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ABSTRACT

Quantitative long-term assessments of the extent and direction of biodiversity change due to anthropogenic environmental
change are challenging because representative baseline data older than a few decades are very rare. This is also the case for
grasslands in temperate Europe, which can harbour high species diversity at small spatial scales, but have undergone strong and
varied changes, particularly in relation to the agricultural intensification that peaked in the middle of the last century. We resam-
pled 416 historical vegetation records (originally sampled between 1884 and 1931) of 0.09 m? from grasslands across Switzerland
at a wide range of elevations (300-2500 m) and moisture levels to assess the changes in taxonomic, functional, and phylogenetic
diversity, as well as community characteristics, and tested whether the magnitude of change depended on elevation. We found
severe declines in alpha, beta, and gamma taxonomic diversity over the last century, with species richness being on average 26%
lower in the resurvey plots than in the historical plots. Functional and phylogenetic alpha diversity were also lower in the resur-
vey plots than in the historical plots, although the differences were less pronounced. The loss in all three diversity metrics de-
creased with elevation. This was linked to stronger increases in nutrient-demanding, mowing-tolerant, and competitive species,
particularly grasses (Poaceae), at lower than at higher elevations. This elevational pattern reflects the strong influences of land
use and eutrophication, which are more pronounced at lower elevations. By contrast, the effect of global warming on vegetation
has so far been subordinate. The smaller diversity changes at higher elevations offer the potential to maintain a high proportion
of the historical plant diversity in mountain grasslands.

1 | Introduction increased in the second half of the 20th century (Green 1990;
Lachat et al. 2010; Matson et al. 1997), is considered to be one
The ongoing global decline in biodiversity is well docu- of the main causes of this loss (IPBES 2019; Jaureguiberry

mented and widely recognized (Ceballos et al. 2015; Dirzo and et al. 2022; Kleijn et al. 2009). However, despite general con-
Raven 2003; IPBES 2019). In Europe and other industrialized sensus on biodiversity decline, robust quantitative assessments
regions of the world, land use intensification, which rapidly = spanning the full extent of the past century hardly exist. This is
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largely due to the paucity of baseline data extending back more
than a few decades, especially across large spatial scales (Jandt,
Bruelheide, Berg, et al. 2022; Kapfer et al. 2017). Consequently,
most long-term assessments rely on indirect and coarse in-
dicators such as changes in land cover or habitat extent (e.g.,
Butchart et al. 2010; Lachat et al. 2010; Sala 2000), whose link to
species diversity is complex and non-linear.

Among the habitat types most strongly affected by land-use
change in Europe are semi-natural grasslands, now classified
among the most threatened ecosystems of the continent (Janssen
et al. 2016). These grasslands are the product of millennia of
low-intensity agricultural practices dating back to the Neolithic
(Hejcman et al. 2013). In contrast to intensively managed grass-
lands, they have experienced minimal fertilizer input and no
systematic reseeding (Dengler et al. 2020). As a result, they sup-
port exceptionally high species richness at fine spatial scales—
plot-level vascular plant diversity in these systems ranks among
the highest globally (Wilson et al. 2012). In addition to hosting
numerous endemic and specialist species, semi-natural grass-
lands play a significant role in maintaining ecosystem functions
and services (Dengler et al. 2014).

At coarse spatial scales, such as countries, regions, or geo-
graphic grid cells, the decline of grassland plant diversity
is well documented quantitatively (Eichenberg et al. 2021)
and qualitatively through Red Lists (Bornand et al. 2016).
However, at fine spatial scales (« diversity) where many of the
potential drivers act on plant diversity, the picture is incon-
clusive to date. While previous resurvey studies in Central
European grasslands generally found clear shifts in species
composition, many of them reported no change or even an
increase in species richness (Héberlin and Dengler 2025;
Klinkovska et al. 2025; Schwaiger et al. 2022). Apart from the
effects of different spatial scales (regional vs. local), a major
reason for these contrasting findings is probably that the orig-
inal vegetation records that were resurveyed and that could
provide reliable estimates of plant community change (Kapfer
et al. 2017) typically date back only one to seven decades (e.g.,
Diekmann et al. 2019; Jandt, Bruelheide, Berg, et al. 2022).
Thus, most resurvey studies rely on baseline data from during
or after the Third Agricultural Revolution (Green 1990;
Lachat et al. 2010; Matson et al. 1997; Weber et al. 2004;
Wood et al. 2017). Longer-term resurvey studies of vegetation
plots are extremely rare and hitherto restricted to spatially
limited sites like mountain tops (Steinbauer et al. 2018) or a
local grassland experiment (Silvertown et al. 2006), and thus
hardly generalizable to widespread ecosystems (Verheyen
et al. 2017). Lacking representative baseline data prior to the
intensive agricultural transformation limits our understand-
ing of longer-term changes in species diversity, community
composition, and ecological strategies and could lead to an
over-optimistic picture of the current state of grassland biodi-
versity in Europe.

The vast majority of studies on diversity change of vegeta-
tion focus on taxonomic alpha diversity, mostly species rich-
ness, thus failing to provide a comprehensive picture of the
nature of change and its implications. The few studies that
also considered the beta component of diversity, i.e., the spa-
tial turnover in species composition, often found that a local

or regional increase in plant diversity was associated with
a spatial homogenization, i.e., a decrease in beta diversity
(Biihler and Roth 2011; Finderup Nielsen et al. 2019). Even
more rarely, studies on long-term dynamics in plant diversity
consider phylogenetic and functional diversity in addition to
taxonomic diversity (but see Gillet et al. 2016). Thus, our un-
derstanding of how humans altered these two aspects of bio-
diversity remains limited.

Another major limitation of previous work on anthropogenic
plant diversity change is the underrepresentation of eleva-
tional gradients in the studies. While contemporary species
richness often peaks at mid-elevations (Descombes et al. 2017;
Giisewell et al. 2012; Wohlgemuth et al. 2008), this relationship
is known to vary with spatial scale (Nogués-Bravo et al. 2008;
Rahbek 2005). Whether the observed elevational richness pat-
terns are primarily shaped by natural abiotic gradients or have
been substantially modified by anthropogenic pressures over
time remains unresolved (Nogués-Bravo et al. 2008).

In this study, we leverage a unique historical dataset of sys-
tematically surveyed vegetation plots in grasslands across
Switzerland, originally recorded between 1884 and 1931
using consistent methods (Riedel et al. 2023). This dataset
offers an unprecedented opportunity to quantify long-term
changes in plant diversity and composition comprehensively
across a broad spatial and elevational extent. Considering
that our baseline data are from before the Third Agricultural
Revolution, which was much more impactful at lower eleva-
tions, we tested the following main hypotheses: (i) over this
long period all components («, 3, ¥) and aspects of diversity
(taxonomic, phylogenetic, and functional) have declined; (ii)
the plant community has shifted toward species indicative of
higher nutrient availability and management intensity; and
(iii) the magnitude of these changes varies with elevation,
with lowland areas exhibiting more pronounced transforma-
tions than higher-elevation sites.

2 | Methods
2.1 | Historical Vegetation Records and Relocation

For the resurvey, we used the “Historic Square Foot Dataset”
(Riedel et al. 2023) consisting of 580 vegetation plots of 0.09 m?
that were sampled across Switzerland between 1884 and 1931.
The researchers who recorded the historical plots aimed at char-
acterizing the grassland types in Switzerland. Therefore, the
historical plots cover a wide range of grassland types along the
elevation and soil moisture gradients (Riedel et al. 2023). The
historical plots were sampled by cutting a 0.3x0.3m (“square
foot”) section of the sod, followed by measuring the aboveground
dry mass of each species in the lab.

For the resurvey, for each historical plot, we defined a potential
area where the historical plot was most likely located based on
the description of the location in the old records. These records
normally included the name of the village or town and the ele-
vation, and often additional information such as toponyms, as-
pect, or distance and direction to a certain landmark or farm
(Figure 1). Historical vegetation-plot records with identical or
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FIGURE1 | (a)For each historical vegetation plot we defined a potential area in which the historical plot most likely was located (left). Based on
the size of the area still covered with grassland, we sampled 3-5 randomly distributed resurvey plots (right). (b) Location of the “potential areas” in
Switzerland (background map © swisstopo). Map lines delineate study areas and do not necessarily depict accepted national boundaries.

very similar location information were assigned to the same po-
tential area, resulting in 377 potential areas for the original 580
plots. Further details about the “Historic Square Foot Dataset”,
including the relocation of the historical plots, can be found in
Riedel et al. (2023).

2.2 | Vegetation Resurvey
2.2.1 | Sampling Design

Due to changes in land use, some parts of the potential areas
were no longer covered by grassland during our resurvey in
2021 and 2022. We excluded these non-grassland areas, such
as built-up areas and forests, from the potential areas based on
the land cover layer of the Swiss topographic landscape model
(https://www.swisstopo.admin.ch/en/landscape-model-swiss
tlm3d) using ArcGIS Pro 2.6.3 (ESRI). In addition, we ex-
cluded arable land by using geodata containing the land use
of farmland (https://www.geodienste.ch/services/lwb_nutzu
ngsflaechen, 2021). In 19 potential areas, no grassland was
left, leaving 358 potential areas representing 542 historical
vegetation plots.

In each potential area, we sampled 3-5 randomly distrib-
uted resurvey plots to account for the error due to imprecise
relocation (Figure 1). The relocation error will increase the
Type II errors, i.e., make our statistical tests conservative,
but should not lead to any bias in the data if the new plots
are randomly placed as in our case (Boch et al. 2019; Kapfer
et al. 2017). The relocation error depends on spatial heteroge-
neity (Hédl et al. 2017; Kapfer et al. 2017), which on average
increases with area. Thus, we scaled the number of resurvey
plots depending on the size of the potential area still covered
by grassland (< 10,000 m?: 3 plots; 10,000-100,000 m?: 4 plots;
> 100,000 m?: 5 plots). In cases where more than one histori-
cal plot shared the same potential area, we sampled at least
as many resurvey plots as there were historical plots in the
potential area. To avoid autocorrelation, we set a minimum
distance between resurvey plots, calculated as the fourth root
of the potential area size [m?].

2.2.2 | Field Sampling

We recorded the resurvey plots in 2021 and 2022 at a similar
time of the year as the historical plots to reduce the seasonality
bias (Kapfer et al. 2017). Satellite navigation was used to locate
each resurvey plot. If the randomly assigned location of the re-
survey plot turned out not to be a grassland in the field, or if
the total vegetation cover was less than 50%, the plot was relo-
cated according to a predefined protocol. Because it would have
been too time-consuming to sample the plots with the original
method (weighted dry biomass for each species), we visually es-
timated the percent cover of each species using the rooted pres-
ence method (Dengler 2008). Due to time constraints, we were
not able to resample all historical plots, but we prioritized the
sampling to maximize spatial and ecological coverage. In total,
we sampled 1107 resurvey plots from 277 potential areas, repre-
senting 416 historical plots (Figure 1) over an elevation gradient
from 322 to 2497 m. The plant nomenclature of both the histor-
ical and the resurvey vegetation records was standardized ac-
cording to the checklist of the vascular plant flora of Switzerland
(Juillerat et al. 2017). Some species that could often not be deter-
mined with certainty were grouped into aggregates.

2.3 | Transformation and Standardisation
of Species Abundance

To compare historical and resurvey plots, we transformed the
fractional dry biomass into percent cover by applying the al-
lometric regressions that were derived from 40 representative
plots sampled with both methods (Riedel et al. 2024) separately
for graminoids and forbs. Afterwards, we standardized the esti-
mated cover of the resurvey plots and the transformed biomass
weights (~cover) of the historical plots to fractional cover (esti-
mated cover of species/sum of estimated cover X 100).

2.4 | Diversity Measures

We used species richness as a measure of taxonomic diver-
sity. To compensate for the higher overlooking probability of
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the resurvey method (on-site cover estimation in %) compared
to the historical method (assessment in the lab, with on av-
erage 0.9 more species recorded per plot; Riedel et al. 2024),
we added 0.9 to the species richness of each resurvey plot.
We used Rao's quadratic entropy index, a generalization of
Simpson diversity considering the pairwise differences be-
tween species (de Bello et al. 2016), to calculate functional
and phylogenetic a diversity using the function “melodic” (de
Bello et al. 2016). To calculate pairwise additive 8 diversity
between pairs of plots, we used the R function “Rao” with Jost
correction (de Bello et al. 2010). For the temporal comparison,
B diversity values for pairs of plots within the same potential
area were excluded.

To assess functional diversity, we used the traits “specific leaf
area”, “plant height”, and “seed mass”, following the leaf-height-
seed (LHS) plant strategy scheme (Westoby 1998). Trait data
were primarily obtained from the LEDA trait database (Kleyer
et al. 2008). Missing values were added from the TRY Global
Plant Traits Database (Version 6; Kattge et al. 2020), the Seed
Information Database (2023), and Hintze et al. (2013). The
values of traits with multiple entries per taxon were averaged.
The traits plant height and seed mass were highly skewed and
therefore transformed with a logarithm with base 10. Gower dis-
tances for species occurring in a plot were then used to calculate
Rao's quadratic entropy index.

To compute phylogenetic diversity, we constructed a distance
matrix with the phylogenetic distances of all possible species
pairs in the species list. For this purpose, we standardized
the nomenclature of our species according to the Leipzig cat-
alogue of vascular plants (Freiberg et al. 2020) and then used
the function “phylo.maker” of the R package “V.PhyloMaker2”
(Jin and Qian 2019) to construct the phylogenetic tree. Using
the function “cophenetic” of the package “ape” (Paradis and
Schliep 2019), we calculated the phylogenetic distance as the
sum of the branch lengths separating two species from each
other in the tree. These distances between the species occur-
ring in a plot were then used to calculate Rao's quadratic en-
tropy index.

2.5 | Ecological Characteristics

We used the ecological indicator values of Landolt et al. (2010)
to calculate community-weighted means for climate (tempera-
ture, light) and soil (moisture, reaction, nutrients) variables.
In addition, we used the mowing tolerance indicator, which
is a proxy for defoliation tolerance, and the indicator for the
“influence of man on site condition” (termed hemeroby here-
after). Indicator values for each variable range from 1 (low-
est value in Switzerland) to 5 (highest value in Switzerland).
We calculated community-weighted means of the CSR life
strategies of plants according to Grime (2001) as provided by
Landolt et al. (2010), by decomposing them into the dimen-
sions “competitive ability” (c), “stress tolerance” (s), and “dis-
turbance tolerance” (“ruderal strategist”, r). The values of each
dimension were scaled to a range from 0 to 1, with all three
combined summing up to 1 for each species (e.g., ssr: ¢=0,
s=2/3, r=1/3). Finally, we also compared the proportions of
three important taxonomic groups in grasslands over time: (i)

Poaceae, (ii) Cyperaceae and Juncaceae combined, and (iii)
forbs (all other families). Cyperaceae and Juncaceae were an-
alyzed separately from Poaceae due to their high abundance
in wet grasslands, which have lost most of their former area
(Gimmi et al. 2011; Lachat et al. 2010).

2.6 | Statistical Analyses

We used mixed models with the survey (historical vs. resur-
vey) as a fixed effect, and the interaction between the poten-
tial area and the survey as a random intercept to compare the
following response variables between the historical survey
and the resurvey: taxonomic, functional, and phylogenetic
diversity, mean indicator values (temperature, light, moisture,
reaction, nutrients, mowing tolerance, and hemeroby), mean
CSR-values, and proportions of taxonomic groups. For § di-
versity, the potential area pair was used as a random factor.
The dependent variables were transformed where necessary
to meet model assumptions. The models were fitted using
the function “Imer” of the package “ImerTest” (Kuznetsova
et al. 2017). All statistical analyses were performed in R ver-
sion 4.4.1 (R Core Team 2024). To test whether the magnitude
of change in an « diversity or composition measure varied
with elevation, we calculated the potential area mean for the
resurvey plots and subtracted the corresponding potential
area mean of the historical plots. The resulting difference,
e.g., ASpecies richness, takes a positive value if the mean spe-
cies richness was higher in the resurvey than in the historical
plots of the potential area and a negative value if the mean spe-
cies richness of the potential area was higher in the historical
than in the resurvey plots. We then used linear models to test
whether the difference was related to elevation.

To test the magnitude of 8 diversity change with elevation, we
ordered the potential areas by elevation in ascending order and
divided them into 11 elevational bands, each containing 25 po-
tential areas except for the first two bands, which contained 26
potential areas to include all 277 potential areas. We then se-
lected all pairwise 8 diversities within an elevational band and
used a linear mixed model to compare the two surveys. Finally,
we tested whether these differences followed a pattern along the
elevational gradient using the median of the elevational band
as an independent variable of the linear model. The same ap-
proach was used for y diversity. As a proxy for y diversity, we
calculated the total species richness of the plots in an elevational
band. In order to have the same number of plots in each band for
both surveys, we used the function “slice_sample” of the “dplyr”
package (Wickham et al. 2023) to randomly select one plot for
each potential area and survey. To have an equal number of plots
in all elevation bands, we skipped a potential area in the lowest
and second lowest bands.

To ascertain that the detected vegetation changes between
the two surveys reflect temporal changes and not pseudo-
turnover, we compared the Bray-Curtis dissimilarity among
the resurvey plots within a potential area with the average dif-
ference between the historical plot(s) and the resurvey plots
within that potential area. We calculated Bray-Curtis dissim-
ilarity using the “vegdist” function from the “vegan” package
(Oksanen et al. 2024).
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3 | Results
3.1 | Changes in Diversity

Taxonomic diversity decreased at the «, 5, and y levels between
the historical survey and the resurvey. Species richness was on
average 26% lower in the resurvey plots than in the historical
plots (p<0.001). The difference between the resurvey plots
and the historical plots (ASpecies richness) was largest at low
elevations and decreased with increasing elevation (p <0.001).
The significant difference in taxonomic § (p<0.001) and y
(p<0.001) diversity between the historical and the resurvey
plots decreased above about 1000m, reaching a minimum at
about 1850m (Figure 2, Figure S2). Within a given potential
area, the mean Bray-Curtis dissimilarity between the historical
and the resurvey plots was, on average, 0.13 higher than the dis-
similarity between the resurvey plots within the potential area
(p<0.001; Figure S1).

Phylogenetic « diversity (p<0.001) was on average 17% lower
in the resurvey plots than in the historical plots, and the dif-
ference between the resurvey plots and the historical plots
was larger in the lowlands than in the mountains (Figure 3,
Figure S3). Phylogenetic § diversity (p <0.001) was 23% higher
in the resurvey plots than in the historical plots; the difference
between the two surveys showed no discernible pattern with el-
evation (Figure S3). Combined functional a diversity (p <0.001;
Figure 4, Figure S4) as well as functional a diversity for seed
mass (p<0.001), plant height (p <0.001), and specific leaf area
(p<0.001) separately, was significantly lower in the resurvey
than in the historical survey (Figure S5). Functional § diversity
was 4% higher (p <0.001) in the resurvey plots than in the his-
torical plots; the difference between the two surveys was not re-
lated to elevation (Figure S4).

3.2 | Changes in Community Characteristics

The resurvey plots had on average 47% more Poaceae species
cover than the historical plots (p<0.001), but 17% less forbs
cover (p<0.001) and 42% less Cyperaceae and Juncaceae cover
(p<0.001). The proportion of Poaceae increased more strongly
in the lowlands than at high elevations (p <0.001). Conversely,
Cyperaceae and Juncaceae decreased more strongly in the
lowlands than in the mountains (p <0.001). Forbs declined at
a similar rate along the entire elevational gradient (p=0.337;
Figure 4, Figure S6).

Disturbance tolerance (p<0.001) and competitive ability
(p=0.002) were higher in the resurvey plots than in the histori-
cal plots, whereas stress tolerance was lower in the resurvey plots
than in the historical plots (p <0.001). The difference in stress
tolerance decreased with elevation, and stress tolerance was
similar for both surveys at about 1850 m (p <0.001). Disturbance
tolerance was higher in the resurvey plots up to about 1750 m
(p<0.001). The magnitude of change in competitive ability was
not related to elevation (p=0.081; Figure 4, Figure S7).

The community-weighted means of the ecological indica-
tor values for nutrients (p<0.001), temperature (p<0.001),
mowing tolerance (p<0.001), and hemeroby (p<0.001) were
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FIGURE 2 | Taxonomic a (top), 8 (middle), and y (bottom) diversity
were significantly lower in the resurvey plots (2021/2022) than in the
historical plots (1884-1931).

significantly higher in the resurvey plots than in the historical
plots. The mean indicator value for hemeroby was higher in the
resurvey plots along the whole elevational gradient, whereas the
mean indicator values for nutrients and mowing tolerance were
higher in the resurvey plots than in the historical plots up to
about 1800m, above which they were lower in the resurvey plots
than in the historical plots. The mean temperature indicator
values increased at a similar rate along the elevational gradient.
The mean indicator values for reaction were significantly lower
in the resurvey plots (p=0.010), whereas no significant differ-
ence was found between the historical and the resurvey plots for
light (p =0.991) and moisture (p =0.092; Figure 4, Figure S8).
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FIGURE4 | The proportion of Poaceae species was significantly higher in the resurvey plots (2021/2022) than in the historical plots (1884-1931),
the differences decreased with increasing elevation (ACover Poaceae =24.9-8.7e-03 X m, R? adj.=0.06). In contrast, the proportions of forbs as well
as Juncaceae and Cyperaceae were lower in the resurvey plots than in the historical plots. The differences for Cyperaceae and Juncaceae between
the two surveys decreased with elevation (—12.78 + 6.6e-03 xm, R? adj.=0.06) whereas the magnitude of the change for forbs did not differ with
elevation. Stress tolerance was lower in the resurvey plots than in the historical plots up to 1863 m (—0.13+7.0e-05 X m, R? adj.=0.16). Disturbance
tolerance was higher in the resurvey plots up to 1760 m (0.10-5.6e-05Xx m, R? adj. = 0.12). Competitive ability was higher in the resurvey plots than the
historical plots; the magnitude of change was not related to elevation. Ecological indicator values for nutrients, mowing tolerance, and temperature
were significantly higher in the resurvey plots than in the historical plots. The difference in the indicator value for temperature did not change sig-
nificantly with elevation. The mean indicator value for nutrients was higher in the resurvey plots than in the historical plots up to 1778 m (0.69-3.9e-
04 xm, R? adj.=0.15), and the mean indicator value for mowing tolerance up to 1816 m (0.8-4.4e-04 X m, R? adj. =0.18).

4 | Discussion 4.1 | Taxonomic, Functional, and Phylogenetic
Diversity Loss

Our study provides the first nationwide, century-scale resur-

vey of semi-natural grasslands using species-level community
data. We document a consistent decline in «, 8, and y species
diversity in Switzerland, reflecting widespread ecological
shifts linked to long-term land-use intensification and envi-
ronmental change.

Average local species richness (x diversity) declined by over a
quarter. A decrease in species richness in semi-natural grass-
land has also been found in other resurvey studies, particularly
those in which the historical survey had been conducted in the
1960s or earlier (Bennie et al. 2006; Homburger and Hofer 2012;
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McGovern et al. 2011; Ross et al. 2012; Wesche et al. 2012). In
contrast, resurvey studies using historical data sampled after the
1960s have often found no significant change (Koch et al. 2017)
or even an increase in species richness (Britton et al. 2005; Gillet
et al. 2016; Peter et al. 2008, 2009; Schwaiger et al. 2022). These
contrasting findings are probably because the most drastic land
use intensification in Central Europe took place in the 1950s and
1960s, even though grassland diversity has a relatively long lag
time after management change (Helm et al. 2005). Accordingly,
studies in Germany have found that the strongest decline in na-
tive plant species richness occurred in 1960-1980 (Eichenberg
et al. 2021; Jandt, Bruelheide, Jansen, et al. 2022).

Apart from the loss of a diversity (species richness), we also
demonstrated that Swiss grasslands experienced a loss in g di-
versity, leading to taxonomic homogenization. Taxonomic ho-
mogenization, though frequently concurrent with biodiversity
loss, is not necessarily contingent upon declines in « diversity
(Olden 2006; Olden and Rooney 2006). It may occur under sce-
narios of reduced, stable, or even increasing local species rich-
ness (Britton et al. 2009; Liberati et al. 2019). For instance, an
earlier resurvey of Swiss grasslands between 2001-2004 and
2006-2009 documented rising species richness alongside de-
clining g diversity, attributable to the increasing dominance of
widespread generalist species (Biihler and Roth 2011). These
divergent outcomes likely reflect the temporal scale of analysis:
short-term resurveys often capture transient dynamics or early
successional changes, whereas our century-scale perspective
reveals long-term trends driven by cumulative anthropogenic
pressures. The pronounced decline in § diversity observed
in our study is best understood in the context of progressive,
large-scale land-use intensification since the early 20th cen-
tury. While moderate increases in land-use intensity have been
shown to drive homogenization across taxa and ecosystems
(Gossner et al. 2016), the rapid and widespread transformation
of European lowland agriculture—peaking in the mid-20th cen-
tury—Ilikely accelerated this process in Swiss grasslands. As de-
scribed for « diversity, the most intense shifts probably occurred
during and shortly after this period of peak intensification.

In addition to o and [ diversity losses, we observed a notable
decline in y diversity, quantified as total species richness across
elevational bands. This reduction in regional-scale diversity
aligns with findings from historical grassland resurveys in
Germany, which similarly reported substantial y diversity loss
over multi-decadal timescales (Wesche et al. 2012). Supporting
evidence at the national scale indicates declining abundances
of specialist species associated with nutrient-poor grasslands
across Switzerland during the 20th century (Bosshard 2015;
Scherrer et al. 2022). Together, these patterns underscore a per-
vasive erosion of plant diversity at all spatial scales—reflecting
a broad-scale restructuring of grassland floras driven primarily
by land-use intensification, with implications for regional eco-
system stability and biotic distinctiveness under ongoing global
change.

In agreement with our hypothesis, we found that both func-
tional and phylogenetic a diversity declined in contemporary
plots compared to historical baselines. Although these declines
were less pronounced than those in taxonomic « diversity,
they likely reflect parallel processes: reduced species richness

constrains the diversity of both traits and evolutionary lineages
(Abrahamczyk et al. 2020; de Bello et al. 2016). However, in con-
trast to taxonomic 8 diversity, which declined over time, func-
tional and phylogenetic 8 diversity increased. This may reflect
historically higher functional redundancy, with more species
occupying similar niches (Mayfield et al. 2010). For instance,
moisture-tolerant Juncaceae species were more widespread a
century ago, likely due to lower drainage intensity at lower ele-
vations (Gimmi et al. 2011; Lachat et al. 2010). The loss of such
functionally similar species can elevate functional § diversity,
as these indices are sensitive to trait differentiation among re-
maining species (Olden 2006). The less pronounced decline in
a functional diversity than in species richness suggests greater
historical redundancy at broader spatial scales. Given our small
plot sizes, much of the diversity likely existed among rather than
within plots, underscoring the scale dependence of diversity
patterns (Chase et al. 2019). Functional redundancy is vital for
ecosystem resilience, enabling compensation when species are
lost (McCann 2000). Its decline in Swiss grasslands implies in-
creasing vulnerability to environmental change. Similar trends
in German grasslands (Wesche et al. 2012) point to widespread
impacts of long-term anthropogenic pressures.

The observed decline in phylogenetic diversity suggests a
loss of evolutionary distinctiveness. Since functional traits
often exhibit phylogenetic conservatism (de Bello et al. 2017;
Kraft et al. 2007), similar trends are expected (but see Veceta
et al. 2023). Phylogenetic diversity also captures unmeasured
functional variation (de Bello et al. 2015, 2017), such as chemical
or root traits, providing important complementary information.
Comparable declines in functional and phylogenetic a diversity
were noted in grasslands of the French Jura Mountains over two
decades (Gillet et al. 2016), though species richness slightly in-
creased. Such discrepancies highlight the context-dependence
of diversity change. However, few long-term resurvey studies in-
corporated functional or phylogenetic metrics to date, limiting
general conclusions. Expanding such studies remains essential
to understand and manage biodiversity under global change.

4.2 | Ecological Filtering and Community Shifts

Our results show a marked increase in the proportion of Poaceae
species in the resurvey plots, parallel to a decrease in the propor-
tion of all other plant groups—a pattern consistent with numer-
ous grassland resurvey studies at plot (Bauer and Albrecht 2020;
Berlin et al. 2000; Gillet et al. 2016; McGovern et al. 2011) and
regional scale (Abrahamczyk et al. 2022; Wesche et al. 2012).
As Poaceae are wind-pollinated, this shift increased the prev-
alence of wind-pollinated species and may thus reduce hab-
itat quality, particularly for specialist pollinators (Biesmeijer
et al. 2006). The increased dominance of Poaceae is likely linked
to increased mowing and grazing intensity, as many species in
this family are specifically adapted to such repeated biomass re-
moval via traits such as basal meristems or clonal growth (Diaz
et al. 2007; Hawkes and Sullivan 2001). Moreover, Poaceae are
known to react positively to increased nitrogen availability
(Dupre et al. 2010).

Life strategy analyses further revealed a shift toward species
with greater competitive ability and disturbance tolerance,
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but lower stress tolerance in resurvey plots. This pattern sug-
gests a directional shift along Grime's CSR axis, likely driven
by nutrient enrichment and warming temperatures (Isotta
et al. 2019), Higher mowing and grazing frequency likely pro-
moted disturbance-tolerant species, although closed swards in
intensively managed grasslands could limit opportunities for
ruderal establishment (Wesche et al. 2012). Nevertheless, me-
chanical practices like slurry application and higher stocking
rates may have offset this by maintaining open microsites (Rook
et al. 2004).

Ecological indicator values support these findings. Increases
in mean indicator values for nutrients, mowing tolerance,
and hemeroby reflect intensified land use and elevated ni-
trogen deposition—now roughly double the estimated 1880
levels (Rihm 2023; Roth et al. 2015). This trend mirrors find-
ings from numerous European resurvey studies (Bauer and
Albrecht 2020; Bennie et al. 2006; Diekmann et al. 2019; Gillet
et al. 2016; Klinkovska et al. 2024; Peter et al. 2008; Stevens
et al. 2016; Wesche et al. 2012), Switzerland's agricultural ni-
trogen and phosphorus surpluses further corroborate this shift
(FSO 2024a, 2024b). Consistent with previous studies, higher ni-
trogen availability is associated with declining species richness
(Billeter et al. 2008; De Schrijver et al. 2011; Kleijn et al. 2009;
Roth et al. 2013). We found no significant change in the mean
indicator value for light, possibly due to frequent biomass re-
moval through mowing and grazing, which may maintain light
availability for subordinate species (Borer et al. 2014). The ob-
served increase in temperature indicator values was weaker
than expected considering the average temperature increase
in Switzerland of around 2°C since 1864 (CH2018. 2018; Isotta
et al. 2019). Based on the observed shift in mean temperature
indicator values along the elevation gradient in Switzerland
(—0.098 per 100m; Kiebacher et al. 2023) and the lapse rate of
—0.65°C per 100m (Meteo Swiss 2025), a temperature increase
of 2°C should lead to an increase of around 0.3 in the mean eco-
logical indicator value for temperature. This is about 50% higher
than what we found (0.19). This is possibly due to species turn-
over lag or stable cold-adapted populations (BAFU 2017). The
significant but only slight decrease in reaction indicator values
could be related to a partial recovery from the effect of acid
rain after a reduction of acid deposition in the last decades and
liming practices (Flisch et al. 2017; Rose et al. 2016). Finally,
moisture indicator values remained unchanged, despite known
wetland drainage (Gimmi et al. 2011). This may be due to off-
setting factors, such as irrigation or denser swards that increase
microclimatic humidity (Charmillot et al. 2021), or because
wet grasslands were underrepresented in the historical sample
(Riedel et al. 2023).

4.3 | Elevation-Dependent Patterns of Change

Differences in diversity and ecological characteristics be-
tween historical and resurvey plots were linearly related to
elevation (Table S1), with stronger biodiversity loss and com-
positional shifts at lower elevations (colline to montane belts)
than at higher ones (subalpine to alpine belts). This pattern
likely reflects stronger land-use intensification in accessi-
ble lowland sites, where mechanization, fertilization, drain-
age, and re-sowing have enabled more frequent mowing and

higher livestock densities (Ceulemans et al. 2013, 2014; Dengler
et al. 2020). In contrast, grasslands at higher elevations—typ-
ically steeper and less accessible—have been less intensively
managed due to topographic and climatic constraints (Landoldt
and Urbanska 2003).

In addition to direct land use, indirect drivers such as nitrogen
deposition and climate change have altered abiotic conditions.
Atmospheric nitrogen deposition in Switzerland ranges from 2 to
43kgNha lyear™!, far above natural levels (~1kgNhalyear™;
Butterbach-Bahl et al. 2011), with highest values in lowland val-
leys (Rihm 2023). This explains why the mean indicator value
for nutrients increased more below ~1800m, reflecting both
fertilization and atmospheric deposition. The diversity impact
of nitrogen depends on climate: its effect is weaker in moun-
tain areas with cool summers than in warmer ones (Humbert
et al. 2016), suggesting increasing vulnerability of subalpine
grasslands with climate warming.

Temperatures have risen at all elevations over the last 150years,
with more pronounced summer warming in the Alps (Isotta
et al. 2019). Precipitation trends are less clear, though extremes
are increasing (Scherrer et al. 2016). While warming can
drive upward shifts in plant optima (Lenoir et al. 2008; Roth
et al. 2014; Vitasse et al. 2021), we found no elevation-dependent
change in the temperature indicator value, suggesting that cli-
mate change has so far had less impact on grassland diversity
than land use and eutrophication.

The environmental changes described here—particularly the
stronger intensification at lower elevations—have altered envi-
ronmental filtering processes (Mayfield et al. 2010) and the re-
gional species pool (Olde Venterink 2011), favoring competitive,
nutrient-demanding species like Poaceae. This has reshaped the
elevation-diversity gradient, such that today's patterns no lon-
ger reflect historical baselines (Nogués-Bravo et al. 2008). The
elevation dependence of biodiversity loss underscores the need
for elevation-sensitive conservation. For instance, protected
areas have helped to maintain specialist species below 1000 m,
where the protected areas are often islands surrounded by in-
tensively managed land, but not above where land use is less in-
tense (Ddhler et al. 2019).

5 | Conclusions

We demonstrate a systematic decline in «, 8, and y taxonomic
diversity across Swiss grasslands over the past century. On
average, a diversity decreased by 26% and y diversity by 31%
compared to the historical baseline, indicating substantial bio-
diversity loss. In contrast, recent data from the Swiss national
biodiversity monitoring program show that grassland a diversity
has increased over the past two decades, while 8 and y diver-
sity remained stable (Hdberlin and Dengler 2025). This contrast
underscores the limitations of short-term resurvey studies and
highlights the critical value of long-term baselines in under-
standing biodiversity trends. The much greater decline in diver-
sity and ecological indicators at lower elevations compared to
higher ones—for example, a 38% species loss at 500m vs. 11% at
2000 m—points to the major role of land-use intensification and
nitrogen input and deposition. This suggests that the current
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diversity—elevation gradient is heavily shaped by anthropo-
genic influence. Conservation efforts at lower elevations can
still be impactful, especially in preserving specialised species
(Déhler et al. 2019), while the relatively smaller losses in higher-
elevation grasslands offer a valuable opportunity to conserve
much of the historical plant diversity (Kampmann et al. 2012).
However, these mountain refuges face increasing threats from
climate change, which may facilitate an upward shift of land-
use intensification. This could accelerate the trend of intensi-
fying more accessible, productive alpine grasslands while more
remote areas are abandoned (Herzog and Seidl 2018), putting
remaining high-elevation biodiversity at risk.
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