

Influence de l'ingestion en fibres sur l'absorption en Magnésium

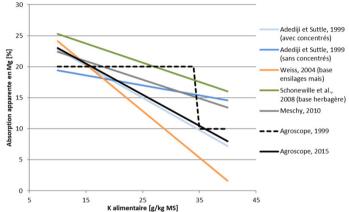
J.-L. Oberson S. Probst P. Schlegel

Posieux, 12.09.2018

29.05.2015: Actualisation apports minéraux recommandés

Exemple: 30 kg lait/j, 22 kg MSI => Besoin net: 7.8 g Mg/j

Besoin brut: Absorbabilité de 10% : 78 g Mg / jour; 3.6 g Mg/kg MS Besoin brut: Absorbabilité de 20% : 39 g Mg / jour; 1.8 g Mg/kg MS


Agroscope

Pourquoi des pentes si différentes entre auteurs?

 Probablement lié à la base de donnée expérimentale utilisée

Hypothèses émises (littérature):

- Type de ration
- Type de fourrage
- Part en aliment complémentaire

=> Dénominateur commun: teneur en fibres ?

Sachant que: Paroi ruminale est le site principal d'absorption du Mg

=> Influence de la cinétique de passage ruminale?

⇒ **Hypothèse 1**: L'ingestion de fibres influence l'absorption du Mg par une cinétique de passage ruminale modifiée. Ceci indépendamment du K alimentaire de la ration.

Deux rations de base:

But: min. 200 g de différence en NDF pour espérer modifier la cinétique de passage ruminale.

Ensilage herbe **NDF-**: 341 g NDF; 238 g MA / kg MS Ensilage herbe **NDF+**: 572 g NDF; 118 g MA / kg MS Issu de la même parcelle et du même cycle

«Risque de tétanie accru avec jeune herbage au printemps»

Caractéristiques:
pauvre en Mg; riche en K et en protéine rapidement fermentescible

- ⇒ Pour séparer l'influence NDF de celle de MA:
- ⇒ **Hypothèse 2**: L'absorption en Mg est indépendante d'un éventuel excès en protéine, souvent lié aux rations à base herbagère.

Traitements alimentaires:

NDF-: 80% Ensilage NDF- 20% aliment 1

NDF+MA: 80% Ensilage NDF+ 20% aliment 2

NDF+: 80% Ensilage NDF+ 20% aliment 3 (sur base MS)

Conditions: Part en aliment et teneurs en Ca, P, Mg et K équilibrés

NDF entre NDF- et NDF+MA / NDF+ différente

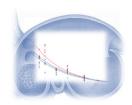
PAIN entre NDF- et NDF+MA équilibré

	Rations						
g/kg MS	NDF-	NDF+MA	NDF+				
MA	210	209	142				
СВ	149	265	266				
NDF	297	472	483				
ADF	163	288	291				
K	27.6	26.3	25.7				
Mg	2.32	2.34	2.41				
NEL, MJ	7.3	5.7	5.7				
PAIE	92	103	94				
PAIN	132	132	94				

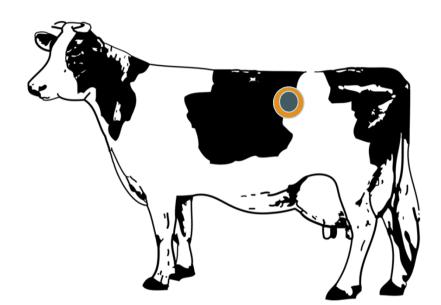
Animaux: 6 vaches 697±61 kg PV 130±60 jours en lact. 5±2 lactations 4 fistulées au rumen

o 3 X 3 Carré Latin: 3 traitements X 3 périodes

		Periode 1			Periode 2				Periode 3			
VL	Fistule	1	2	3	4	5	6	7	8	9	10	11
1935	non	Α	Α	Α	В	В	В	В	С	С	С	С
1861	oui	Α	Α	Α	С	С	С	С	В	В	В	В
1720	oui	В	В	В	Α	Α	Α	Α	С	С	С	С
1665	non	В	В	В	С	С	С	С	Α	Α	Α	Α
1791	oui	С	С	С	Α	Α	Α	Α	В	В	В	В
1813	oui	С	С	С	В	В	В	В	Α	Α	Α	Α


Phase adaptation

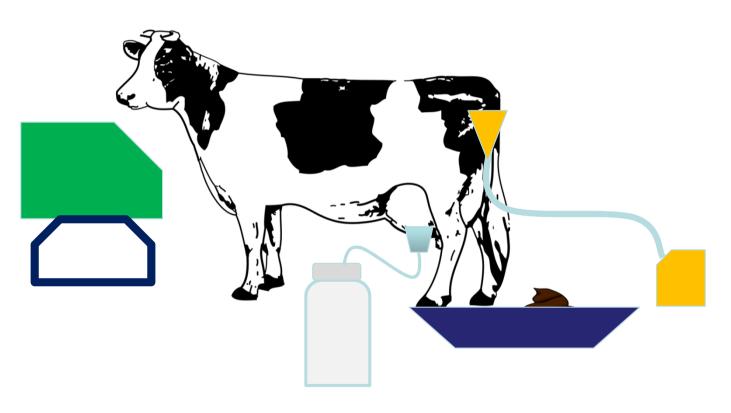
Phase collecte


Absorption magnésiqueOberson J.-L., Probst S., Schlegel P.

o Cinétique de passage ruminale

Administration de marqueurs (Co-EDTA, Yb-fibres) à J3 avant l'affouragement du matin

Prélèvement de contenu ruminal (phases liquid et solide) à 0, 1, 2, 3, 5, 7, 10, 16, 23 h après administration des marqueurs


 \Rightarrow Vitesses de passage (Kp_L, Kp_S) et volumes (VOL_L, VOL_s)

U N

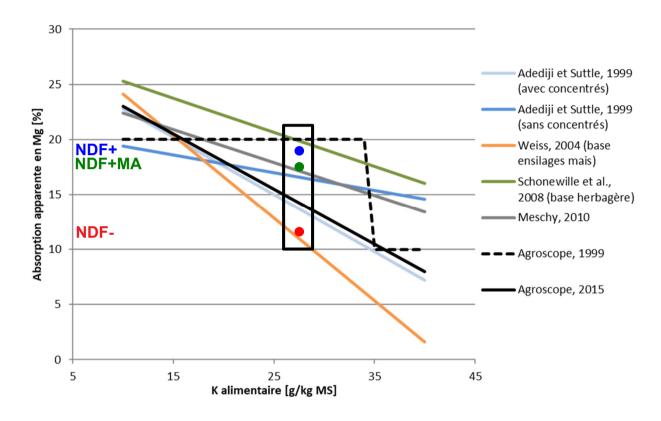
Matériel et méthode

o Absorbabilité apparente et rétention en Mg

Mesure quantitative: ingestion, fèces, urine, lait durant 7 jours

Agroscope

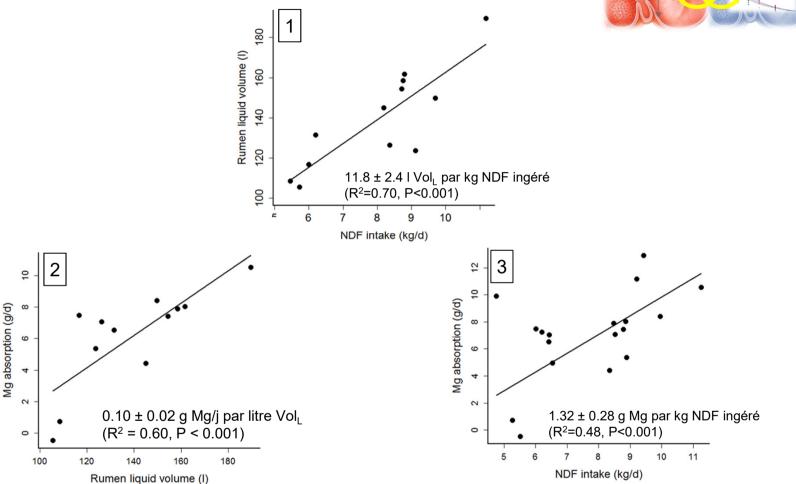
Résultats



Paramètres		Rations		Erreur	Valeur P1	
	NDF-	NDF+MA	NDF+	type	Valeul F	
Cinétique de passage ruminal						
Volume phase liquide (I)	116 ^b	146 ^a	156 ^a	7.2	*	
Degré de passage liquide (%/h) ²	17.5	16.0	15.9	0.65	n.s.	
Volume phase solide (kg NDF)	3.69 ^b	5.72 ^a	6.20 ^a	0.79	***	
Degré de passage solide (%/h)	1.50	1.57	1.46	0.030	n.s.	
Minéraux solubles dans rumen						
рН	5.84 ^b	6.50 ^a	6.46 ^a	0.034	***	
K (mmol/I)	34.8 ^a	26.2 ^b	24.4 ^b	0.16	***	
Mg (mmol/l)	3.90 ^a	2.13 ^b	1.83 ^b	0.162	***	
Mg / K (mmol/mol)	112.0 ^a	80.9 ^b	74.0 ^b	0.47	***	
Bilan Mg (g/j)						
Ingéré	44.6	43.0	43.2	1.21	n.s.	
Exrété fécal	39.2 ^a	35.8 ^b	35.0 ^b	1.28	**	
Absorbé apparent	5.2	7.6	8.3	0.58	n.s.	<u>Note</u> :
Absorbabilité apparente (% de l'ingéré)	11.9	17.5	18.9	1.37	+	Consistance fécale était plus liquide
Excrété urinaire	1.7 ^b	3.3 ^a	3.5 ^a	0.25	***	pour NDF- que
Excrété lait	2.85 ^{ab}	2.94 ^a	2.53 ^b	0.140	*	NDF+, mais avec
Rétention	0.6	1.3	2.3	0.39	n.s.	une MS comparab
Rétention (% de l'ingéré)	1.26	3.04	4.86	0.924	n.s.	(122 ± 4.5 g/kg)

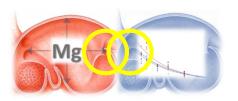
¹ Valeur *P*: *** <0.001; ** <0.01; * <0.05; + <0.10; n.s. > 0.10

Résultats



⇒ Les résultats obtenus correspondent bien à la fourchette de valeurs provenant des différentes régressions existantes.

Agroscope


Résultats

⇒ L'absorption en Mg est expliquée par le Vol_L, qui dépend de NDF ingéré.

Conclusions

OUI

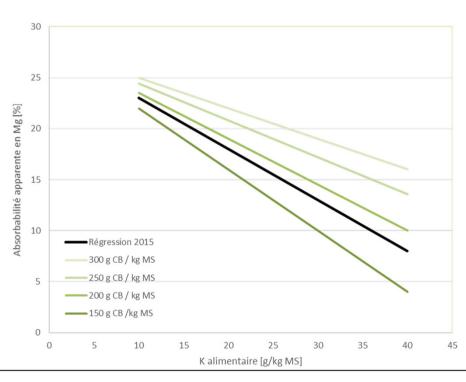
⇒ **Hypothèse 1**: L'ingestion de fibres influence l'absorption du Mg par une cinétique de passage ruminale modifiée. Ceci indépendamment du K alimentaire de la ration.

OUI

⇒ **Hypothèse 2**: L'absorption en Mg est indépendante d'un éventuel excès en protéine, souvent lié aux rations à base herbagère.

- ⇒ Les recommandations d'apport en Mg peuvent être précisées par la prise en compte de la fibre alimentaire dans l'estimation de l'absorbabilité en Mg.
 - ⇒ Cela permet de faire le lien entre les différentes équations d'absorbabilité en Mg en fonction du K alimentaire existantes.
 - ⇒ Une adaptation de l'absorbabilité en Mg se baserait toutefois, sur cette seule étude et part de l'idée que l'influence des fibres alimentaires sur l'absorbabilité en Mg est linéaire.

Recommandations d'apports


o Actualisation du coefficient d'absorption pour Mg

<u>Depuis 2015</u>: Absorbabilité Mg (%) = 28 - 0.5 * K (g/kg MS)

Possible adaptation prochaine révision:

$$28 - 90 * \frac{K}{CB}$$

(K et CB en g/kg MS)

