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No-till (NT) is a key component of conservation agriculture aiming at producing crops
with minimal soil disturbance. This land management practice offers numerous eco-
nomic and ecological advantages over conventional tillage as evidenced by its rapid
expansion since the 1960s, now practiced on 15% of the global arable land. Nevertheless,
various crops exhibit persistent yield losses even decades after transition to NT. Here,
we demonstrate that the promise of beneficial and sustainable soil management may
be undermined by a gradual and invisible threat of subsoil compaction. We report on
a risk of subsoil compaction stemming from the episodic passage of heavy machinery
(e.g., harvesters). The threat is of dynamic and asymmetric nature whenever compaction
events occur more frequently than the natural rates of soil structure recovery, result-
ing in a gradual increase in soil degradation. Our analyses show that nearly 40% of
global NT lands (0.8 million km®) are under high subsoil compaction risk (primarily
in heavily mechanized Canada, United States of America, and Brazil). Awareness and
mitigation of subsoil compaction by scaling field operations to soil mechanical limits
and adoption of smaller robotic vehicles will contribute to a sustainable and holistic
conservation agriculture.

arable farming | subsoil compaction | conservation tillage | farm machinery

Crop production must meet the demands of rapidly growing human population, while
balancing environmental impacts of modern agriculture (1, 2). Perceptible effects of cli-
mate change with frequent weather extremes are already challenging crop production and
food security (3-5). Arable land management plays a pivotal role in addressing these
challenges due to its direct effects on crop yields (6) and due to its potential to reduce the
environmental footprint of arable farming (7) and its regulatory role in carbon sequestra-
tion for mitigating climate change impacts (8, 9).

While tillage has been practiced for millennia to create favorable conditions for uniform
germination and subsequent crop growth, it requires considerable energy and may have
detrimental environmental consequences ranging from soil erosion, loss of soil organic
carbon to decline in soil biodiversity (10—13). Conservation agriculture manages crop
production by maintaining permanent soil cover and diverse crop rotations while mini-
mizing soil disturbances (14, 15). In the following, we focus on no-till (NT)—a key
component of conservation agriculture—that has been adopted at increasing rates since
the 1960s and is now practiced on approximately 15% of the global arable land (15). NT
shortens the time required for crop establishment, reduces fuel consumption, and decreases
labor per hectare (16) but may incur persistent yield penalties (6) and may require addi-
tional inputs [e.g., herbicides; (17)].

Globally, most of the NT areas are in North America, South America, and Australia
(15, 18). These regions are characterized by big farm sizes (19) that require high-capacity
agricultural machinery (e.g., combine harvesters with wide cutter boards and large grain
tanks). The reliance on large and heavy farm vehicles that induce high mechanical soil
stresses (Fig. 14) is likely to result in soil compaction in the crop root zone (20, 21).
Hence, while NT practices confer numerous agroecological and economic benefits, even
the occasional use of large and heavy machinery [e.g., laden combine harvesters with wheel
loads now exceeding 10,000 kg; (21)] remains a major concern. Moreover, the absence
of mechanical loosening (i.e., tillage) in NT systems implies reliance on natural mecha-
nisms for soil loosening, and consequently, NT soils are typically more compact than
tilled soils (Fig. 1B).

While direct measurements of the extent of the compaction problem and its legacy are
limited at present, theoretical and anecdotal evidence suggests that part of the persistent yield
losses associated with NT (6, 26) may result from chronic subsoil compaction. There are
growing concerns of persistent soil compaction in NT fields in Brazil (27-30)—the second
largest NT country in the world accounting for nearly 20% of the global NT area (15). We
note that soil compaction problems in Brazil may be aggravated by the nature of tropical soils
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Fig. 1. Loads of modern farm machinery induce high stress levels into deep
soil layers with associated enhanced risks of soil compaction in the root zone.
(A) Simulated vertical stress under the tire of a large tractor (Left) and a modern
combine harvester (Right). The 50 kPa isobar indicates a critical stress level to
prevent soil deformation under moist conditions (22). Root system of winter
wheat (Triticum L.) at harvest is shown for comparison (redrawn from ref.
23). (B) lllustrative examples of measured depth profiles of cone penetration
resistance, indicative for root elongation rates (24), in NT and plowed soils
from field experiments in the United States of America [Left; (25)] and from
farmers' fields in Sweden (Right; see Materials and Methods). Symbols show
means per depth and horizontal bars are SE.

that often contain nonswelling clay minerals (31, 32) with limited
potential for intrinsic soil structure regeneration (33, 34). The largest
NT areas in temperate regions of the United States of America and
Canada [together accounting for one third of global NT area; (15)]
are associated with wet subsoils (35) and limited harvest windows
(36, 37) that jointly result in conditions susceptible to soil compac-
tion. Hence, a major part of global NT area is characterized by factors
enhancing soil compaction risks and persistence: heavy machinery,
moist soil conditions under critical field operations, and/or limited
potential of natural recovery following compaction.

The aim of this study is to identify and highlight the unseen
risk of subsoil compaction under NT farming considering persis-
tent trends in farm mechanization. Specifically, we argue that the
common perception of optimal land management by virtue of
NT alone may be misleading if peak loads—even a single passage
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of a combine harvester per year—are not properly managed. We
delineate the global arable lands at risk, discuss the problem of
gradual increase in subsoil compaction levels by considering real-
istic values for compaction frequency and soil structure recovery
times, and outline solutions toward sustainable NT farm vehicle
design and use. The primary message is that prevention of subsoil
compaction must become a central component of conservation
agriculture for sustainable soil management.

Global Patterns of Subsoil Compaction Risk
Under NT Farming

Irrespective of soil management specifics, the global patterns of crop
yield losses due to soil compaction (38) and global distribution of
subsoil compaction susceptibility (21) reveal a similar picture of
enhanced risks of subsoil compaction in regions with intensive
mechanization (i.e., large farms with heavy tractors and harvesters)
combined with moist subsoil conditions. In Fig. 2, we combine a
global map of subsoil compaction susceptibility index (SCSI) devel-
oped by Keller and Or (21) with a global gridded tillage dataset of
Porwollik etal. (39) to test whether regions with extensive NT
management harbor higher risk of subsoil compaction. The global
extent of NT is approximately 15% of total arable land (15, 40)
amounting to approximately 2 million km® of land. The top five
counties with the largest tracts of land under NT account for >80%
of the total global NT area and are United States of America
(430,000 km®), Brazil (320,000 kmz), Argentina (310,000 kmz),
Australia (220,000 km?), and Canada (200,000 km?). Except for
Australia and parts of Argentina, NT lands are largely under high
risk of subsoil compaction (as indicated by SCSI > 1.0; Fig. 2). The
exceptions are attributed to moderate country-averaged mechani-
zation levels in Argentina (41) and relatively dry conditions [i.e.,
low climatic soil water contents; (31)] in Western Australia. A high
subsoil compaction risk is also predicted for parts of Europe but
arable land under NT there is less than 5% (15). Based on our
analyses, we estimate that about 40% of all NT land (0.8 million
km?; Fig. 2C) is under high subsoil compaction risk (primarily in
Canada, United States of America, and Brazil).

To gain additional insights on potential impacts of soil tillage
on crop yields in rainfed agriculture across various conditions, we
present in Fig. 3 a summary of the combined meta-analyses of
Pittelkow et al. (6, 26) and Su et al. (42) for various crops. We
focus here on maize and wheat—two major global crops (43)—
and consider the elapsed time since conversion to NT (Fig. 34)
and response under different climatic regimes (Fig. 3B). The
results show that wheat is a more robust crop than maize to NT
transition, exhibiting only minor yield losses. In contrast, maize
yields are persistently lower under NT [relative to conventional
tillage (CT)] across time since transition and for humid climatic
conditions (Fig. 3). We note that maize is more sensitive to soil
compaction than wheat: a global meta-analysis by Obour and
Ugate (44) revealed that on medium-textured soils [such as loam,
the most dominant texture class globally; (45)], grain yields are
decreased due to soil compaction by 34% in maize but only by
6% in wheat. This is consistent with a stronger reduction (com-
pared with CT) in root biomass in maize than in wheat in compact
soil layers under N'T reported by Fiorini et al. (46). We hypoth-
esize that the persistent trend toward lower yields with time since
NT conversion for maize (Fig. 34) can be attributed to accumu-
lative compaction effects over time. Yield penalties under NT tend
to increase in wet climate in both wheat and maize (Fig. 3B),
which might be associated with higher compaction risks in moist
soils. These hypotheses remain to be tested in future research.
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Fig. 2. Analyses of global subsoil compaction susceptibility for different soil tillage systems. (A) Total area under three primary soil tillage systems. (B) SCSI
values for different tillage systems, with SCSI > 1 indicating high compaction risk. (C) Global SCSI exceedance probability for different tillage systems. (D) Global
geographical distribution of SCSI for different tillage systems with dark colors indicating high compaction risk (SCSI > 1) and light colors low risk (SCSI < 1).

The combined analyses as shown in Figs. 2 and 3 lend support
to the hypothesis that yield losses in NT farming can be attributed
in part to subsoil compaction. Further support to this hypothesis
stems from documented higher soil bulk density and enhanced
mechanical resistance to root growth in NT soils (Fig. 1B), reports
of compaction problems in long-term NT fields (27-29), and
crop yield benefits of occasional subsoiling in NT systems (47,
48). The increased vulnerability to subsoil compaction under high
mechanization levels even in NT farming are linked with high
loads applied to soils (e.g., for annual harvest) causing the
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propagation of soil mechanical stresses into deep soil layers (21).
Additionally, we need to consider that NT is practiced in some
of the most productive areas (49) receiving sufficient precipitation
relative to potential evapotranspiration (50), resulting in moist
soil conditions, low soil mechanical strength and enhanced com-
paction risks (21). Even though crops in areas of high mechani-
zation levels may receive sufficient amounts of nutrients via
fertilization, restricted access of crop roots to subsoil resources
(nutrients, water) decreases crop yields in rainfed agriculture,
especially in dry years (51-53).
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Fig. 3. Meta-analyses of yields for maize and wheat under NT and CT. (A) Comparing rainfed maize and wheat yields as a function of time since transition to
NT management relative to CT; note the number of paired samples (n) for each time are listed on the right. (B) Maize and wheat crop yield changes in different
climatic zones expressed as Aridity index as mean annual precipitation (MAP) divided by potential annual evaporation (PAE); note the area under each climate

and number of paired samples on the right.
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Gradual Subsoil Compaction: When Intervals
between Compaction Events Are Shorter than
Soil Structure Recovery Times

Gradual subsoil compaction results from two opposing processes
characterized by disparate time scales: instantaneous soil defor-
mation induced by field traffic (i.e., heavy farm machinery) and
a much slower natural soil recovery following compaction (54).
Hence, while soil degradation can be caused within seconds (55,
56), detrimental effects on soil functions caused by compaction
[i.e., crop yield loss, reduced water infiltration capacity, poor soil
aeration; (57)] persist for years, decades, or even centuries (58-61).
The decline in soil functions accumulated over time from the
compaction event until full recovery constitutes the ecological and
economic costs of soil compaction (54).

Acknowledging that a certain degree of soil compaction is una-
voidable due to the necessity of field traffic for establishing and
harvesting crops, it follows that soil can only be in dynamic
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equilibrium if recovery times are significant and shorter than the
extent and duration between compaction events (Fig. 44).
However, if the period between compaction events falls below
intrinsic soil structure recovery time, soil gradually degrades with
time (Fig. 44). To illustrate the likelihood of gradual soil degra-
dation under realistic assumptions, we simulated the evolution of
changes in soil void ratio for randomly assigned duration between
compaction events [e.g., caused during harvest with a modern
combine harvester that can have a mass of 40,000 kg when laden;
(20)] of 1 to 5y [i.e., heavy loads resulting in high soil stress and/
or moist subsoil with associated low soil strength resulting in com-
paction risk every 1 to 5 y; (62)] and two recovery time scenarios
[5- and 20-y recovery time, corresponding to typical natural recov-
ery times in topsoil and subsoil, respectively; (54)] (Fig. 4B).

In the absence of mechanical subsoil loosening (i.e., tillage) in
NT farming, the prospects of soil structure recovery following
compaction rely entirely on natural soil structure recovery pro-
cesses. These include abiotic processes (soil drying and wetting,
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Fig. 4. Schematicillustration of the soil compaction problem resulting in gradual soil degradation. (A) Soil degradation due to field traffic and recovery following
compaction events for a case where the frequency of perturbations (traffic events) and recovery time are in balance (brown lines) resulting in a dynamic equilibrium
and for a case where time between perturbations is shorter than recovery time (red lines) resulting in accumulating degradation over time. (B) Simulated changes
in void ratio over time for compaction events that randomly occur at time intervals of 1 to 5y and for two different recovery times (blue: 5y; red: 20y). Thin lines
show different realizations (interval between each compaction event is random between 1 and 5y; 10 simulations per recovery time scenario) and symbols and
bold lines show the mean of the 10 simulations. Recovery paths in (A) and (B) are drawn with constant recovery rates (lines) for simplicity—in reality, recovery is
likely nonlinear and differs between soil properties. Note that subsequent deformation, illustrated by a decrease in soil property or function in (A) and a decrease
in void ratio in (B), decreases with the number of loading cycles (S/ Appendix, Fig. S1), and hence, soil degradation trends approach a horizontal asymptote.
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and freeze—thaw cycles), and biotic processes related to biological
activity of soil fauna (e.g., biopore formation, translocation of soil
particles), soil microorganisms (e.g., binding of soil particles), and
plant roots (e.g., biopore formation, enmeshing of soil particles).
While a quantitative analysis of compaction recovery rates for
different soils and climates is currently not possible due to lack of
data and suitable mechanistic models (see, e.g., ref. 54), a quali-
tative discussion of differences in soil structure recovery potential
between major global NT regions is possible.

Soil shrinkage and swelling, which result in particle rearrange-
ment and formation of new pore spaces, require expansive clay
minerals in a soil. However, several major global NT areas—
including Brazil, western Australia, and North America—are
dominated by nonexpanding clay minerals (such as kaolinite and
illite) in top- and/or subsoils (31, 32) reflecting low soil structure
recovery potential. Freezing, particularly in the subsoil, is absent
in important NT areas except Northern America (63) and can
therefore not support soil structure recovery in most major NT
areas of the world. Soil biological activity including root growth
and faunal activity in cold (such as North America) and dry cli-
mate (such as western Australia) is restricted to periods of adequate
temperature and sufficient soil moisture (64—67), while conditions
in South America allow enhanced soil biological activity. However,
the possibility of growing two crops within a year in parts of South
America (68) decreases the time between potentially harmful com-
paction events thereby increasing the likelihood of attaining a soil
degradation trajectory (Fig. 4). In summary, the potential of soil
structure recovery following compaction is limited in most major
global NT areas, either due to limited soil shrink-swell capacity
(Brazil) or due to cold (North America) or dry climate (western
Australia) that reduce the windows of biological activity.

Reducing Subsoil Compaction Under NT
Farming

While avoidance of soil compaction is simple in principle, namely
by selecting machinery that exert soil stresses below soil strength
during agronomic operations (69), this may not be feasible in
practice. Food production under economically viable conditions
requires machinery, while favorable soil conditions (i.e., suffi-
ciently dry to support vehicle loads) may not coincide with opti-
mal timing for field operations in relation to crop cycles such as
sowing or harvesting. Vehicle-induced soil stresses can be partially
reduced by technical solutions (e.g., wider tires, rubber tracks);
however, these pertain to soil surface with limited effect on the
subsoil (70) that is particularly vulnerable because of the decade-
long compaction-recovery times (71). Postcompaction soil recov-
ery rates can be enhanced by promoting biological activity [e.g.,
by use of “bio-tillage” crops; (72, 73)], however, these are unlikely
to overcome the compaction problem simply because soil structure
recovery times are much longer than intervals between field oper-
ations (Fig. 4). Controlled traffic-farming restricts all field traffic
to designed permanent tramlines and is a system to manage soil
compaction suitable to many major NT areas (74), which has
shown to increase crop yields and reduce surface water run-off
and greenhouse gas emissions (74, 75). However, the system cre-
ates permanent, heavily compacted tracks, which may strongly
hinder soil biological activity or could limit water infiltration and
change flow paths with potential consequences for water recharge
and which could make future changes in soil management and
land use problematic. Autonomous vehicles and fleets of robots
seem to offer new possibilities to break the reliance on heavy
machinery for efficient farming. Some autonomous low-weight
vehicles offer a way forward, although challenges, e.g., related to

PNAS 2025 Vol.122 No.46 2515473122

harvesting operations, remain (20). The use of autonomous elec-
tric light machinery may already now be beneficial if ecological
costs of soil compaction and climate impact were accounted for
(76). Although challenges remain, recent studies have shown the
potential of autonomous machinery in arable cropping systems,
with positive impacts on farmers’ incomes under certain condi-
tions (77, 78).

NT farming and conservation agriculture must reflect a com-
mitment to not only minimize soil disturbance by avoidance of
tillage but also to minimize soil deformation by avoiding peak
loads that exceed soil strength, particularly in the invisible subsoil
with low compaction-recovery potential, to truly fulfill the claim
of soil conservation. Timely adoption of strategies for mitigating
subsoil compaction risk is particularly important for regions with
currently low but rapidly increasing mechanization level (e.g.,
China). Drivers of soil compaction are rooted in the need for the
capacity of agricultural field operations to comply with constraints
set by complex interactions involving farm economy, intermediate
trade, machine manufacturers, national economic systems, and
world economy (e.g., commodity market). A systemic change
toward sustainable soil management based on light machinery
therefore needs to involve the complete agricultural value chain.

Conclusion

We highlight the potential of an invisible threat to the sustainability
of NT due to persistent subsoil compaction risk stemming from
reliance on efficient, high-capacity farm machinery, even when soil
is not disturbed (i.e., not tilled). We show that NT farming is
concentrated in regions with large field and farm sizes, which
require large and heavy machinery that induce high stress levels.
Major NT areas are in temperate climate with occasionally moist
subsoil that is prone to compaction, resulting in a situation where
vehicle-induced soil stresses frequently exceed soil strength. We
estimate that almost 40% of the global NT area is at high subsoil
compaction risk. The fact that soil structure recovery times are
typically much longer than intervals between compaction events
implies a risk of a gradual increase in soil degradation. Data suggest
that yield losses of certain crops (e.g., maize) under NT may be
attributed to subsoil compaction. Advances in autonomous light-
weight vehicles offer a potential to disentangle the link between
heavy machinery with associated high subsoil compaction risks and
competitive and economical food production. We conclude that
avoidance of subsoil compaction by minimizing peak loads (e.g.,
during harvest) must become a central component of NT farming
and conservation agriculture for sustainable soil management.

Materials and Methods

Soil Stress Simulations. Stress propagation in soil below agricultural tires
(Fig. 14) was modeled using the classical Boussinesq (79) solution in relation
to the problem of the normal loading of the surface of a homogeneous isotropic
elastic halfspace. For simplicity, we assumed a circular shape for the contact area
(i.e., tire-soil area) and a uniform contact stress distribution across the contact
area. Vertical normal stress, o,,, at depth zunder the centerline of the contact area
with radius a is then calculated as (79)

3
=pf1- —2—)
0, p0< (32 +22)3/2> [1]

where py is the surface stress.

Soil Mechanical Resistance as a Function of Depth. Soil mechanical resistance
in Swedish farmers' fields shown in Fig. 1B was measured in October 2024 using a
hand-held Eijkelkamp penetrologger (cone base area 1 cm?, cone apex angle 60°)
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to a depth of 0.45 m.Two fields were selected: one field on a NT farm that has not
been plowed since 1997 and has been under strict NT since 2008 (i.e., 16 y at the
time of measurements) and one field on a farm that is conventionally tilled (i.e.,
regular moldboard plowing to approximately 0.2 m depth). The two fields are within
6 km from each other (central coordinates: 59.37 °N, 17.59 °E). In each field, five
locations were selected, and at each location, ten insertions were made.

Changes in Void Ratio for Repeated Loading Events. Changes in void ratio
due to loading shown in Fig. 4B were simulated for the 0.5 m soil depth (i.e.,
subsoil) underawheel load of 8,000 kg (an average load for the front wheels of a
modern combine harvester with half-full grain tank; 22,23, 71)and a 900/60R32
tire with a load-adjusted tire inflation pressure of 150 kPa (https:/terranimo.
world) using the SoilFlex model (80). Soil stress-strain behavior was characterized
by the O'Sullivan and Robertson (81) model, and the soil mechanical properties
were calibrated based on measured data from repeated loading tests obtained
from the literature including both laboratory studies (81, 82) and field studies (83,
84).These studies used soils with textures ranging from sand to clay (clay contents
between 2 and 45%). Simulated relative changes in void ratio are compared with
measured relative changes in void ratio in S/ Appendix, Fig. S1. Hereby simulated
stress levels were adjusted to applied stress levels of the respective studies.

To simulate changes in void ratio due to loading (i.e., decrease in void ratio)
and recovery (i.e., increase in void ratio), loading events were simulated to ran-
domly occurattime intervals of 1to 5, with linear increase in void ratio between
loading events (thin lines in Fig. 4B). Data about temporal dynamics of compac-
tion risks are scarce. One exception is the study by Kuhwald et al. (62) who showed
thatin their study area, situations where soil stress is twice as high as soil strength
[corresponding to their soil compaction index >0.3 and representing “very high”
to “extremely high" compaction risk; (85)] occurred at least once within 5 y on
60% of the arable land in their study region (total study area in Lower Saxony,
Germany: 2,000 km?; MAP 649 mm, mean annual temperature: 10 °C). Soil com-
paction is induced when soil stress > soil strength (56) or even at lower ratios of
stress to strength (81, 86, 87).This, in combination with the rather dry conditions
(i.e., low MAP) in the study region considered by Kuhwald et al. (62), indicates
that one compaction eventevery 1to 5y, as assumed here, is realistic and rather
conservative. Two scenarios with recovery times of 5 and 20 y, respectively, were
simulated (blue and red, respectively, in Fig. 4B). For simplicity, recovery was
assumed to be linear. The chosen recovery times represent fast (5 y) and average
(20'y) recovery in subsoil [see Keller et al. (54) and references therein]. For each
scenario, 10 realizations, i.e., 10 sequences of random time intervals between
loading events, were made (thin lines in Fig. 4B), and the mean across the ten
realizations is indicated by filled circles with corresponding SD in Fig. 4B.
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