighter 8-bit JPEG (Joint Photographic Experts Group) for-
mat (15.9 MB/image) also allowed for similar quality, DNG
images were transformed to JPEG format in Python.

2.3 Multispectral measurements

In parallel to mast recordings, the trials were also monitored
with an airborne MicaSense RedEdge-MX Dual multispec-
tral camera (MicaSense Inc.). The camera was carried by
a DJI Inspire 2 drone (SZ DJI Technology Co. Ltd.). The
flight height was 60 m in 2021 and 40 m in 2022 and
2023, resulting in a ground sampling distance of 3.98 and
2.71 cm, respectively. The side overlap was set to 80%, the
flight speed was limited to 5m s−1 and an image was taken
at an interval of 2 s in 2021 and 1 s in 2022 and 2023,
resulting in a front overlap of approximately 80% for the
two flight configurations. Images of a calibrated MicaSense
reflectance panel were taken at the beginning and the end of
each flight. Flights were conducted throughout the growing
seasons (Figure 3). From shortly before heading (BBCH 59;
Lancashire et al., 1991) to the end of senescence, the flights
were flown at higher temporal intervals of weekly to several
times a week. The images were saved in a raw TIFF image
format.

Agisoft Metashape Professional software (Agisoft LLC)
was used to align images to generate 10 band orthomo-
saics (Figure 2d) that covered the whole experiment. Details
on the spectral properties of the 10 bands of the sensor
are described in Table S3. The reflectance panel used for
calibration featured a QR code, and Agisoft provided the func-
tionality to detect this code and conduct a calibration of the
targets autonomously.

2.4 Mask creation

To define regions of interest on images, plot masks
(Figure 2c) were created for each plot appearing on each
camera in each year. First, orthogonal masks were cre-
ated based on a CSV file, specifying row and column
position of the plot and corresponding meta information
(e.g., genotypes, treatments, etc.) of the plots. This was
achieved with a Python 3.8 script (van Rossum & Drake,
2009), using the “ofgr” module of the “GDAL” library
(GDAL/OGR Contributors, 2024) and defining approximate
plot dimensions in the image coordinate system (that is,
pixel coordinates) directly in the script. Then, a homog-
raphy transform was applied to the shape coordinates to
achieve a perspective view. The homography matrix was esti-
mated based on four corresponding points between orthog-

onal masks and perspective images, using a Python script
provided by Socretquuliqaa Lee (https://gist.github.com/
Socret360/bcefb0f95cfc20800ea3409f40b8bb58). The trans-
formed coordinates were calculated as the dot product of the
orthogonal shape coordinates with the homography matrix.
The masks were then manually adjusted in QGIS (QGIS
Development Team, 2022) to match a base image. To account
for border effects in the field and for inaccuracies of refer-
encing and superimposition of different images, buffers were
applied to masks.

As a consequence of perspective, the masks had very dif-
ferent sizes, and shape buffers between masks were adjusted
based on individual visual judgment, resulting in shapes cor-
responding to approximately 50% of the surface of the plots.
The masts shook slightly in the wind, resulting in differ-
ences in the position and orientation of the cameras. Thus,
the masks needed adjustment over time. To that end, well-
illuminated reference images were selected throughout the
growing season, which were taken between 10:30 a.m. and
12:30 p.m. The masks were then manually adjusted for these
reference images in QGIS based on the masks from the
base image, saved to GeoJSON format again, and used as
reference masks for the respective reference image and all
subsequent images until a new reference image was available.
Georeferenced masks for drone data analysis (Figure 2d) were
created similarly as masks for PhenoCams, but in the Swiss
CH1903+/LV95—EPSG:2056 coordinate reference system
and without homography transform. Border buffers of 25 cm
and up to 1 m were left on plot width and length, respectively.

2.5 Index calculation and index value
extraction

A large number of color VIs were proposed for different appli-
cations in agronomy and were compiled and compared in
various publications (e.g., Anderegg et al., 2020, 2023; Cao
et al., 2021; Hasan et al., 2019; Hunt et al., 2013; Li et al.,
2023; D. Wang et al., 2022). In this study, a multitude of
described VIs were calculated from color bands (Figure 1b)
in the visual RGB color space (Table 1) and for multispec-
tral drone images also from the infrared range (Table 2).
Each pixel within each plot featured a value for each VI. To
aggregate these values to single values per plot and VI, zonal
statistics were applied by calculating the mean, the 50th per-
centile (or median), the 90th, the 98th, and the 99th percentiles
of the pixel values within the individual masks. Higher per-
centiles were included, as for most VIs, higher values are
associated with plants, and choosing a high percentile can help
avoid exposed soil within plots that affects VI values (Deery
et al., 2016). The 98th and the 99th percentiles are close to
maximal values (i.e., the 100th percentile) but not as sensitive
to artifacts and disturbances.
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T A B L E 1 Red-green-blue (RGB) vegetation indices (VI). For some VIs, the literature provides multiple, sometimes significantly different,
formulas. For excess red index (ExR), excess green minus excess red (ExGR), and triangular greenness index (TGI), this is indicated as subscript at
the end of the index names. The numbers behind the band names in the formulas indicate the wavelengths of the spectral bands used.

Index Full name Formula Reference
ExB Excess blue index (1.4.⋅Blue444)−Green531

Red650+Green531+Blue444
Lu et al. (2019); Mao et al. (2003); Xu
et al. (2022)

ExG Excess green index (2 ⋅ Green531)−Red650−Blue444 Woebbecke et al. (1995)

ExRb Excess red index (1.4 ⋅ Red650)−Blue444 Meyer et al. (1998)

ExRg Excess red index (1.4 ⋅ Red650) − Green531 Cao et al. (2021); Lu et al. (2019);
Meyer et al. (1998); Xu et al. (2022);
Zhang et al. (2021)

ExR𝑔−𝑛𝑜𝑟𝑚 Normalized excess red
index

(1.4⋅Red650)−Green531
Red650+Green531+Blue444

Lu et al. (2019)

ExGRMeyer Excess green minus
excess red

ExG − ExR𝑏 = (2 ⋅ Green531) − (2.4 ⋅ Red650) Meyer and Neto (2008)

ExGRZhang Excess green minus
excess red

ExG − Ex𝑅𝑔 =
(3 ⋅ Green531) − (2.4 ⋅ Red650) − Blue444

Zhang et al. (2021)

ExGRLu Excess green minus
excess red

ExG − ExRg−norm =
(2 ⋅ Green531)−Red650−Blue444−

(1.4⋅Blue444)−Green531
Red650+Green531+Blue444

Lu et al. (2019)

G_BRatio Green-blue ratio index Green531
Blue444

Sellaro et al. (2010)

GLI Green leaf ratio (2⋅Green531)−Red650−Blue444
(2⋅Green531)+Red650+Blue444

Louhaichi et al. (2001)

G_RRatio Green-red ratio index Green531
Red650

Tucker (1979)

IKAW Kawashima index Red650−Blue444
Red650+Blue444

Kawashima (1998)

MGRVI Modified green-red
vegetation index

(Green531)2−(Red650)2

(Green531)2+(Red650)2
Bendig et al. (2015)

MNVI Meyer–Neto vegetation
index

(2 ⋅ Green531) − (2 ⋅ Blue444) − (2.4 ⋅ Red650) Jin et al. (2017); Meyer and Neto
(2008)

NGBDI Normalized green-blue
difference index

Green531−Blue444
Green531+Blue444

Meyer and Neto (2008); Xu et al.
(2022)

NGRDI Normalized green-red
difference index

Green531−Red650
Green650+Red444

Meyer and Neto (2008)

RBRI Red-blue ratio index Red650
Blue444

Hasan et al. (2019); Segal (1982);
Sellaro et al. (2010)

RGBVI Red-green-blue
vegetation index

(Green531)2−(Blue444⋅Red650)
(Green531)2+(Blue444⋅Red650)

Bendig et al. (2015)

TGIfixed Triangular greenness
index (simplified)

Green531 − (0.39 ⋅ Red650) − (0.61 ⋅ Blue444) Kavaliauskas et al. (2023); Hunt et al.
(2011) Segarra et al. (2023)

TGI Triangular greenness
index

−0.5 ⋅
[
(𝜆650 − 𝜆444)(Red650 − Green531) − (𝜆650 −

𝜆531)(Red650 − Blue444)
] Hunt et al. (2011)

VARI Visible
atmospherically
resistant index

Green531−Red650
Green531+Red650−Blue444

Gitelson et al. (2002)

RCC Red chromatic
coordinate

Red650
Red650+Green531+Blue444

Gillespie et al. (1987)

GCC Green chromatic
coordinate

Green531
Red650+Green531+Blue444

Gillespie et al. (1987)

BCC {\mathrm{Blue}}
chromatic coordinate

Blue444
Red650+Green531+Blue444

Gillespie et al. (1987)

R Red Red650 –

G Green Green531 –

B Blue Blue444 –
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10 of 39 TREIER ET AL.

(a)

(b)

(c)

F I G U R E 3 Overview of the measurements and meteorological conditions in the three experimental seasons. (a–c) General weather conditions
during the growing seasons 2021–2023 from sowing until after harvest. Red shows the mean air temperature, and the shades indicate daily
temperature minima and maxima. The vertical purple lines indicate the dates of flights, the green and orange lines the dates of phenology and
senescence ratings, respectively. Cumulative precipitation is shown as a rising blue line. During the period shaded in red, heading was observed in
the field. Harvest dates are marked by black lines.

2.6 Extraction of temporal features

The values of these VIs often follow characteristic dynam-
ics throughout the growing season (e.g., Figure 2e–g). For
very early stages such as emergence (BBCH 09; Lancashire
et al., 1991) or the three-leaf stage (BBCH 13), no corre-
sponding temporal behavior of VIs, for example, a sudden

and pronounced increase in VI values, was observed based
on visual inspection. Therefore, the analysis conducted in this
study focused on the stages from heading (BBCH 59) to senes-
cence. Heading occurs typically after mid-May or around
200 days after sowing (DAS) and to reduce the amount of
data to be handled, as well as to simplify the automatic fea-
ture extraction, the data were limited to the relevant period.
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T A B L E 2 Multispectral vegetation indices. The numbers behind the band names in the formulas indicate the wavelengths of the spectral bands
used.

Index Full name Formula Reference
ARI1 Anthocyanin reflectance index 1

Green560
− 1

RedEdge705
Gitelson et al. (2001)

ARI2 Anthocyanin reflectance index NIR842 ⋅
(

1
Green560

− 1
RedEdge705

)
Gitelson et al. (2001)

DVI Difference vegetation index NIR842−Red668 Tucker (1979)

EVI Enhanced vegetation index 2.5 ⋅ NIR842−Red650
NIR842+6⋅Red650−7.5⋅Blue444+1

Huete et al. (2002)

NDRE Normalized difference red edge index NIR842−RedEdge717
NIR842+RedEdge717

Gitelson and Merzlyak
(1994); Barnes et al. (2000);
Tang et al. (2022)

NDVI Normalized difference vegetation
index

NIR842−Red668
NIR842+Red668

Rouse et al. (1974)

NDVI717 Normalized difference vegetation
index

RedEdge717−Red668
RedEdge717+Red668

Rouse et al. (1974)

PSRI705 Plant senescence reflectance index Red650−Green531
RedEdge705

Merzlyak et al. (1999)

PSRI717 Plant senescence reflectance index Red668−Green560
RedEdge717

Merzlyak et al. (1999)

PSRI740 Plant senescence reflectance index Red650−Green531
RedEdge740

Merzlyak et al. (1999)

SAVI Soil adjusted vegetation index 1.5⋅ NIR842−Red650
NIR842+Red650+0.5

Huete (1988)

SR Simple ratio NIR842
Red668

Birth and McVey (1968);
Jordan (1969)

Thus, to extract semiparametric temporal features from VIs
(Figure 1c), only VI values from 20 days before expected
heading, that is, 180 DAS, up to 1 or 2 days before harvest
were considered. To derive smooth VI dynamics, either the
rolling mean, a Savitzky–Golay filter, spline smoothing, and
locally estimated scatter plot smoothing (loess) were applied
to the data (e.g., Bhatti et al., 2024; Guo et al., 2022; Hufkens
et al., 2019; Klosterman et al., 2014). The maximal and mini-
mal values of the smoothed dynamics from the four different
smoothing types were defined as 100% and 0%, respectively,
and two temporal features were extracted as the time in DAS
when the value reached 10% and 2%, respectively, similar to
Christopher et al. (2014), where 10% was defined as conclu-
sion of senescence. An overview of the temporal feature types
is presented in Table 3. For VIs with increasing values toward
maturity and senescence, the VI values were reflected over
the DAS axis (i.e., the x-axis) so that the maximum always
appeared earlier than the minimum.

These semiparametric approaches allow capturing very
dynamic seasons but do not imply growth dynamics and
are more prone to overfitting if the measurement noise is
very high (Roth et al., 2021). Thus, we also derived para-
metric temporal features from Gompertz models (Figure 1c;
e.g., Anderegg et al., 2020; Chapman et al., 2021). First,
for each measurement, the accumulated thermal time from
sowing was calculated in growing degree days (GDD)

as:

𝑇therm,ℎ =
𝑛∑

ℎ=1

{
𝑇max,ℎ+𝑇min,ℎ

2⋅24 − 𝑇base
24 , if 𝑇min,ℎ > 𝑇base,

0, if 𝑇min,ℎ ⩽ 𝑇base,

(1)
where 𝑇max,ℎ and 𝑇min,ℎ are the maximum and minimum tem-
peratures of the nth hour h after sowing. 𝑇base was assumed to
be 0°C (McMaster, 1997). Twenty-four hourly means sum up
to the GDD of 1 day.

We then selected data for the relevant growth period by just
considering data from 180 DAS to harvest. VI values were
reflected over the DAS axis again where necessary, but this
time, we ensured that the minimum appeared earlier than the
maximum. The data were smoothened with a loess function
to extract the minimum (LoessMin) and maximum (Loess-
Max) of the smoothened VI data. The original VI values that
appeared before LoessMin were set to the LoessMin value,
and the values appearing after LoessMax were set to the
LoessMax value. These restricted VI values should ensure
that the model captures the main slope and is not dampened
by high VI values before LoessMin or a possible decrease in
VI after LoessMax. In addition, the data were shifted in such
a way that LoessMin was 0 and the restricted VI data started
to increase around 0 GDD. This translation of the restricted
VI data ensured that the value range was suitable for fitting a
Gompertz model,
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12 of 39 TREIER ET AL.

T A B L E 3 Overview and description of temporal features. The
temporal features were calculated for all vegetation indices (VIs) and
data aggregation methods (i.e., mean and different percentiles).

Temporal
feature Description Feature class
D1LocMax_1 first derivative of Gompertz,

first local maximum
Gompertz
derivative

D2LocMax_1 second derivative of
Gompertz, first local
maximum

D2LocMin_1 second derivative of
Gompertz, first local
minimum

D3LocMax_1 third derivative of Gompertz,
first local maximum

D3LocMax_2 third derivative of Gompertz,
second local maximum

D3LocMin_1 third derivative of Gompertz,
first local minimum

D4LocMax_1 fourth derivative of
Gompertz, first local
maximum

D4LocMin_1 fourth derivative of
Gompertz, first local
minimum

D4LocMax_2 fourth derivative of
Gompertz, second local
maximum

D4LocMin_2 fourth derivative of
Gompertz, second local
minimum

LoessMax Loess smoothed curve at
maximum

Loess smoothing
with threshold

LoessMin Loess smoothed curve at
minimum

Loess0.02 Loess smoothed curve at 2%
of max-min range

Loess0.1 Loess smoothed curve at
10% of max-min range

Rolling0.02 Rolling mean at 2% of
max-min range

Rolling mean
smoothing with
threshold

Rolling0.1 Rolling mean at 10% of
max-min range

Sav.Gol0.02 Savitzky–Golay smoothed
curve at 2% of max-min
range

Savitzky–Golay
smoothing with
threshold

Sav.Gol0.1 Savitzky–Golay smoothed
curve at 10% of max-min
range

Spline0.02 Smoothing spline at 2% of
max-min range

Spline smoothing
with threshold

(Continues)

T A B L E 3 (Continued)

Temporal
feature Description Feature class
Spline0.1 Smoothing spline at 10% of

max-min range

SplineMax Smoothing spline at
maximum

SplineMin Smoothing spline at
minimum

Abbreviation: Loess, locally estimated scatter plot smoothing.

𝐼 = 𝑎𝑒−𝑏𝑒
−𝑐𝑡
, (2)

with the package “nls.multstart” (Padfield & Matheso, 2020)
in R (R Development Core Team, 2022). In the model, I
represents the VI value at time t. a is the asymptote and
was restricted to values from 0.9 to 1.1 ⋅ LoessMax. b is a
location parameter that mainly affects the starting point of
the curve. Parameter c has an impact on the slope and the
starting point. The Gompertz parametrization allowed for a
monotonously increasing dynamic, from which temporal fea-
tures were derived by calculating the first four derivatives
of the fitted Gompertz model. Local minima and maxima of
the derivatives were determined and the timing of the local
minima and the maxima as well as of LoessMin and Loess-
Max were extracted. The timing was then transformed from
GDD back to DAS to use the same temporal unit as for the
semiparametric method. These procedures were performed
individually for the mean and the different percentiles used
for aggregation of the VI values for each VI in each plot.

This procedure was also adopted for drone-based VI. VI
values were smoothed with a penalized smoothing spline
in the R package “pspline” (Ripley & Ramsey, 2024), with
degrees of freedom set to two-thirds of the number of mea-
surements and interpolated for single days. From daily VI
values, semiparametric and parametric temporal features were
then extracted as for PhenoCam data but without the different
smoothing approaches.

2.7 In-field calibration panels

Color VIs can be based on raw digital numbers (DN) of
images, or reflectance values can be derived from DNs with
calibration panels of a known reflectance. To this end, five
calibration panels were installed in the field (Figure 2c)
throughout the growing season (but only from May 26, 2021
for the first year). The calibration panels were detected on the
individual images by a semi-autonomous pipeline. When all
five panels were detected on an image, the DN values were
transformed into reflectance values using the empirical line
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method. Please refer to the Supporting Information Section S4
for more details on the installation of the calibration panels
and their semi-autonomous detection.

In total, 14,051 images were taken, and for 3,929 images,
calibration data were directly available. When calibration data
were not directly available, they were obtained from other
images based on the following criteria. For the 3,929 images
of the second camera that had calibration data available for
the first camera of the same camera system, the calibration
equation was taken from the first camera. Images of the two
cameras were taken with the same ISO setting and exposure
time. For 2,592 images with no calibration available from the
same camera system, the calibration equation of an image of
another camera was used if taken within the same period (±
15min), and with the same ISO setting and exposure time. For
3,t601 images, no suitable calibration information was found,
and no reflectance was calculated for those cases, reducing
the temporal resolution of reflectance-based VI values to 81%
compared to DN-based VI values.

2.8 Visual field reference ratings

Three types of in-field reference ratings were conducted in
parallel to PhenoCam observations and flights (Figure 1d)
and recorded using the Field Book app (Rife & Poland,
2014): Phenology (“BBCH”), flag leaf senescence (“Sen-
Leaf”), and plant senescence (“SenPlant”). Phenology was
rated according to the BBCH scale (Lancashire et al., 1991).
The rating interval was 2–4 days during the heading period
and decreased to approximately weekly toward complete
maturity. The senescence rating of the flag leaf was carried
out according to the scale reported by Pask et al. (2012), with
0% corresponding to a fully green leaf and 100% to a fully
senescent leaf (Figure 4a).

The plant senescence rating (Figure 4b) was inspired by the
plot senescence of Anderegg et al. (2020) and the peduncle
and ear senescence rating provided by Chapman et al. (2021).
The plot rows were opened manually, and the senescence of
the whole plant was rated from 0% (fully green plant) to 100%
(completely senescent plant). Field ratings were performed
mostly in 5% steps except for very late ratings from 95%
onward. The last 5% were rated in smaller steps and mainly
related to changes around the ear bases and peduncles. Rating
values of 100% were only achieved when the ears base as well
as the peduncles were completely senescent.

The single rating events for phenology and both types
of senescence are visualized in Figure 3. All visual ratings
were in DAS. To allow for daily resolution, the values were
smoothed with a penalized smoothing spline in the “pspline”
package (Ripley & Ramsey, 2024), with degrees of freedom
set to two-thirds of the number of measurements, and interpo-
lated for single days. The rating of a specific reference level

was given the DAS value of the day on which the interpolated
value exceeded a specific reference level for the first time.

2.9 PLSR models to predict phenology and
senescence from temporal features

As the temporal features used as predictors were expected
to be highly correlated, PLSR was preferred over other
approaches such as random forest regression. Random forests
are prone to overfitting when using highly correlated data
(e.g., Gregorutti et al., 2016), and PLSR was shown to pro-
duce more generalizable predictions than random forests (e.g.,
Lee et al., 2017). Recursive feature elimination (RFE) can
be applied to increase generalizability of random forests and
decrease the risk of overfitting (Darst et al., 2018; Gregorutti
et al., 2016). However, computational capacity requirements
for PLSR are moderate, but repeated RFE can be very
computationally intensive.

2.9.1 Feature selection

The temporal features extracted previously for each plot were
used as input data in a PLSR analysis (Figure 1d) with the R
package “PLS” (Mevik & Wehrens, 2007). Given that many
VIs were tested based on multiple aggregation percentiles and
the mean aggregation, the number of features as predictor
variables in PLSR initially exceeded the number of observa-
tions. Although PLSR analysis is suitable for this situation
(Carrascal et al., 2009), the number of temporal features was
reduced based on the magnitudes of the relative PLSR coef-
ficients 𝛽rel,𝑖, which were calculated for each temporal feature
type as:

𝛽rel,𝑖 =
|𝛽𝑖|∑𝑛

𝑖=1 |𝛽𝑖| , (3)

where 𝛽𝑖 denotes the PLSR coefficient of the 𝑖th of 𝑛 tem-
poral features. PLSR started with the full set of temporal
features available for all plots. The features with the lowest
𝛽rel,𝑖 were skipped in a backward feature elimination until the
most predictive features were left in the model (similar to
methods summarized in Mehmood et al., 2012). At the begin-
ning, 200 temporal features were dismissed at each iteration.
With the decrease in features, the number of dismissed fea-
tures continuously decreased. When for example 345 features
were left, five temporal features were dismissed at each itera-
tion, only two features were dismissed when 280 features were
left, and only one feature was eliminated for the last itera-
tions, from 100 features down to 15 features. The PLSR used
10 components and 10 segments for cross-validation. With
each model, the different levels of the reference rating types
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14 of 39 TREIER ET AL.

F I G U R E 4 Senescence rating scales. (a) Flag leaf senescence according to Joshi et al. (2007) and Pask et al. (2012). (b) Plant senescence scale.
The percentage depicts senescent proportion of all pixels. Figure in (a) was inspired by an image of the John Innes Centre and the University of
Nottingham.

were predicted using the full set of observations and were cor-
related with the reference rating. With this procedure, it was
determined that the correlations were relatively stable above
200 temporal features but started to weaken below, and the
number of temporal features was set to 200 for the next step
(Figure S3).

2.9.2 Hundred times repeated cross-validation

For each level of each type of reference measurement (BBCH,
SenLeaf, SenPlant), in the previous step, a set of 200 tempo-
ral features was selected. This reduction in features allowed
for a computationally efficient cross-validation. For each ref-
erence level, the data were now randomly split by two split
approaches. For the first approach, the PLSR models were
trained with 75% of randomly chosen observations and tested
with the remaining 25% of the observations. For the second
approach, PLSR models were trained with the observations
of 19 randomly chosen genotypes and tested on the observa-
tions of the remaining 11 genotypes. The maximum number of
components of the PLSR model was set at 15, and the optimal
number of components in the range of 1–15 was selected for
each model individually with the “selectNcom” function. As

model accuracy metric, Pearson’s correlation between predic-
tions and reference measurements was used. This procedure
was repeated 100 times for each reference level, with the ran-
dom split into training and validation data repeated each time.
To characterize the quality of the PLSR models, the mean cor-
relation coefficients and standard deviation of the coefficients
within 100 repetitions were used as well as genotype-wise
differences from visual reference values.

2.9.3 Importance estimation of VIs and
feature types

Temporal features were extracted on the basis of multiple
semiparametric and parametric methods to capture dynam-
ics, further named feature types. In addition, temporal features
were based on various zonal statistics (mean and multiple
percentiles) for pixel-value aggregation, and on various VIs.
To estimate the importance of the different feature types,
aggregation methods and VIs, the sums of magnitudes of
the relative PLSR coefficients were calculated within three
reference classes. The classes were generically defined for
the three reference types as early, when reference levels, that
is, values that the different reference types could assume,
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TREIER ET AL. 15 of 39

ranged from 10 to 25, intermediate for values 40 to 70,
and late for values 85 to 100. To achieve robust impor-
tance estimates, coefficients were summed up for the different
reference values of the reference classes for all iterations
of cross-validation and the different groups of comparison.
Comparison groups were either feature types, aggregation
methods, or VIs. 𝛽rel,sum,ref.class,group was the sum of the 100
relative PLSR coefficients 𝛽rel,𝑖 of the 100 repetitions k of
cross-validation (only 75%/25% train/test data split) for all ref-
erence levels j within one reference class, and one comparison
group,

𝛽rel,sum,ref.class,group =
𝑛∑

𝑗=1

100∑
𝑘=1

200∑
𝑖=1

𝛽rel,𝑖,𝑗;𝑘, (4)

where 𝛽rel,𝑖,𝑗;𝑘 was the relative PLSR coefficient of the ith
out of 200 temporal features, of the kth out of 100 repe-
titions of the jth reference level within a reference class.
Finally, coefficient sums were normalized to the range
from 0 to 1.

2.10 Heritability and genotypic ranking
consistency of predicted values

In addition to Pearson’s correlation, heritability of PLSR-
predicted values was calculated as quality criterion, using the
R package “SpATS” (Rodríguez-Álvarez et al., 2018). This
package allows for providing information on the location of
measurements within the experiments as row and column
coordinates to a mixed model, which are then used for a spatial
correction. While VI-based predictions from PLSR models
were trained with random train/test data splits, the SpATS pre-
dictions were applied to the complete dataset to have balanced
and complete spatial data. After spatial correction, the gen-
eralized heritability according to Oakey et al. (2006) could
be calculated.

In generalized heritability, the effective dimensions EDg
are divided by the difference between the number of geno-
types 𝑚g and the number of zero eigenvalues 𝜁g:

𝐻2
genral. =

EDg

(𝑚g − 𝜁g)
, (5)

with

EDg = (𝑚g − 1)
𝜎2g

(𝜎2g + 𝜎2
𝑒

𝑟
)
. (6)

Heritability was calculated for every 10th iteration in the
previous cross-validation for each year individually.

For every iteration where heritability was estimated, also
best linear unbiased estimators (BLUEs) of genotypes within
individual treatments were calculated with SpATS. Genotype
rankings were then compared with visual field ratings by
means of Spearman rank correlation. To examine the consis-
tency of the ranking for individual genotypes, the ranks of the
BLUEs were plotted for visual examination.

2.11 Method cost comparison

For a schematic comparison of the economic cost of the
different methods (Figure 1e), different cost components
were estimated based on personal experience. The cost
components were, for example, material costs, staff cost,
operation/processing cost, transportation cost, as well as con-
tinuous data storage costs (e.g., Huang et al., 2024; Marinello,
2023). A detailed listing of the components is shown in
Table 4. The values of the components are dependent on the
number of measurements 𝑛measurement and the costs were esti-
mated for the four methods “Visual Rating,” “Drone RGB,”
“Drone Multispectral,” and “PhenoCam”. The total costs for
one method correspond to the sum of the different compo-
nents applicable for the different methods, as indicated by
× in the “Methods” columns in Table 4. Note that 15 mea-
surements were assumed to correspond to one season. Some
costs were associated with field visits, which were necessary
for every measurement of “Visual Rating,” “Drone RGB,”
“Drone Multispectral,” but just twice for the “PhenoCam”
method for setup and dismounting. Note that 35 PhenoCam
images were taken each week. Once a week was about the
average measurement frequency of visual ratings and drone
flights, although this frequency can vary from three times
a week to biweekly, depending on the phenological stage.
Thus, 35 PhenoCam images were assumed to correspond to
one measurement of the other methods. For each measure-
ment or field visit, it was assumed that two times 0.4 h would
be needed to load and unload the equipment to/from the car
for each round trip. Otherwise, a travel speed of 80 km h−1

was assumed, which was relevant for the calculation of the
travel costs, depending on the distance covered. Calculations
were conducted for two scenarios with 700 plots and 1,400
plots and three different distances of the experiments from
the research station, which changed the equipment needed
and the time necessary for traveling and rating or flying. The
terms used and assumed values for the two plot number sce-
narios are shown in Table 5. Calculations were performed
for 1–90 measurements or zero to six seasons. The storage
cost values were estimated to be 0.023 CHF GB/month based
on the official price listing of standard Google cloud storage
on Swiss-based servers (Google, 2024), assuming a storage
duration of 10 years.
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16 of 39 TREIER ET AL.

T A B L E 4 Equations used for cost estimations. The cost of the methods was calculated by summing the equations in this table as indicated with
× in the “Method” columns. The terms used in the equations are described in Table 5.

Method

Description Equation
Visual
rating

Drone
RGB

Drone
multi-
spectral

Pheno-
Cam

Staff cost round trips 𝑛measurement ⋅ Costrating,staf f ⋅ (2 × 𝑡drive) ⋅ 𝑛days,rating × – – –

Vehicle cost round trips 𝑛measurement ⋅ Cost−dist ⋅ dist−𝑡 ⋅ (2 × (𝑡drive − 0.4)) ⋅ 𝑛days,rating × – – –

Staff cost rating 𝑛measurement ⋅ Costrating,staf f ⋅ 𝑡rating × – – –

Cost drone and sensor Costdrone,sensor – × – –

Initial processing cost 𝑛seasons ⋅ (Cost−𝑡tech,staf f + Cost−𝑡comput.) ⋅ 𝑡proc.init. – × × ×
Staff cost round trips 𝑛measurement ⋅ Cost−𝑡tech,staf f ⋅ (2 × 𝑡drive) – × × –

Vehicle cost round trips 𝑛measurement ⋅ Cost−dist ⋅ (2 × (𝑡drive − 0.4)) ⋅ dist−𝑡 – × × –

Staff cost drone piloting 𝑛measurement ⋅ Cost−𝑡tech,staf f ⋅ 𝑡f light – × × –

Storage cost images 𝑛measurement ⋅ Cost−GBstorage ⋅ Sizedata,images – × × –

Storage cost photogrammetry 𝑛measurement ⋅ Cost−GBstorage ⋅ Sizedata,photogrammetry – × × –

Cost image handling 𝑛measurement ⋅ (Cost−𝑡tech,staf f + Cost−𝑡comput.) ⋅ 𝑡proc. – × × –

Computation cost processing 𝑛measurement ⋅ Cost−𝑡comput. ⋅ 𝑡comput. – × × –

Cost drone Costdrone – – × –

Cost drone sensor Costsesnor – – × –

Cost field masts Costmasts – – – ×
Cost time lapse cameras Costcameras – – – ×
Initial processing cost 𝑛seasons ⋅ (Cost−𝑡tech,staf f + Cost−𝑡comput.) ⋅ 𝑡proc.Init – – – ×
Staff cost round trips 𝑛seasons ⋅ 𝑛visits,PhenoCam ⋅ 𝑛persons ⋅ Cost−𝑡tech,staf f ⋅ (2 × 𝑡drive) – – – ×
Staff cost vehicle 𝑛seasons ⋅ 𝑛visits,PhenoCam ⋅ Cost−dist ⋅ (2 × (𝑡drive − 0.4)) ⋅ dist−𝑡 – – – ×
Staff cost setup & dismounting 𝑛seasons ⋅ 𝑛visits,PhenoCam ⋅ Cost−𝑡tech,staf f ⋅ 𝑡setup,dismounting ⋅ 𝑛person – – – ×
Storage cost images 𝑛measurement ⋅ 𝑛cameras ⋅ 35images ⋅ Cost−GBstorage ⋅ Sizedata – – – ×
Cost image handling 𝑛measurement ⋅ 𝑛cameras ⋅ 35images ⋅ (Cost−𝑡tech,staf f + Cost−𝑡comput.) ⋅ 𝑡proc.,image – – – ×
Computation cost processing 𝑛measurement ⋅ 𝑛cameras ⋅ 35images ⋅ Cost−𝑡comput. ⋅ 𝑡comput. – – – ×

2.12 Weather data recording

The air temperature and daily precipitation were obtained
from a Meteoswiss (Federal Office of Meteorology and
Climatology, https://www.meteoswiss.admin.ch) weather sta-
tion, which was located about 800 m from the experimental
site at Changins (46˚24′03.7″ N, 6˚ 13′ 39.6″ E, 458 m.a.s.l.,
WGS 84).

3 RESULTS

3.1 Index dynamics from different sensors
and image formats

We calculated 27 RGB VIs from PhenoCam and drone-based
data. For drone-based data, 12 additional multispectral VIs
were calculated. Sample data of two RGB VIs, visible atmo-
spherically resistant index (VARI) and excess green minus

excess red (ExGRZhang), are shown in Figure 5, based on
JPEG DNs and JPEG-based reflectance. In general, the tem-
poral dynamics appeared very similar between JPEG DN
and JPEG reflectance data. The same VIs based on DNG
raw DNs instead of JPEG DNs could look different with
more variability and less pronounced temporal dynamics
(Figure S4). VIs based on drone data appeared to be smoother
than the ones derived from JPEG PhenoCam data, but have
similar temporal dynamics (e.g., Figure 5c,d). However, pre-
viously described patterns were not found for all VIs. For
example, Kawashima index (IKAW) VI dynamics were more
similar between PhenoCam DNG raw data and drone data
than between PhenoCam JPEG and drone data. In addition,
IKAW showed less pronounced temporal dynamics, espe-
cially for JPEG-based VIs (Figure S5). The maintenance of
PhenoCams resulted in small changes in PhenoCam orien-
tation. Consequently, the VI time series of plots at image
borders could be interrupted at maintenance (e.g., Plot_102,
Figure 5).
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TREIER ET AL. 17 of 39

T A B L E 5 Explanation of terms in cost estimation equations of Table 4. The terms are grouped by methods. Terms in method “Universal” are
used in two or more methods. Where applicable, values used in the cost estimation are provided for two scenarios (700 and 1,400 plots) and different
methods. Values are in Swiss francs (CHF). In December 2024, 1 CHF corresponded to 1.06 € and 1.11 $ (www.xe.com).

Value (if fixed)
Method Term Description 700 plots 1400 plots
Universal 𝑛measurements Number of measurements. – –

𝑛seasons Number of seasons, corresponds to 𝑛measurements

divided by 15 and rounded down.
– –

dist−𝑡 Distance covered within 1 h of drive. 80 km h−1 80 km h−1

𝑡drive Time to get to the experimental site (one-way).
For the time of round trips, this time is multiplied
by 2.

– –

(𝑡drive − 0.4) The negative offset of 0.4 h penalizes the distance
covered during the first hour of driving for
loading and unloading the equipment.

– –

Cost−dist Cost per kilometer driven. 0.6 CHF km−1 0.6 CHF km−1

Cost−𝑡tech,staf f Cost of one technical staff for 1 h. 78 CHF h−1 78 CHF h−1

Cost−𝑡comput. Cost of 1 h computing. 3 CHF h−1 3 CHF h−1

Cost−GBstorage Cost to store 1 GB for 10 years. 2.76 CHF GB−1 2.76 CHF GB−1

Sizedata,images Size of image data per measurement generated
with drones or of single images for the
PhenoCams.

5 GBa/17 GBb/
0.016 GBc

10 GBa/34 GBb/
0.016 GBc

Sizedata,photogrammetry Only applies to drone flights: Size of
photogrammetric projects of the drone
measurements per measurement.

11 GBa/18 GBb 22 GBa/36 GBb

𝑡proc.init. Time for initial processing, for example, creating
georeferenced image masks, setting up the
processing pipeline, etc.

7 ha/8 hb/16 hc 14 ha/16 hb/32
hc

𝑡proc. Processing time after initial processing. 1 ha/ 3 hb/1 sc 2 ha/6 hb/1 sc

𝑡comput. Computation time of data per measurement
(drones) or per image (PhenoCam).

2 ha/5 hb/ 1
minc

4 ha/10 hb/1
minc

𝑡f light Time needed to cover 700 and 1,400 plots,
respectively, with droneflights.

2 h 4 h

Costrating 𝑛days,rating Number of days to complete the rating for one
measurement, but not necessarily full days.
Determines the number of round trips per
measurement.

1 2

Costrating,staf f Cost of one rating staff for 1 h. 61 CHF ℎ−1 61 CHF ℎ−1

𝑡rating Time needed for one measurement of all plots. 5 h 10 h

CostRGB,drone Costdrone,sensor Cost of drone with integrated camera system, for
example, DJI Mavic 3 Pro (SZ DJI Technology
Co. Ltd.).

1700 CHF 1,700 CHF

CostMultispec.,drone

Costdrone Cost of drone that can carry a Micasense
RedEdge-MX DUAL sensor, for example, DJI
Matrice 350 RTK (SZ DJI Technology Co. Ltd.).

9300 CHF 9300 CHF

Costsesnor Cost of Micasense RedEdge-MX DUAL sensor
(MicaSense Inc.).

9500 CHF 9500 CHF

CostPhenoCam 𝑛days,setup,dismounting Number of days to either set up or dismounting
the PhenoCams.

1 2

𝑛visits,PhenoCam Number of times to visit the experimental site for
the setup and for the dismounting of the
PhenoCams.

2 2

(Continues)
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18 of 39 TREIER ET AL.

T A B L E 5 (Continued)

Value (if fixed)
Method Term Description 700 plots 1400 plots

𝑛cameras Number of cameras (two cameras per system,
four per mast in our setup).

8 16

𝑛persons Two people are needed for the setup and
dismounting of the PhenoCams.

2 2

Costmasts Cost of two or four Teksam field masts. 24,000 CHF 48,000 CHF

Costcameras Cost of four or eight autonomous time lapse
camera systems (eight and 16 cameras in total),
for example, Enlaps Tikee 3 Pro+ (Enlaps SAS).

6800 CHF 13,600 CHF

35images 35 images of the PhenoCam correspond to one
measurement of the other methods.

– –

𝑡proc.,image Time needed to handle and process one image. 1 s 1 s

𝑡setup,dismounting Time needed to setup or dismount the cameras. 6 h 12 h

aRGB drone, bMultipsectral drone, cPhenoCam.

T A B L E 6 Number of temporal features and observations for
different sensors, image formats, and data treatments.

Method
No. of temporal
features

No. of
observations

JPEG DN 1,005 2,101

JPEG reflectance 1,226 2,101

DNG DN 758 2,092

DNG reflectance 837 2,092

Drone RGB 1,452 810

Drone multispectral 2,217 810

3.2 Temporal feature count overview

We derived 758 to 2,217 different temporal features from the
VI data, depending on the different sensors, image formats,
and data treatments (Table 6). Most temporal features were
found in the “Drone Multispectral” data, followed by “Drone
RGB,” which represents a subset of the “Drone Multispec-
tral” set. This was followed by the PhenoCam-based JPEG
and finally the DNG methods. For the latter two, more tempo-
ral features were found for the reflectance option than for the
DN option. Only features that were available for a large pro-
portion of observations were included in PLSR. Automated
feature extraction was more effective on JPEG data than on
DNG data, which led to a decrease in features from JPEG
to DNG.

For drone-based methods, 810 observations were available
for PLSR modeling, as 270 plots were observed in each year.
By contrast, plots appeared on multiple PhenoCams in the
same season, and, on average, each plot was recorded by 2.6
cameras, although plots on the edges of the field were just
recorded from one camera. Camera-plot combinations with
1500 or more missing temporal features were excluded. 2,101

observations were available for PhenoCam JPEG data and
2,092 for DNG.

Using PLSR in a first feature selection round, we selected
200 temporal features for each field reference type and refer-
ence level. When we used less than 200 features, correlations
between PLSR prediction and field reference levels started to
decrease (Figure S3).

3.3 Comparison of PLSR prediction
performance of different methods

Eight methods to predict plant development, which depended
on the different sensors, image formats, and data treatments,
were compared individually by Pearson’s correlation for the
different reference rating types. The mean correlations for all
cross-validation data with reference rating values across 100
iterations for each reference level are summarized in boxplots
(Figure 6). Six of the methods were based on PhenoCam data,
three each for JPEG and DNG data formats. For both formats,
a method was based on calibrated reflectance data, one on DN
and one on both data types. The remaining two methods were
based on calibrated drone data in the multispectral and RGB
color space.

Models based on multispectral drone data were best cor-
related with reference levels for all reference rating types
(Figure 6a), followed by RGB drone data. PhenoCam methods
showed slightly weaker correlations compared to drone-
based VIs, when “All” data types (DN and Reflect) were
used, but almost no difference was observed between JPEG
and DNG. The JPEG DN method was slightly inferior to
using both data types but superior to the remaining three
methods “Reflect_JPEG,” “DNG_DN,” and “Reflect_DNG.”
The standard deviation of these correlations 𝜎r (Figure 6b)
revealed that higher correlations were also more consistent
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TREIER ET AL. 19 of 39

F I G U R E 5 Sample vegetation index (VI) data derived from PhenoCams (a and b) and a drone-based camera (c and d) for two VIs (VARI and
ExGRZhang) and four randomly chosen plots during the seasons 2022. The temporal axis is in days after sowing (DAS). For the PhenoCam data,
green points in the PhenoCam image are initial VI values and lines represent smoothed data of different smoothing methods (dark yellow: rolling
mean; dark blue: loess smoothing; yellow: Savitzky–Golay; light blue: spline smoothing). In plots with multiple lines of the same color, multiple
cameras observed the same plot. Data are shown for unprocessed data (“DN”) and for calculated reflectance values. For the drone data, the blue dots

(Continues)
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20 of 39 TREIER ET AL.

F I G U R E 5 (Continued)
are the initial VI values. Green lines represent a smoothed spline interpolated for a daily temporal resolution. The colored vertical lines indicate
specific levels of visual field reference ratings as observed at the respective plots: Solid blue line indicates the heading date (BBCH 59), the dashed
blue lines indicate plant senescence levels of 10% and 90% respectively. The yellow lines correspond to flag leaf senescence at 10% and 90%. The
black lines toward the end mark the harvest date. The first vertical black line for the PhenoCam data shows the date of PhenoCam maintenance.

as 𝜎r was lower for higher correlations, except for the cor-
relation between SenLeaf reference type and drone-based
RGB methods.

3.4 Detailed comparison of selected
methods

As the JPEG based PhenoCam methods seemed to per-
form slightly better than the DNG based models, they were
compared to the drone-based methods in more detail. The cor-
relations of the PLSR predictions for all reference levels of the
different reference types (Figure 7a) were very strong (r> 0.8)
and even stronger than 0.9 for the later levels of the BBCH
scale and the intermediate levels of SenLeaf and SenPlant in
100 times repeated cross-validation. Early BBCH stages and
early as well as late senescence stages showed weaker corre-
lations in general. The correlations were consistently higher
for drone-based methods, except for later stages for SenLeaf,
in which the drone-based predictions in the RGB color space
showed high variability. Applying PLSR models trained on
the training data to predict all observations resulted in stronger
and more consistent correlations than solely predicting and
correlating the test data set in cross-validation. When using
the 75%/25% train/test data split in cross-validation, corre-
lations were slightly higher (0.02 on average) compared to
19 genotypes/11 genotypes train/test cross-validation with
standard deviation increasing by only 0.01 between the two.
Therefore, most of the remaining analysis was conducted on
only cross-validation data based on a 75%/25% data split.

Separate correlations for the 3 years were weaker in general
(Figure 7b), but the trends remained similar. The correlations
were weak to very weak for early SenPlant and weak to strong
for late stages of all reference types. For SenLeaf and early
stages of SenPlant, the correlations were weaker in 2023 than
in the other 2 years. SenPlant showed weaker overall correla-
tions in 2022. The correlation of BBCH did not show a distinct
year-wise pattern except for weak correlations for the latest
BBCH levels in 2022. The root mean square error (RMSE)
was similarly low for both senescence rating types in 2021 and
2023, with slightly higher RMSE for earlier stages in 2022
(Figure S6). As for these correlations, no distinct year-wise
pattern was found for RMSE of BBCH.

To better understand the reason behind varying correlations
in dependence of the different years, we examined the tempo-
ral density of the reference measurements (Figure 8). Later

stages of BBCH occurred in a short period in 2022 compared
to the other 2 years. Stages of senescence and especially Sen-
Leaf occurred in a shorter interval for most reference levels
in 2023.

3.5 Predictive performance with relation to
genotype

Genotype-wise mean differences from visual reference val-
ues were calculated for PhenoCam data based on DN values
of JPEG images and drone data based on all multispectral
VIs. The predictions were based on PLSR models trained with
75% of the data, but the prediction was applied to the com-
plete dataset. The differences ranged from - 2.96 days to 3.15
days, with a negative difference indicating that the predicted
date was too late and a positive difference indicating that the
prediction was too early

In general, the absolute differences were smaller for drone-
based predictions compared to PhenoCam predictions, but the
differences generally pointed in the same direction for the two
imaging platforms.

A group-wise summary of absolute differences was calcu-
lated for a general overview (Table 7). The data were grouped
by reference type, reference classes, and image acquisition
platforms. The largest deviation occurred for the early stages
of SenLeaf, with a mean difference of 0.91 days for Phe-
noCam predictions and 0.49 days for predictions based on
multispectral drone data. The best predictions with the Phe-
noCam were achieved for the intermediate stages of SenPlant
(0.36 days) and for late stages of SenPlant with the multispec-
tral drone (0.23 days). The differences were consistently lower
for the drone-based estimates.

To assess temporal bias, the differences were compared
with the visual reference ratings (Figure S7). In all reference
classes, a temporal bias was observed for both methods, but
the bias was consistently more pronounced for PhenoCam pre-
dictions compared to drone predictions, for which the bias
was minimal.

3.6 Genotype ranking consistency

When comparing the BLUEs based on VI-based predictions
with BLUEs based on visual reference values by means of
Spearman’s rank correlations (Figure 9), general trends were
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(a)

(b)

F I G U R E 6 Overview of the Pearson’s correlation of PhenoCam- and drone-based predictions of timing of phenology (BBCH), flag leaf
senescence (SenLeaf), and plant senescence (SenPlant) with field reference measurements. Values above boxplots indicate mean values. (a) Mean
correlations 𝑟 for all cross-validation data (only 75%/25% train/test data split in cross-validation) with reference rating values across 100 iterations for
each reference level. (b) The mean standard deviations of these correlations across 100 iterations for each reference level 𝜎r. The methods compared
are indicated by composite names in the x-axis labels: “PheCam” and “Drone” indicate the platform of image acquisition, and “RGB” and
“MulSpec” indicate the color space of the features. “Reflect” indicates that only calibrated reflectance data (reference panels) were used as opposed
to “DN” for the use of digital numbers. “All” means that “Reflect” and “DN” data were used. “JPEG” and “TIFF” indicate the image data format
used. Pairwise t-tests were applied to examine whether the different methods produced significantly different results. Pairing was by reference levels
of the three reference types. Significance levels: NS, not significant. p > 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001.

similar as for the plot-wise Pearson’s correlations (Figure 7)
but correlations were weaker. Overall, the mean BLUE rank
correlation for the 11 genotypes used in cross-validation (ran-
dom 19 genotypes/11 genotypes train/test data split at each
iteration) was 0.87 compared to 0.92 when correlating the
BLUEs of all genotypes, and the standard deviation of corre-
lations was larger for the cross-validation (0.16 compared to

0.12 when including all genotypes). Mean correlations were
very strong (r > 0.8) for most reference levels of the dif-
ferent reference types but they were lower for early and late
reference levels. Especially for the early levels of plant senes-
cence there were only very weak rank correlations for the
PhenoCam methods but better rank correlations for the drone
methods. The mean rank correlation was thus weaker for the
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F I G U R E 8 Temporal density of interpolated reference observations of all three reference rating types by year for generically selected reference
levels. The rows represent the three types of field reference measurements: Phenology (BBCH), flag leaf senescence (SenLeaf), and plant senescence
(SenPlant). The temporal axis is in days after sowing (DAS).

T A B L E 7 Mean absolute differences between visual reference ratings and vegetation index (VI)-based predictions in days summarized across
all genotypes. Mean absolute differences and standard deviations (SD) are shown, grouped by reference types (phenology: BBCH; flag leaf
senescence: SenLeaf; plant senescence: SenPlant), reference classes (early, intermediate, late), and image acquisition platforms (PhenoCam and
drone). For the drone-based predictions, multispectral VIs are included. Predictions are based on PLSR models trained with 75% of the data, but the
prediction is applied to the complete dataset.

Mean absolute differences of prediction from references (days)
Reference classes
Early Intermediate Late

Reference type Platform mean SD mean SD mean SD
BBCH PhenoCam – – 0.76 0.56 0.51 0.41

Drone – – 0.41 0.37 0.26 0.20

SenLeaf PhenoCam 0.91 0.68 0.52 0.42 0.43 0.35

Drone 0.49 0.38 0.31 0.23 0.24 0.19

SenPlant PhenoCam 0.54 0.49 0.36 0.21 0.41 0.31

Drone 0.35 0.27 0.26 0.21 0.23 0.17

PhenoCams compared to drones (0.88 and 0.91) with a larger
standard deviation (0.16 and 0.13 respectively).

The ranking of individual genotypic BLUEs was consis-
tent for the genotypes, that is, early genotypes were predicted
to be early, late genotypes were predicted to be late for most
reference classes and reference types (Figure 10). Consistent
with the plot-wise (Figure 7) and BLUE rank correlations
(Figure 9), ranking of plant senescence was less consistent
with more variability of ranking for individual genotypes.

3.7 VI and feature type importance

We analyzed normalized relative PLSR coefficient sums
𝑛𝑜𝑟𝑚.𝛽rel,sum,ref.class,group to determine the importance, that
is, predictiveness of VIs, and feature types. For PhenoCam
“JPEG DN” format (Figure 11a), the VIs of the ExGR type
and especially ExGRZhang were the dominant features. For
BBCH and early SenLeaf, VARI was also important. For
BBCH, GCC also played a crucial role, and the G_R_Ratio
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F I G U R E 9 Spearman’s rank correlation of best linear unbiased estimators (BLUE) of genotypes within treatments between visual reference
ratings and vegetation index (VI)-based predictions. The BLUEs were calculated with SpATS for visual reference ratings and VI-based predictions.
The data are arranged by reference types (phenology: BBCH; flag leaf senescence: SenLeaf; plant senescence: SenPlant). “PhenoCam” and “Drone”
represent the image acquisition platform. For PhenoCams, data are based on DN values of JPEG image format. For drone-based predictions,
multispectral VIs are included. VI-based predictions from PLSR models were trained with 19 randomly chosen genotypes in cross-validation of the
PLSR models, but the SpATS prediction was applied to the complete dataset to have balanced and complete spatial data. The Spearman’s
correlations are displayed in blue for the complete dataset (30 genotypes within each treatment), while yellow shows the correlations only for the 11
genotypes from the test-training split that were not included in training. The shaded areas indicate the mean ± standard deviation in 10 repetitions of
cross-validation for which a model was fitted in SpATS, while the lines are the means.

was prominent for SenLeaf. In SenPlant, green leaf ratio
(GLI) was an important feature. By contrast, for the Phe-
noCam “DNG raw DN” format (Figure 11c), ExGRZhang,
although still important, was the dominant feature only for
late BBCH and intermediate to late SenPlant. Furthermore,
GCC and red-green-blue vegetation index (RGBVI) were
important for BBCH. Excess red index (ExRg), modified
green-red vegetation index (MGRVI), Meyer–Neto vegeta-
tion index (MNVI), and RGBVI were predictive for SenLeaf
and ExRg, and MNVI was also important for SenPlant. The
predictiveness of VIs varied from early to late reference
classes.

The local maximum of the first derivative of the VIs
𝐷1LocMax_1 was an important feature type in the prediction of
all reference types and values for “JPEG DN” and “DNG raw
DN” data (Figure 11b,d). By contrast, both the first local min-
imum of the second derivative 𝐷2LocMin_1 and the first local
maximum of the third derivative 𝐷3LocMax_1 were increas-
ingly important from early to late reference stages. For other
feature types, a similar but less pronounced trend from early
to late could be observed. For the different data aggregation
methods, no clear trend was found, but the 50th percentile

and/or the mean were generally among the most important
aggregation methods (Figure S8).

For drone-based data from the RGB colorspace
(Figure S9a), blue chromatic coordinate (BCC), GCC,
IKAW, MGRVI, MNVI, red chromatic coordinate (RCC),
and RGBVI were especially predictive and the same fea-
ture types (𝐷1LocMax_1, 𝐷2LocMin_1, 𝐷3LocMax_1) but also
𝐷4LocMax_1 and the semiparametric temporal features
Spline0.02 and Spline0.1 were important (Figure S9b).

In the multispectral color space (Figure S10a), in addition
to BCC and IKAW, the most dominant VIs were multispectral
VIs, such as difference vegetation index (DVI), normalized
difference red edge index (NDRE), NDVI, PSRI717, PSRI740,
and soil adjusted vegetation index (SAVI). Most predic-
tive feature types were similar to drone-based RGB data
(Figure S10b).

3.8 Method cost comparison

The cost estimates for the different methods were highly
dependent on the number of plots observed, the number of
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(a) (b)

(c)

F I G U R E 1 2 Overview of cost development and cost types in dependence of number of measurements and seasons. (a and b) Estimated total
costs with respect to number of measurements. Note that 15 measurements were assumed to correspond to 1 year, and years are marked with vertical
gray lines. Line types indicate different distances of experimental site from research station in hours (one-way). Line colors indicate different
methods that were compared to each other in this study. Measurement types were as follows: Rating = visual field ratings, RGB = RGB drone,
Multispectral = multispectral drone and PhenoCams. (c) Cost types for one to six seasons of 15 measurements each are summarized.

measurements carried out, the number of seasons considered,
and the distance of the experimental site from the research sta-
tion. The visual field reference rating, closely followed by the
RGB drone method, had the lowest initial costs (Figure 12a,b).
The costs then increased almost linearly with the number of
measurements. For the 700-plot scenario, visual rating was
cheaper than the RGB drone for all driving distances, and
this difference increased with the number of measurements.
In the scenario including 1,400 plots, for 0.5 h of driving,
the visual rating was slightly cheaper than the RGB drone,
but for 1.5–3h of driving time, the RGB drone method was
cheaper, and this difference increased with the number of
measurements. The method with the next-highest initial cost
was multispectral drones, for which the costs increased almost
linearly with the number of measurements. The marginal
costs for additional measurements were higher for multispec-
tral measurement compared to the RGB drone method and

the visual rating (Table. 8). The PhenoCam method had the
highest initial cost. By contrast, additional measurements had
only a slight effect on costs. New costs arose, particularly
for the setup and dismounting of the camera systems. How-
ever, these seasonal costs were higher than with the other
methods. For non-PhenoCam methods, the costs were rel-
atively low at the beginning of a new season. Only new
flight plans had to be created for new seasons and new plot
masks had to be drawn for the analysis of the images of
drone-based methods. The different travel times had a rela-
tively little effect on the PhenoCam method, while they led to
significantly different costs for drone flights and visual rat-
ings. In the 700-plot scenario, at around 30 measurements
or three seasons, the PhenoCams became cheaper compared
to multispectral drones, and around 60 flights or four sea-
sons, they became cheaper compared to RGB drones except
for the 0.5 h driving distance. These general patterns were
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T A B L E 8 Marginal cost of different methods after 90
measurements for the 700-plot and the 1400-plot scenarios.

Marginal costs (CHF)

Method
Driving distance
(h/one-way)

700 plots
scenario

1,400 plots
scenario

Rating 0.5 376 764

1.5 594 1,328

3 921 2,174

PhenoCam 0.5 227 456

1.5 273 562

3 342 721

Drone—RGB 0.5 407 732

1.5 659 1,048

3 1,037 1,522

Drone—
Multispectral

0.5 635 1,188

1.5 887 1,504

3 1265 1978

similar for the 1,400-plot scenario, but more measurements
were needed before the PhenoCam method became cheaper
than drone-based approaches.

Considering cost structures, transport was an important
cost factor for a driving time of 1.5 h or more and the most
significant cost driver for visual field reference ratings, espe-
cially in the 1,400 plot scenario, as the field needed to be
visited twice to complete the rating of all plots. Another sce-
nario would be to stay overnight in a hotel, which would also
lead to higher costs, but this scenario was not included here.
The sum of measurements cost (i.e., drone piloting) and the
image processing cost for the RGB drone was similar com-
pared to the measurement cost of visual ratings in the 700-plot
scenario. For 1,400 plots, the RGB drone was cheaper for
1.5 h or more driving time, as it could cover more plots in
a shorter period without the need of an overnight stay or a
double visit to complete the measurements. The multispec-
tral drone method came with higher processing costs, and as
large data volumes were produced in multispectral imaging,
the storage of the images became an important cost driver,
in addition to higher initial material costs. It was the most
expensive method after six seasons in all scenarios.

PhenoCams had by far the highest initial material costs. By
contrast, the transportation costs were low, as only two field
visits were necessary for set up and dismounting, assuming
no technical incidents occurred. Although each PhenoCam
could capture many images per day, the total amount of data
was very manageable compared to drone measurements, espe-
cially multispectral. Even though the initial processing costs
were relatively high, as plot masks had to be corrected for
perspective and adapted to shaking cameras and growing veg-
etation, the overall processing costs remained relatively low.

Thus, once the material was acquired, the cost for additional
measurements was relatively cheap, making this the most eco-
nomical method for scenarios with 3 h driving time after six
seasons. In the scenario with 1.5 h driving time, PhenoCam
costs were comparable to those of RGB drones and to visual
field ratings after six seasons. Only for the 1,400-plot scenario
did PhenoCams remain more expensive compared to RGB
drones. Yet, due to the low marginal costs of additional mea-
surements (Table 8), PhenoCams would become the cheapest
method with additional seasons, which would eventually also
be the case for scenarios with 1 h driving time and a high
number of seasons to measure.

4 DISCUSSION

4.1 Ability of PhenoCams to track
phenology and senescence in field conditions

The PhenoCams allowed for the tracking of phenology
and senescence over three seasons with high reliability and
genotype specificity under field conditions in a real variety
testing experiment. Field phenotyping is known to be one
of the most challenging phenotyping settings due to con-
founding effects, such as spatial and temporal variability of
traits due to, for example, heterogeneous field conditions,
changing weather throughout a measurement campaign, or
disruptive weather events, which can make data acquisition
and interpretation very challenging (e.g., Araus et al., 2018;
Aasen et al., 2020; Reynolds et al., 2020). For example, in
this study, shaking cameras, dust and dirt, changing illu-
mination, noncontinuous VI dynamics due to drought/rain
interplay, memory restrictions of autonomous cameras, trade-
offs in the experimental setup due to the needs of field
operations, and animal interference (e.g., Figure S11) made
it complicated to operate the cameras and analyze the images.
Nevertheless, strong correlations with visual field reference
ratings and high heritabilities for PhenoCam-based traits were
attained in field conditions. The quality of the predictions
derived from PhenoCams was slightly inferior to drone-
based predictions, and especially to multispectral predictions.
Nevertheless, PhenoCams are a promising tool for the field
phenotyping of dynamic traits. They increase the temporal
resolution of image acquisition considerably, even at remote
experimental sites.

4.2 Quality of predictions from PhenoCam
and drone setups

A comparison of PhenoCam data with drone-based mul-
tispectral data was conducted to estimate the benefit of
bands from near-infrared and red-edge regions to track plant
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development. Comparison with drone-based RGB data
allowed for the estimation of effects related to viewing
geometries. The better performance of the drone-based VIs
compared to the PhenoCams may be largely due to the near-
optimal conditions under which the drone measurements took
place. Plots were observed at a close to nadir view, with homo-
geneous viewing geometries, while in PhenoCams, plots were
captured from extremely different viewing geometries and
distances. In plots close to the PhenoCam, single plants, even
plant organs, were distinguishable in a nadir-oriented view.
For the most distant plots, a single pixel corresponded to sev-
eral plants, and only plot-wise mean color properties could
be tracked from a very lateral view on the upper part of the
canopy. This added variability to the optical signal beyond
phenotypic differences of different plots, which makes the
analysis more challenging. For flying with the multispectral
camera, the timing was, whenever possible, close to noon,
allowing for relatively homogeneous illumination of images
between flights. This increased the signal-to-noise ratio com-
pared to PhenoCams, which captured images at a much higher
frequency but with a large variability of illumination and
viewing geometries.

PhenoCams covered many plots with two or even three
cameras. Although the same plot was observed, the view-
ing geometry and distance from the camera were often very
different, especially with regard to the path of light from
the sun via the plot to the camera. The plots were sub-
jected to bidirectional reflectance changes (Nicodemus, 1977;
Schaepman-Strub et al., 2006) for the different cameras.
Nonetheless, based on a visual comparison (Figure 5; Figure
S5) and high heritability (Figure 7c), the different cameras
tracked similar VI dynamics for the same plot, as VIs normal-
ize and reduce the effects of bidirectional reflectance changes
(Aasen et al., 2020; Sonnentag et al., 2012).

Genotype predictions were often within a range of ± 1
day from the visual reference rating, which is fairly sufficient
for differentiating early, intermediate, and late genotypes in
variety testing. This was confirmed by Spearman’s rank cor-
relations of genotype BLUEs and when plotting the ranking
of BLUEs of individual genotypes across different reference
classes and reference types. Nevertheless, the PhenoCam pre-
dictions showed a temporal bias toward the mean dates across
all measurements, highlighting a limitation of the Pheno-
Cam approach. By contrast, the temporal bias for drone-based
methods was minimal.

4.3 Quality of predictions in different years

Although the prediction correlations were lower for SenLeaf
in 2023 than for the other years (Figure 7b), the RMSE of
the predictions was lower or similar than in the other years
(Figure S6). At the same time, correlations for SenLeaf in

2022 were strong, despite a relatively high RMSE. This could
be explained by the extended duration during which spe-
cific SenLeaf levels occurred in 2022 and the short duration
in 2023, as shown by the temporal density of selected rat-
ing levels (Figure 8). When levels occur in a relatively short
period, strong correlations are more difficult to attain and
weaker for the same RMSE compared to situations with a
more temporally dispersed occurrence of the same rating
level.

This highlights that the quality of the method is also
affected by G × E interactions, as meteorological conditions
that promote rapid plant development and senescence lead to
weaker correlations. This is also the rationale for why data
from the 3 years were used to train the PLSR models. The
meteorological conditions and, therefore, the development of
the plants contrasted strongly over the 3 years. A low predic-
tive performance would be expected when predicting a wet
year from dry years, and the two dryer seasons also had very
different phenological development.

In addition, VI dynamics are directly affected by meteo-
rological conditions. For example, 2022 was a hot and dry
year that caused the flag leaves to roll. After rain events,
the leaves were able to recover slightly, which could lead
to a short-term flattening of the temporal dynamics toward
maturity. This may be a valid explanation of noncontinuous
trends, for example, for the VIs VARI, ExGRZhang and NDVI
in 2022, in which data in June showed the slope of declining
VIs flattened out after significant rains or even increased again
(Figure S12).

4.4 Quality of predictions in different stages

The prediction accuracy of PLSR models for the early or late
phenology and senescence stages in this study was often low.
This may be related to the small phenotypic changes with
which these early and late stages are associated, which may be
too small to be detected from cameras at a distance. In addi-
tion, in this study, multiple raters conducted the ratings over
years but also within years, inevitably leading to rater bias.
Later stages of phenology are tedious to track, as they require
the manual inspection of some grains in each plot and are lim-
ited in precision to track small changes between rating events
(Anderegg et al., 2020). This is also true especially in the early
and late stages of senescence. Visual scoring methods are sub-
jective and can be affected by foliar diseases, abiotic foliar
damage, and other confounding influences, leading to pheno-
typic heterogeneity within plots (e.g., Chapman et al., 2021;
Christopher et al., 2016; Kipp et al., 2014). Thus, the precision
limitation of visual scoring itself is likely to limit the precision
of the approach (Anderegg et al., 2020).

Later stages of phenology do not address the external phe-
notypes of the plants but the state of the grains, which cannot
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be visually seen without opening the husk. The high predic-
tiveness of the RGB, as well as the multispectral VIs, is thus
surprising and most likely the result of a relationship between
external visual features and internal processes in the grain.

4.5 Comparing VIs from different image
formats and data treatments

Even within data from the same sensor, VIs can show very
distinct patterns depending on the image format and data treat-
ment (e.g., Figure S5). The JPEG DN method was shown to
be superior to the JPEG reflectance and both DNG raw meth-
ods in this study, while it was inferior to the combined use of
DN and reflectance in the same PLSR analysis, although the
differences were rather minor (e.g., Figure 6).

JPEG format images are derived from raw images after
Bayer matrix decomposition by multiple transformations,
such as white balance application, gamma correction, and
dynamic range compression. These transformations increase
the contrast in the images and lead to a visually enhanced
nonlinear representation of light intensities. The nonlinear
nature of these transformations also leads to changes in VI
dynamics. With gamma correction exponents<1, which make
images appear brighter, changes for high values in the lin-
ear format represent smaller changes for nonlinear JPEG. For
lower values, changes in the linear DNG raw format lead
to larger changes in nonlinear JPEG. With ratios including
high/low values and especially both, the ratios can be very dif-
ferent for linear and nonlinear formats. If VI formulas include
sums/differences, the VIs can even change from positive to
negative or vice versa. Indices such as VARI and ExGR did
not seem to be affected significantly, while other indices,
such as IKAW, were affected. These transformations can thus
amplify VI dynamics, which may explain why automated fea-
ture extraction was more effective on JPG data than on DNG
raw data in this study.

4.6 Comparing color spaces and RGB
sensors

Cao et al. (2021) showed the superiority of multispectral VIs
over RGB-based VIs and that they could reveal more detailed
phenotype changes but were also more sensitive to rainfall
than RGB VIs, which also seemed to be the case in our study
(e.g., Figure S12). In the study at hand, the drone-based PLSR
prediction from RGB VIs was often almost as strongly corre-
lated with visual reference ratings as those from multispectral
measurements, which is in line with Cao et al. (2021), who
showed that multispectral and RGB VIs together only slightly
outperformed the pure RGB VIs. However, the robustness of

the prediction (𝜎r), seemed more affected, especially for later
stages of SenLeaf.

This study only used RGB bands from a narrowband mul-
tispectral camera for RGB-based VIs, but Cao et al. (2021)
compared a low-cost integrated RGB camera of a DJI Phan-
tom 4 drone with more expensive MicaSense multispectral
narrowband sensors for their ability to track stay-green phe-
notypes in wheat. RGB VIs based on the cheaper sensor better
classified senescence types than RGB VIs from the more
expensive narrowband sensor in their study. Thus, it is highly
likely that the method presented herein would lead to results of
similar or better quality when applied to drone-based low-cost
RGB camera data.

4.7 Combining multiple temporal features
in a PLSR analysis

Differences in absolute values of spectral bands or VIs depend
not only on the phenology of a plant, but also on morphology
and canopy structure (Anderegg et al., 2020), leaf pigments,
and epicuticular waxes (Tafesse et al., 2022), and viewing
geometry (Aasen et al., 2020). However, relative changes over
time, that is, the dynamics of the VIs, are stable and suitable
for the extraction of temporal features (Aasen et al., 2020;
Anderegg et al., 2020).

Pigments such as chlorophyll, anthocyanins, and
carotenoids are formed and degraded at specific times
during plant growth (Fischer & Feller, 1994; Hörtensteiner,
2006) and these changes are temporally correlated with
dynamic changes in VIs. At different developmental stages,
the different VI-based temporal features of different VIs are
best correlated with the physiological processes of the plant.
Thus, it is reasonable to base the analysis not on absolute VI
values but on their dynamics and not to use a single VI for all
stages of phenology and senescence but to combine multiple
VIs in an analysis. With this rationale, using temporal features
in PLSR analysis is a promising new approach. PLSR can be
used to analyze a dataset with a higher number of predictor
variables than the number of observations and in which the
predictor variables are strongly correlated (Carrascal et al.,
2009), which can be expected for the different temporal
features used as predictor variables in this study.

Thus, selecting the 200 most predictive features was not
meant to avoid overfitting but to reduce computational effort
in the 100 times repeated cross-validation. In PLSR analysis,
overfitting can be avoided by choosing a number of PLSR
components that is significantly smaller than the number of
predictor variables. With a maximum number of 15 compo-
nents in our PLSR models, the ratio predictors/components
was ≥ 139 for PhenoCam data (2092 or 2101 observations
and 15 or fewer components), and ≥ 54 for drone data
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(810 observations and 15 or fewer components). Thus, the
number of observations was much larger than the number of
components, and no overfitting was expected.

Although the 75%/25% train/test data split in cross-
validation led to slightly better prediction accuracy, 19
genotypes/11 genotypes train/test cross-validation allowed
for high correlations between predictions and visual ref-
erence measurements. The development of 11 randomly
chosen genotypes, and thus 99 plots, unseen in training,
was accurately predicted by PLSR models in 100 repetitions
for each reference level, which demonstrates the general-
izability of the method and argues against overfitting. An
increased set of genotypes in training could further increase
the generalizability of the PLSR predictions reported in
this study.

4.8 Cost and measurement frequency of
different methods

In this study, PhenoCams were the cheapest method for
tracking phenology and senescence after five seasons in the
700-plot scenario when considering an experimental site with
a driving distance of 3 h (one-way). Although the initial costs
of PhenoCams for hardware and the efforts for setup were
fairly high, they allowed for an almost unlimited increase in
the temporal resolution of image acquisition to hourly or even
beyond without significantly increasing data acquisition costs.
However, for visual field ratings and drone-base approaches,
the round trips necessary for each measurement became the
main driver of cost, and every additional measurement came
at considerable marginal costs.

By contrast, PhenoCams need—assuming no technical
incidents occur—just two field visits for setup and dismount-
ing and if images could be transmitted via mobile networks,
SD cards would not need to be changed when full. The
DNG raw format used in this study was too data-heavy to
be transmitted to a server via a mobile network. However,
we demonstrated that the JPEG format-based VIs allowed the
tracking of senescence and phenology to b even slightly bet-
ter than those based on the DNG raw format. The 8-bit JPEG
format is lighter and can be transmitted to servers; thus, no
SD card change would be necessary in such a setup, and no
storage limitation would hinder frequent image acquisition.
An image in JPEG could be transmitted every 10 min, max-
imizing the probability of capturing good quality images on
many days. Such a JPEG-based setup would also make it pos-
sible to follow the seamless operation of the cameras almost
in real time without the need to visit the PhenoCams in per-
son. Using PhenoCams with the JPEG format therefore offers
many benefits without a major loss in quality.

Tschurr et al. (2024) argued that at higher temporal res-
olution, RGB-based VIs can compensate for lower spectral

resolution. Such comparisons are difficult for multiple rea-
sons. For example, Tschurr et al. (2024) did not include the
DVI, PSRI, and SAVI multispectral VIs in their study, which
all showed high predictiveness in this study, and PSRI was
approximating visual senescence ratings best also in the study
by Anderegg et al. (2020). In addition, our study confirmed
the number of field visits as an important cost driver in the
context of remote field experiments (Barreto et al., 2024;
Montazeaud et al., 2016; Velumani et al., 2020). In the 700-
plot scenario, the marginal costs for the RBG drone at 0.5,
1.5, and 3 h driving distance were 407, 659, and 1,037 CHF,
respectively. For the 1,400-plot scenario, the cost was, again,
significantly higher (Table 8). Thus, additional measurements
came at a price, and if multispectral sensors need to be flown
less often, this could lead to multispectral VIs being the
economically more favorable option, despite higher marginal
costs, depending on the difference in the number of flights
required compared to RGB-based VIs. Multispectral imaging
becomes particularly interesting if the sensor has already been
procured to measure other plant traits.

Furthermore, drone flights must be organized along with
other activities, and the logistics of a field season can be very
demanding, as many tasks can be completed only in good
weather conditions. Due to time constraints, it is often not
possible to fly in optimal conditions, and flying, especially
in rainy periods and for distant experiments, may be impos-
sible. Multispectral drones, therefore, also have an advantage
in these aspects, due to the lower number of flights required
in dense field seasons, thereby allowing for more flexibility
in planning and a lower workload. PhenoCams, on the con-
trary, can capture an image during that rare 20 min of a day
under suitable conditions without the need for intervention.
Further improvements in the PhenoCam setup and pipeline
could lead to an additional shift in balance in favor of Pheno-
Cams. However, following similar reasoning, the availability
of autonomous drone systems may shift the balance in favor of
drones again. Although these systems were strongly restricted
by regulation some years ago in many countries (Aasen et al.,
2020), the legislation changed in some countries, and such
systems can be operated, drastically facilitating the logistics
of distant experiments and increasing the probability of a high
frequency of flights in fair meteorological conditions.

The cost comparison did not include the additional benefits
of the methods. Especially multispectral VIs provide addi-
tional information on the plant state, such as general health
and nitrogen content. It is challenging to put a price tag on this
type of information, but this aspect should not be neglected
in such considerations. Finally, the cost considerations pre-
sented herein are meant to serve as a conceptual framework
that allows us to approximate real costs and to reason about
the most relevant cost structures. They are not meant to be
precise representations of true costs, which are even more
complex.
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4.9 VI and feature type importance in
PLSR modeling without ex ante knowledge on
phenology

Normalized relative PLSR coefficient sums
𝑛𝑜𝑟𝑚.𝛽rel,sum,ref.class,group were used to describe the impor-
tance of different VIs and feature types in respective PLSR
models. They are an integrative measure, as they are also
impacted by how often a VI or feature type is included in
the input data of the PLSR models. This depended a lot
on how well the VIs could be smoothed with the different
smoothing functions or fit with a Gompertz function. Many
studies usually normalize dynamics with ex ante knowledge
about phenology, for example, by calculating the days after
anthesis (e.g., Anderegg et al., 2020; Christopher et al., 2014,
2016; Cao et al., 2021). This requires the preceding tracking
of phenology. The methods developed and examined in this
study are meant to work without the need for supplement
ratings. The methods rely on clear VI dynamics from an
early minimum to a late maximum or vice versa. VIs that
did not follow such a clear dynamic may have failed in
the automated analysis procedure, may thus be underrepre-
sented in the PLSR input data, and may never reach high
𝑛𝑜𝑟𝑚.𝛽rel,sum,ref.class,group values. Yet, 𝑛𝑜𝑟𝑚.𝛽rel,sum,ref.class,group
remains a valid metric to describe the overall usefulness of a
VI to the process presented.

As previously described, different sensors, image formats,
and data treatments can lead to different VI dynamics. Hence,
different VIs and feature types were most predictive among
the various methods. Furthermore, the input data in this
study were highly correlated, and with correlated data, small
changes in the data could lead to the preference of one fea-
ture over the other. Within one data type or image format,
the temporal features of the input data in the PLSR models
were the same for the PLSR models of the different refer-
ence rating types (BBCH, SenLeaf, and SenPlant) and classes
(early, intermediate, and late). Changes in 𝑛𝑜𝑟𝑚.𝛽rel,sum for
VIs and feature types between reference rating types and
classes showed that for different phenotypic processes and
stages, different temporal features were most useful, indicat-
ing that the tracking of such processes should not rely on one
but on multiple VIs.

4.10 Practical limitations of the PhenoCam
approach

Although PhenoCams reduce the need for frequent field visits,
they have some practical limitations. Importantly, the foot-
prints of the mast ropes occupy a significant area, with a
diameter of 20 m, which poses an obstacle to field manage-
ment. Then, the masts should be high to cover a large area
with top-down viewing geometry. However, there are certain

risks involved in leaving tall masts unattended in fields for
long periods of time, as the anchors could loosen in the wind,
and the masts could fall. Tall masts also lead to slightly mov-
ing cameras, which means that the image sections between
images can change. Producing the adjusted masks is laborious
and time-consuming, unless reliable digital image stabiliza-
tion is used, which would simplify processing. More detailed
practical aspects of applying PhenoCams are described in the
Supporting Information Section S5. Although PhenoCam was
tested on real variety testing trials, only one location was
tested each year. To test the applicability of the method in
multi-environment trials, the next step would be to carry out
trials at several locations in one year.

4.11 Phenotypic interpretation of most
relevant VIs

To link the most relevant VIs of PLSR prediction to specific
physiological metrics and environmental conditions, what the
color bands represent must be understood. Green light is
generally strongly reflected by chlorophyll, while large pro-
portions of red and blue light are absorbed (Bendig et al.,
2015; Tucker, 1979). Other pigments also affect the color
of plants. Carotenoids are generally red, orange, or yellow,
whereas anthocyanins contribute to a pink, scarlet, purple, or
blue appearance (Młodzińska, 2009; Sudhakar et al., 2016).
Although these pigments are less visible than chlorophyll,
they still contribute to the spectral signatures- of wheat
canopies and their changes over time. The differences in
reflectance for healthy vegetation are used in RGB-based VIs.
G_R_Ratio and MGRVI, which contain only the red and green
bands, are mostly driven by chlorophyll content, with MGRVI
using squaring to amplify reflectance differences between
bands. RCC, GCC, BCC, GLI, VARI, MNVI, RGBVI, and
different ExGR type VIs also contain the blue band and are
more complex to interpret. Higher blue values can be related
to non-leaf objects, such as woody parts (Moore et al., 2016).

For VARI, the idea of the green-red ratio used in normal-
ized green-red difference index (NGRDI) was complemented
by the introduction of the blue band for atmospheric auto-
correction, and VARI has also been shown to be more
sensitive to fractional canopy cover than NGRDI (Gitelson
et al., 2002). RGBVI captures the reflectance differences
due to chlorophyll α-absorption and chlorophyll β-absorption
(Bendig et al., 2015). IKAW does not even use the green band
to estimate the chlorophyll content of the leaves. Although
the inclusion of the green band allows for a better correlation
with chlorophyll under specific meteorological conditions,
IKAW was shown to be more robust in more diverse weather
in a previous study by Kawashima (1998). Multispectral
CIs bands from near-infrared and red-edge regions gener-
ally show a high reflectance from both stressed and healthy
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vegetation. They are therefore typically combined with the
red or green band to build VIs that amplify the difference
between near-infrared or red-edge and red or green. NDVI
and NDRE are very similar, but the latter uses a red-edge
band in contrast to the near-infrared band of NDVI. Compared
to NDRE, NDVI tends to saturate more easily with a high
chlorophyll content (Morlin Carneiro et al., 2020), but both
are driven mainly by chlorophyll content, as is the simpler
DVI (Tucker, 1979). With SAVI, a soil influence correction
is applied, but otherwise it is very similar to NDVI and driven
by chlorophyll content (Huete, 1988). Finally, PSRI uses the
chlorophyll/carotenoid ratio, which appears to be an impor-
tant indicator of the concurrent pigment breakdown processes
during senescence (Anderegg et al., 2020; Merzlyak et al.,
1999).

In summary, the ensemble of the most useful VIs in
this study appeared to be driven mainly by chlorophyll, but
the concurrent breakdown processes of anthocyanins and
carotenoids also seemed important. Most RGB-based VIs
included the blue band, which supposedly helped to auto-
correct for the influence of soil background and changing
weather conditions. The multispectral VIs were most likely
more sensitive to chlorophyll content than RGB-based VIs.

5 CONCLUSION

This study proposed PhenoCams as an alternative to field
ratings to track phenology from heading onward and senes-
cence at plant and flag leaf levels in wheat variety testing.
A mobile PhenoCam setup was demonstrated, and a PLSR
approach was applied to analyze multiple temporal features of
different VIs. PhenoCam-based predictions were only slightly
inferior to a technical benchmark based on multispectral
drone images. For phenology, the mean genotype-wise abso-
lute deviation from visual reference ratings was 0.62 days
for PhenoCams and 0.32 days for multispectral drones. Flag
leaf senescence deviated by 0.51 and 0.29 days, and plant
senescence deviated by 0.42 and 0.25 days for PhanoCams
and drones, respectively. Uncalibrated JPEG images were
sufficient to track plant development, and images could be
directly transmitted via mobile networks from remote exper-
imental sites in future setups. PhenoCams needed a higher
initial investment but enabled an increased temporal resolu-
tion at lower marginal costs, whereas transfers to experimental
sites were shown to be important cost drivers for ratings
and drone flights. Thus, these findings present PhenoCams
as a promising option when a high temporal resolution is
needed. They could be a cost-effective lean phenotyping
method to replace visual ratings of phenology and senes-
cence in distant experiments, for example, multi-environment
trials.
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