
# Einfluss der Faseraufnahme auf die Magnesium Absorption

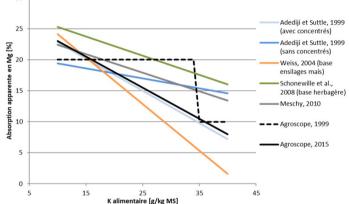
J.–L. Oberson S. Probst P. Schlegel

Posieux, 12.09.2018



### 29.05.2015: Aktualisierte Fütterungsempfehlungen der Mineralstoffe




Beispiel: 30 kg Milch/Tag, 22 kg TSV => Netto Bedarf: 7.8 g Mg/Tag Brutto Bedarf: Absorbierbarkeit 10%: 78 g Mg / Tag; 3.6 g Mg/kg TS Brutto Bedarf: Absorbierbarkeit 20%: 39 g Mg / Tag; 1.8 g Mg/kg TS

### Warum so unterschiedliche Steigungen zwischen Autoren?

 Sehr wahrscheinlich mit den Datengrundlagen verbunden

Hypothesen (Litteratur):

- Typ der Ration
- Typ von Raufutter
- Anteil Kraftfutter



=> Gemeinsamer Nenner: Fasergehalt?

Da Mg vor allem über die Pansenwand absorbiert wird...

=> Einfluss der Pansen Passagekinetik?

⇒ Hypothese 1: Die Faseraufnahme hat einen Einfluss auf die Mg absorption durch eine modifizierte Pansen Passagekinetik. Dies unabhängig des K Gehaltes der Ration.

### Material und Methode

Zwei Grundfutter:

Ziel: min. 200 g Unterschied in NDF um eine modifizierte Pansen Passagekinetik zu erhoffen.

Grassilage **NDF-**: 341 g NDF; 238 g RP / kg TS Grassilage **NDF+** 572 g NDF; 118 g RP / kg TS Geerntet aus der selben Parzelle im selben Aufwuchs

«Weidetetanie Risiko erhöjt mit jungem Frühlingsgras»
Eigenschaften:
Arm an Mg; reich in K und in schnell abbaubarem Protein

- ⇒ Um den Einfluss von NDF mit dem von RP zu unterscheiden:
- ⇒ **Hypothese 2**: Die Mg Absorption ist unabhängig von einem Protein überschuss, welcher oft mit Grasbasierten Rationen verbunden ist.

### Material und Methode

#### o Behandlungen:

NDF-: 80% Grassilage NDF- 20% Kraftfutter 1 NDF+RP: 80% Grassilage NDF+ 20% Kraftfutter 2

NDF+: 80% Grassilage NDF+ 20% Kraftfutter 3 (Base TS)

Bedingungen: Kraftfutteranteil und Ca, P, Mg und K Gehalte ausgeglichen

NDF zwischen NDF- und NDF+MA / NDF+ unterschiedlich

APDN zwischen NDF- et NDF+MA ausgeglichen

|         | Rationen |        |      |  |  |  |  |  |
|---------|----------|--------|------|--|--|--|--|--|
| g/kg TS | NDF-     | NDF+RP | NDF+ |  |  |  |  |  |
| RP      | 210      | 209    | 142  |  |  |  |  |  |
| RF      | 149      | 265    | 266  |  |  |  |  |  |
| NDF     | 297      | 472    | 483  |  |  |  |  |  |
| ADF     | 163      | 288    | 291  |  |  |  |  |  |
| K       | 27.6     | 26.3   | 25.7 |  |  |  |  |  |
| Mg      | 2.32     | 2.34   | 2.41 |  |  |  |  |  |
| NEL, MJ | 7.3      | 5.7    | 5.7  |  |  |  |  |  |
| APDE    | 92       | 103    | 94   |  |  |  |  |  |
| APDN    | 132      | 132    | 94   |  |  |  |  |  |



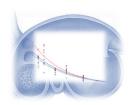
### Material und Methode

5±2 Laktationen 4 Pansenfistulierte

o 3 X 3 lateinisches Quadrat: 3 Behandlungen X 3 Perioden

|      |         | Periode 1 |   |   | Periode 2 |   |   | Periode 3 |   |   |    |    |
|------|---------|-----------|---|---|-----------|---|---|-----------|---|---|----|----|
| VL   | Fistule | 1         | 2 | 3 | 4         | 5 | 6 | 7         | 8 | 9 | 10 | 11 |
| 1935 | non     | Α         | Α | Α | В         | В | В | В         | С | С | С  | С  |
| 1861 | oui     | Α         | Α | Α | С         | С | С | С         | В | В | В  | В  |
| 1720 | oui     | В         | В | В | Α         | Α | Α | Α         | С | С | С  | С  |
| 1665 | non     | В         | В | В | С         | С | С | С         | Α | Α | Α  | Α  |
| 1791 | oui     | С         | С | С | Α         | Α | Α | Α         | В | В | В  | В  |
| 1813 | oui     | С         | С | С | В         | В | В | В         | Α | Α | Α  | Α  |

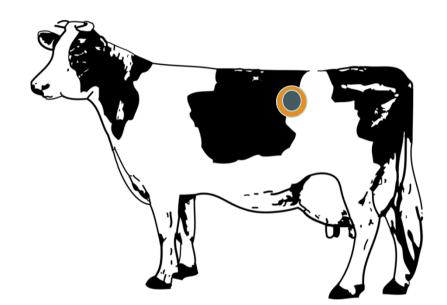
#### Adaptationsphase




#### Beprobungsphase



**Magnesium Absorption**Oberson J.-L., Probst S., Schlegel P.


### Material une Methode



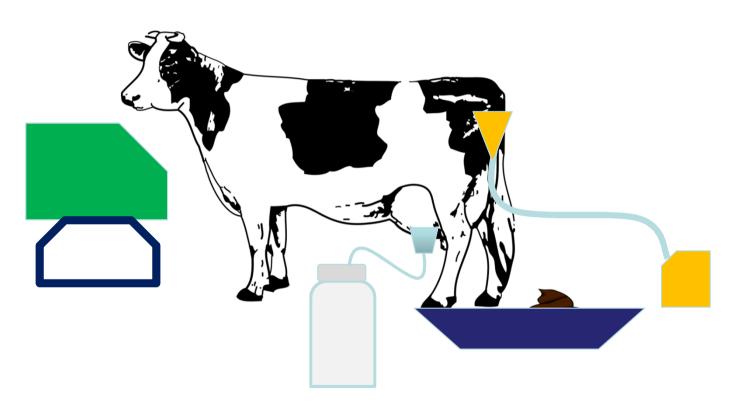
Pansen Passagekinetik










Marker Abgabe (Co-EDTA, Yb-fibres) am Tag 3 vor dem Füttern Beprobung Panseninhalt (Flüssig und Feste Phasen) um 0, 1, 2, 3, 5, 7, 10, 16, 23 h nach Marker Abgabe

 $\Rightarrow$  Bestimmung von Passagegeschwindigkeit (Kp\_, Kp\_s) und Volumen (VOL\_, VOL\_s)

### Matériel et méthode



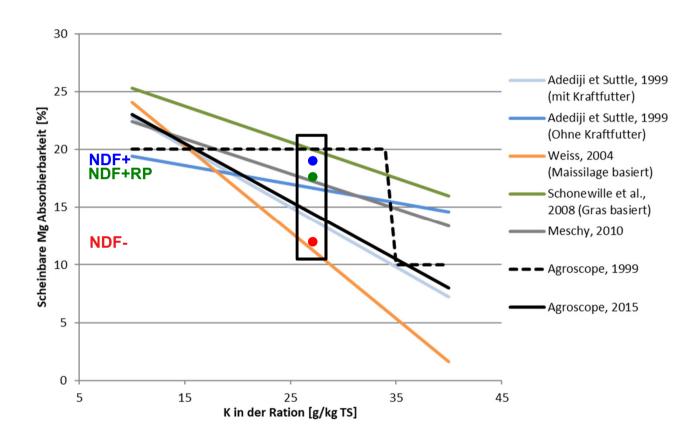
Scheinbare Mg Absorbierbarkeit und Mg Retention



Quantitative Bestimmung von Futteraufnahme, Kot-, Harn- und Milch Ausscheidung während 7 Tagen

### Resultate

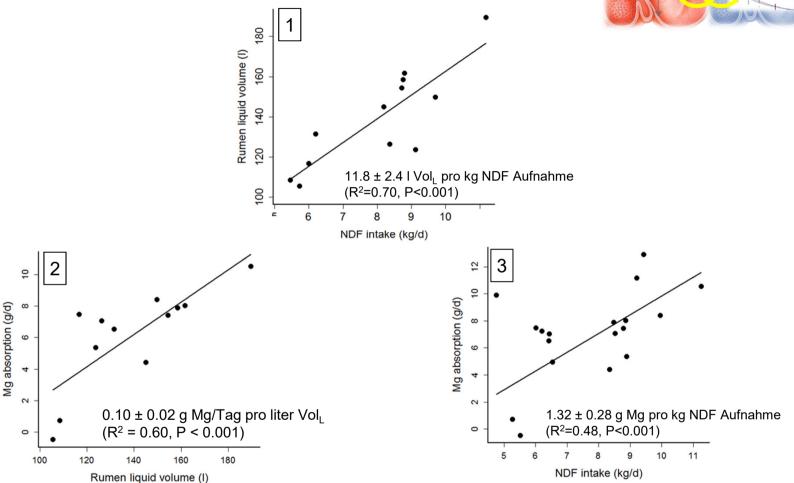



| Parameter                                                               | NDF-               | Rationen NDF+RP   | NDF+              | Standard<br>Fehler | P-Wert <sup>1</sup> |                                     |  |  |
|-------------------------------------------------------------------------|--------------------|-------------------|-------------------|--------------------|---------------------|-------------------------------------|--|--|
| Pansenpassage Kinetik                                                   |                    |                   |                   |                    |                     | -                                   |  |  |
| Flüssigphase (I)                                                        | 116 <sup>b</sup>   | 146 <sup>a</sup>  | 156 <sup>a</sup>  | 7.2                | *                   |                                     |  |  |
| Passagerate Flüssigphase (%/h) <sup>2</sup>                             | 17.5               | 16.0              | 15.9              | 0.65               | n.s.                |                                     |  |  |
| Festphase (kg NDF)                                                      | 3.69 <sup>b</sup>  | 5.72 <sup>a</sup> | 6.20 <sup>a</sup> | 0.79               | ***                 |                                     |  |  |
| Passagerate Festphase (%/h)                                             | 1.50               | 1.57              | 1.46              | 0.030              | n.s.                |                                     |  |  |
| Pansenlösliche Mineralstoffe                                            |                    |                   |                   |                    |                     |                                     |  |  |
| рН                                                                      | 5.84 <sup>b</sup>  | 6.50 <sup>a</sup> | 6.46 <sup>a</sup> | 0.034              | ***                 |                                     |  |  |
| Mg (mmol/l)                                                             | 3.90 <sup>a</sup>  | 2.13 <sup>b</sup> | 1.83 <sup>b</sup> | 0.162              | ***                 |                                     |  |  |
| K (mmol/l)                                                              | 34.8 <sup>a</sup>  | 26.2 <sup>b</sup> | 24.4 <sup>b</sup> | 0.16               | ***                 |                                     |  |  |
| Mg / K (mmol/mol)                                                       | 112.0 <sup>a</sup> | 80.9 <sup>b</sup> | 74.0 <sup>b</sup> | 0.47               | ***                 |                                     |  |  |
| Magnesium Bilanz (g/T)                                                  |                    |                   |                   |                    |                     |                                     |  |  |
| Aufnahme                                                                | 44.6               | 43.0              | 43.2              | 1.21               | n.s.                |                                     |  |  |
| Fäkale Ausscheidung                                                     | 39.2 <sup>a</sup>  | 35.8 <sup>b</sup> | 35.0 <sup>b</sup> | 1.28               | **                  | N / - 4:                            |  |  |
| Scheinbare Absorption                                                   | 5.2                | 7.6               | 8.3               | 0.58               | n.s.                | <u>Notiz</u> :<br>Die Kotkonsistenz |  |  |
| Scheinbare Absorbierbarkeit (% der Aufnahme)                            | 11.9               | 17.5              | 18.9              | 1.37               | +                   | war flüssiger bei                   |  |  |
| Harn Ausscheidung                                                       | 1.7 <sup>b</sup>   | 3.3 <sup>a</sup>  | 3.5 <sup>a</sup>  | 0.25               | ***                 | NDF- als NDF+,                      |  |  |
| Milch Ausscheidung                                                      | 2.85 <sup>ab</sup> | 2.94 <sup>a</sup> | 2.53 <sup>b</sup> | 0.140              | *                   | aber der TS-Gehalt                  |  |  |
| Retention                                                               | 0.6                | 1.3               | 2.3               | 0.39               | n.s.                | war vergleichbear                   |  |  |
| Retention (% der Aufnahme)                                              | 1.26               | 3.04              | 4.86              | 0.924              | n.s.                | (122 ± 4.5 g/kg)                    |  |  |
| <sup>1</sup> <i>P</i> -Wert: *** <0.001; ** <0.05; + <0.10; n.s. > 0.10 |                    |                   |                   |                    |                     |                                     |  |  |

**Magnesium Absorption** 

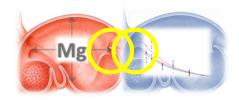
11

### Resultate






⇒ Die Resultate entsprechen gut mit der Bandbreite von Werte aus den verschiedenen existierenden Regressionen.


### Resultate

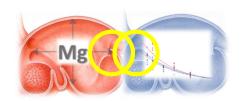




⇒ Die Mg Absorption wird durch das Vol<sub>L</sub> erklärt, welches von der NDF Aufnahme abhängt.

### Schlussfolgerungen




Ja

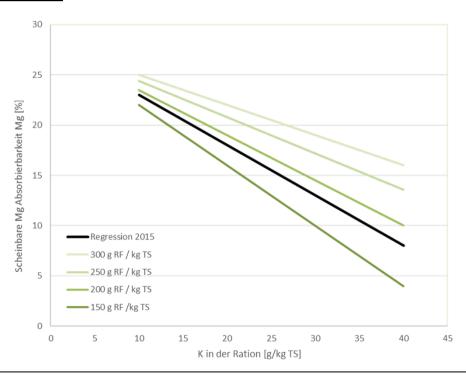
⇒ Hypothese 1: Die Faseraufnahme hat einen Einfluss auf die Mg absorption durch eine modifizierte Pansen Passagekinetik. Dies unabhängig des K Gehaltes der Ration.

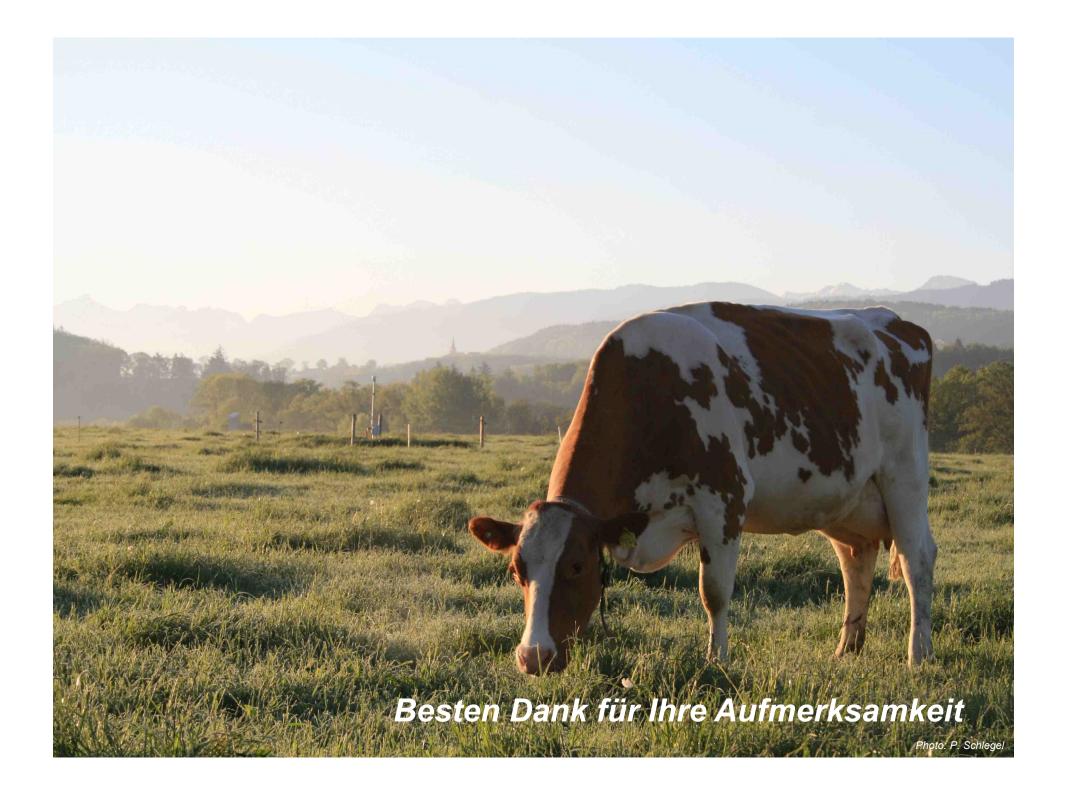
Ja

- ⇒ **Hypothese 2**: Die Mg Absorption ist unabhängig von einem Protein überschuss, welcher oft mit Grasbasierten Rationen verbunden ist.
- ⇒ Die Mg Fütterungsempfehlungen können verfeinert werden indem die Faseraufnahme bei der Schätzung der Mg Absorbierbarkeit mitberücksichtigt wird.
  - ⇒ Dies erlaubt die verschiedenen existierenden K zu Mg Absorbierbarkeitsregressionen zu verbinden.
  - ⇒ Eine Adaptation der Mg Absorption würde sich aber nur auf diese Studie basieren und basiert sich auf die Annahme dass der Einfluss von Faser auf Mg Absorbierbarkeit linear ist.

#### Fütterungsempfehlungen




Aktualisierung der Mg Absorbierbarkeit


Seit 2015: Mg Absorbierbarkeit (%) = 28 - 0.5 \* K (g/kg TS)

Mögliche Adaptation bei nächster Revision:

$$28 - 90 * \frac{K}{RF}$$

(K et RF en g/kg TS)



