Einfluss der Silage- und Heubereitung auf die Proteineffizienz von Milchkühen

- U. Wyss¹, C. Böttger², F. Dohme-Meier¹, K.-H. Südekum²
- ¹ Agroscope, 1725 Posieux, Schweiz
- ² Institut für Tierwissenschaften, Universität Bonn, 53115 Bonn, Deutschland

Fachtagung «Zukunft der Tierernährung zwischen Effizienz und Konsumentenansprüchen

ETH Zürich, 8. Mai 2018

Ubersicht 🖰

- Einleitung
- Rohproteinfraktionen
- Daten Systemvergleich Hohenrain II
- Bilanzversuch Agroscope
 - Material und Methoden
 - Ergebnisse
- Folgerungen

groscope

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

U Einleitung

Der Einsatz von qualitativ hochwertigen Futterkonserven und der massvolle Einsatz von Kraftfuttermitteln sind in der Schweiz wichtige Voraussetzungen zur kostengünstigen Milch- und Fleischproduktion.

Das Leistungsniveau der heutigen Milchkühe stellt jedoch hohe Anforderungen an deren Energie- und Proteinversorgung.

Aus diesem Grund wurden die Futterbewertungssysteme im Laufe der Zeit immer detaillierter.

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

3

Chemische Fraktionierung des Rohproteins nach dem ,Cornell Net Carbohydrate and Protein System' (CNCPS; Licitra et al. 1996)

Fraktion	Verfügbarkeit	Rohprotein-Fraktion
Α	Im Pansen schnell abbaubar zu Ammoniak	Nicht-Protein-Stickstoff (NPN)
B1	Im Pansen schnell abbaubar zu Ammoniak	Reinprotein
B2	Im Pansen potenziell voll- ständig abbaubar	Reinprotein
В3	Im Pansen langsam, nicht un- bedingt vollständig abbaubar	Zellwandgebundenes Reinprotein
С	Im Pansen und Dünndarm nicht verfügbar (unverdaulich)	An Lignin, Tannin oder in Maillard-Produkten gebundenes Protein

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

Systemvergleich Hohenrain II

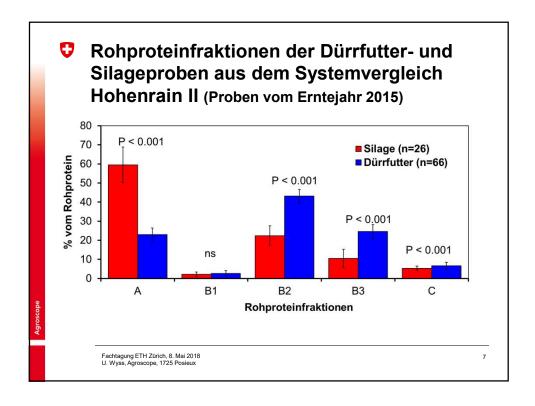
Mehrjähriger Systemvergleich

- Vollweide
- Eingrasen und Teilweide mit tiefen Kraftfuttermengen
- Eingrasen und Teilweide mit hohen Kraftfuttermengen

Gutsbetrieb des BBZN Hohenrain und 36 Pilotbetriebe

Zusätzlich:

Untersuchung der konservierten Futtermittel


Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

5

Nährstoffe und Nährwerte der Dürrfutter- und Silageproben aus dem Systemvergleich Hohenrain II (Proben vom Erntejahr 2015)

		Grassila	ge (n=26)	Dürrfutter (n=66)	
		Ø	s	Ø	S
Trockensubstanz	%	37.5	8.0		
Rohasche	g/kg TS	102	15	92	10
Rohprotein	g/kg TS	145	32	128	29
Rohfaser	g/kg TS	267	37	270	29
ADF	g/kg TS	293	41	307	25
NDF	g/kg TS	467	55	503	44
Zucker	g/kg TS	77	34	117	12
NEL	MJ/kg TS	5.5	0.4	5.3	0.3
APDE	g/kg TS	75	6	85	8
APDN	g/kg TS	92	20	81	19

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

Bilanzversuch Agroscope Material und Methoden

Futtervarianten

- Silage
- Belüftetes Dürrfutter
- Bodengetrocknetes Dürrfutter

Lateinisches Quadrat

14-tägige Angewöhnungs- und 7-tägige Sammelperiode

6 Kühe

Gewicht 698 \pm 65 kg Laktation 284 \pm 7 Tage

Milchleistung 20.2 \pm 2.8 kg

Grundfutter + 0.3 kg Mineralstoffmischung

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

Unit of the Control of the Control

Angewöhnungsperiode

Sammelperiode Stoffwechselstand

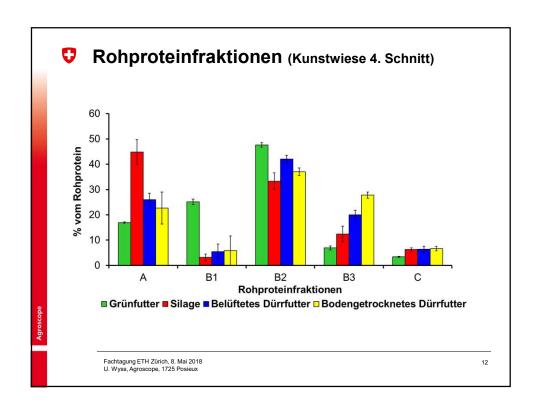
Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

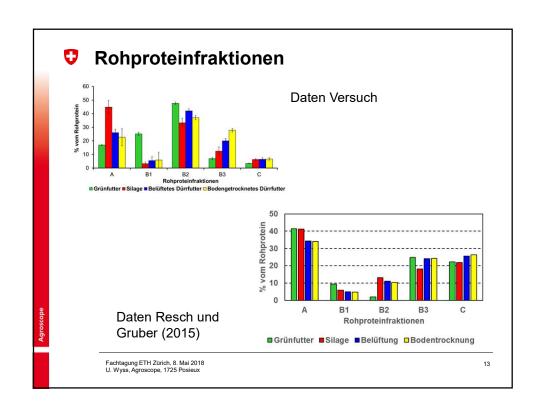
9

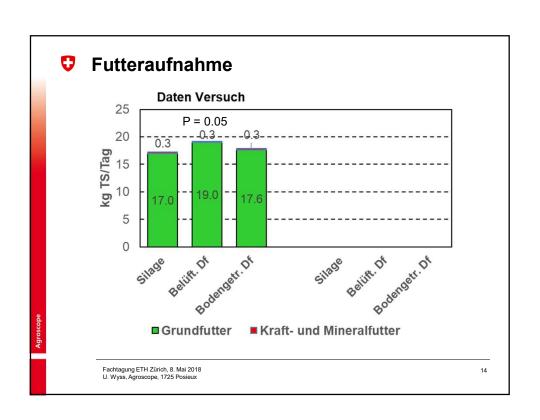
U Erhebungen

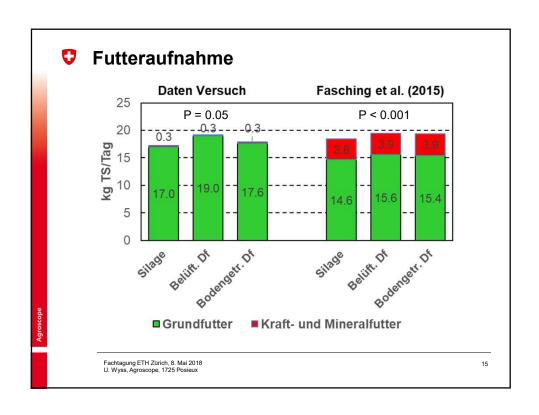
Futterverzehr täglich

Milchmenge und Milchinhaltsstoffe täglich

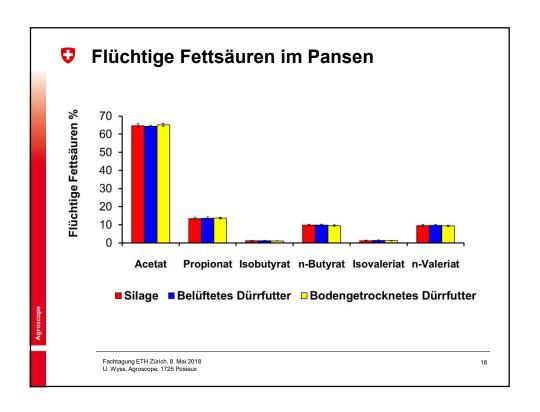

Pansensaft und Blutproben 2 x pro Sammelperiode

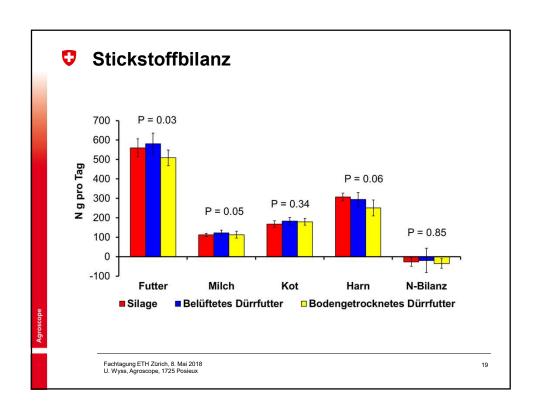


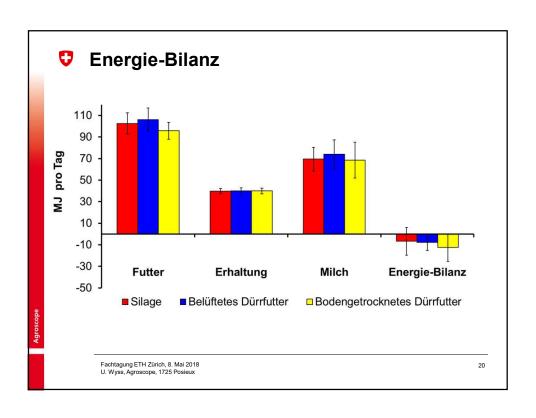

Kot- und Harnmengen täglich + 1 Analyse pro Sammelprobe


Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

- 1	Futteranalysen (Kunstwiese 4. Schnitt)								
				Silage	Belüftetes Dürrfutter	Boden- getrocknetes Dürrfutter			
		TS	%	55.4	87.7	86.8			
		Rohasche	g/kg TS	120	114	109			
		Rohprotein	g/kg TS	207	187	176			
		Rohfaser	g/kg TS	229	238	253			
		ADF	g/kg TS	259	268	283			
		NDF	g/kg TS	405	438	482			
		WSC	g/kg TS	68	80	72			
		NEL	g/kg TS	6.0	5.5	5.4			
		APDE	g/kg TS	90	97	94			
cope		APDN	g/kg TS	130	120	112			
Agroscope									
		Fachtagung ETH Züric U. Wyss, Agroscope, 1				11			






Unit of the Contract of the C

		Silage	Belüftetes Dürrfutter	Boden- getrocknetes Dürrfutter	SE	P-Wert
ECM	kg	22.1	23.5	21.8	1.8	0.09
Fett	%	4.98	4.88	4.93	0.15	0.35
Eiweiss	%	3.73	3.83	3.82	0.10	0.18
Laktose	%	4.70	4.71	4.68	0.07	0.74

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

V Kot- und Harnmengen

	Kotmenge kg/Tag	Harnmenge kg/Tag	N Kot g/kg TS	N Harn g/kg
Silage	43.0	48.1	35.9	6.4
Bel. Dürrfutter	52.5	47.5	33.8	6.2
Bodengetr. Dürrfutter	49.4	43.3	33.5	5.8
Winterration*	38.5	21.5	27.6	5.3
Sommerration*	34.9	34.8	32.1	6.3

^{*} Bracher und Menzi (2015)

Hohe Kalium-Gehalte im Futter führen zu hohen Harnmengen (Eriksson, 2011)

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

2

Harnstoffgehalte in der Milch und Ammoniakgehalte im Blut und Pansensaft

	Milch mg/dl		Blut mmol/l		Pansensaft mmol/l	
	Ø	S	Ø	s	Ø	S
Silage	38	4.0	7.23	0.52	7.38	1.65
Bel. Dürrfutter	36	4.5	7.22	0.61	8.15	0.88
Bodengetr. Dürrfutter	31	3.3	6.45	0.37	6.98	0.94

Harnstoffgehalt Milch

Proteingehalt > 3.7 % und Harnstoffgehalt > 30 ml/dl

Energie- und Rohproteinüberschuss

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

♥ Stickstoff-Ausscheidungen

	N-Menge Kot g/Tag	N-Menge Harn g/Tag	N-Menge Total g/Tag
Silage	168	307	475
Bel. Dürrfutter	183	295	477
Bodengetr. Dürrfutter	180	251	430
Winterration*			276
Sommerration*			328

* Menzi et al. (2016)

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

23

7 Folgerungen I

- Silagebereitung wirkt sich stärker auf die Veränderungen der Proteinfraktionen aus als die Dürrfutterbereitung.
- Die alleinige Verfütterung von Grünfutterkonserven mit hohen Proteingehalten (Silage oder Dürrfutter) im letzten Drittel der Laktation führte grundsätzlich zu hohen Stickstoffausscheidungen über den Harn und zu einer schlechten Stickstoffeffizienz.

anoscone

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

U Folgerungen II

- Die höchsten Ausscheidungen wurden bei Silagefütterung festgestellt, da in diesem Futter der Anteil an NPN besonders hoch war.
- In weiteren Untersuchungen sollte geprüft werden, wie die Stickstoffeffizienz ausfällt, wenn Raufutter von schlechterer Qualität beziehungsweise mit tieferen Rohproteingehalten verfüttert wird und ob eine geringfügige Energieergänzung die Stickstoffeffizienz verbessert.

groscop

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux

25

Ein besonderer Dank geht an die Arbeitsgemeinschaft zur Förderung des Futterbaues (AGFF) für die finanzielle Unterstützung des Projektes und dem Team vom Projekt "Systemvergleich Hohenrain II" für die Probenahmen sowie dem Stall- und Laborpersonal in Posieux

Besten Dank für Ihre Aufmerksamkeit

Ouozoon

Fachtagung ETH Zürich, 8. Mai 2018 U. Wyss, Agroscope, 1725 Posieux