

Fütterung und Verdauung I

Equigarde® 2017/18

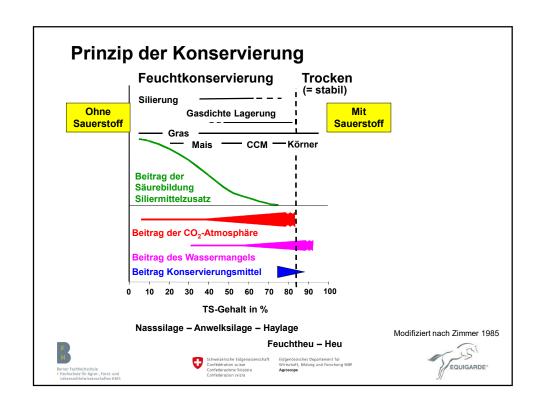
Ort: HAFL, Zollikofen Datum: Freitag, 13.04.2018

Grundlagen der Futterkonservierung

Ueli Wyss

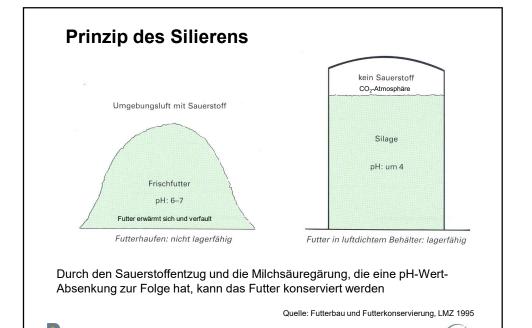
Grundlagen der Futterkonservierung

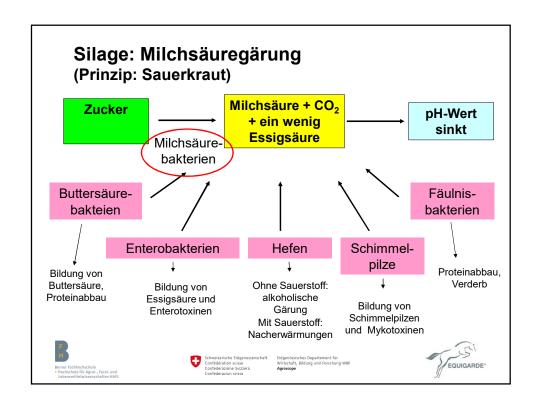
- · Anforderungen an die Qualität des konservierten Futters für Pferde
- Prinzip der Konservierung
- Silagebereitung
- Bereitung von Dürrfutter
- Dürrfutter oder Silage ?
- Beurteilung von Raufutter
- Spezielle Punkte


Anforderungen an die Qualität des konservierten Futters für Pferde

- Wenig Hefen, Schimmelpilze und deren Stoffwechselprodukte (Mykotoxine)
- Keine Verschmutzung, Sand/Erde oder Staub
- Keine feuchten Futterpartien (< 35 % TS)
- Ausreichender Rohfasergehalt: guter Strukturwert
- Niedriger Eiweiss- und Fruktangehalt
- Frei von Giftpflanzen
- Frischer Geruch: Hohe Akzeptanz

Verluste bei verschiedenen Konservierungsverfahren


	Künstliche Gras- trocknung	Silage		Belüftungs- heu	Bodenheu	
		Nass- silage	Anwelk- silage		normal	schlecht (Regen)
Atmungsverluste	(+)	(+)	+	+	+	++
Bröckelverluste	-	-	(+)	+	++	++ bis +++
Schlechtwetterverlust e	-	-	- bis +	- bis +	- bis +	+++
Gärsaftverluste	-	++	-	-	-	-
Gärverluste im Silo	-	+ bis ++	+	-	-	-
Verluste auf dem Heustock	-	-	-	+	+	++
Fütterungsverluste	-	+	(+)	(+)	+	++
Trockensubstanz- verluste in %	5	20-30	10-20	15-25	20-30	>30


Abstufung der Verluste: (+) gering; + mittelmässig; ++ hoch; +++ sehr hoch

Lebensansprüche der Mikroorganismen

Gruppe	Sauerstoffbedarf	untere pH-	Temperaturoptimum
		Wachstumsgrenze	
Milchsäurebakterien	nein	3.0 bis 3.6	15 bis 30 °C
Buttersäurebakterien	nein	4.2 bis 4.4	30 bis 40 °C
Enterobakterien	fakultativ	4.3 bis 4.5	25 bis 35 °c
Hefen	fakultativ	1.3 bis 2.2	20 bis 40 °C
Schimmelpilze	ja	2.5 bis 3.0	20 bis 40 °C
Fäulnisbakterien	ja	4.2 bis 4.8	20 bis 40 °C

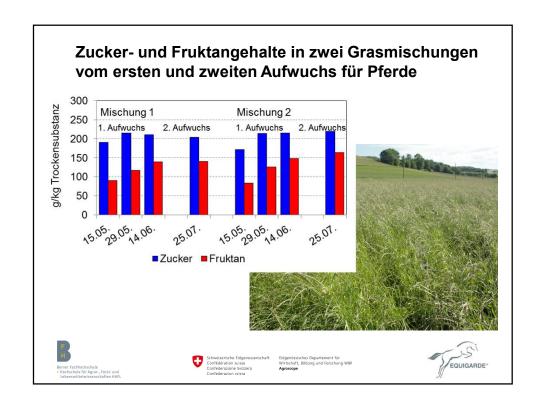
Damit wir bei der Herstellung von Silagen die richtigen Massnahmen ergreifen können, müssen wir die Lebensweise der verschiedenen im Futter vorhandenen Mikroorganismen kennen.

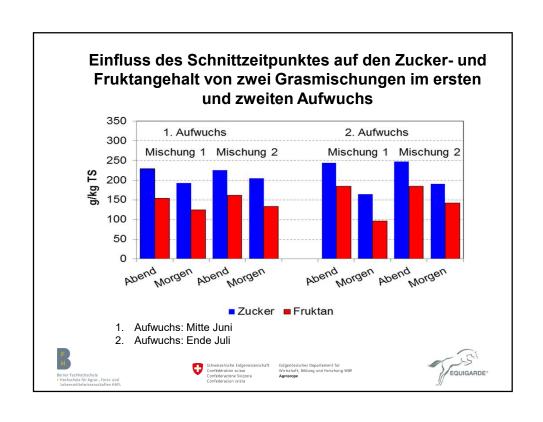
Die verschiedenen Phasen während der Gärung

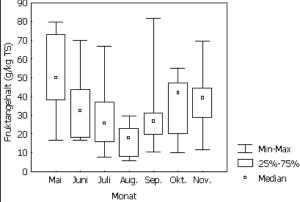
Bei zu frühem Öffnen des Silos besteht die Gefahr von unerwünschten Nachgärungen (Warmwerden der Silagen)

Quelle: Futterbau und Futterkonservierung, LMZ 1995

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF **Agroscope**


Siliereignung des Futters


Futter leicht silierbar	Futter mittelschwer silierbar	Futter schwer siierbar
zuckerreich		zuckerarm
Feuchte mittelmässig		nass oder sehr trocken
sauber		verunreinigt
-		proteinreich
rohfaserarm		rohfaserreich
"junges Futter"		"altes Futter"
Silomais Raigras	angewelktes Grünfutter (Klee-Gras-Mischungen)	nasses Grünfutter Luzerne Zwischenfutter



Fruktangehalte im Gras

Bei der Silierung werden die Fruktane teilweise abgebaut. Je intensiver die Milchsäuregärung, desto stärker der Abbau.

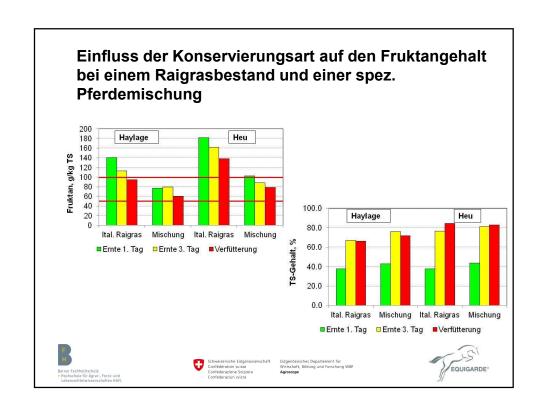
Fruktangehalte in Gras und Grasprodukten bis 50 g/kg TS werden als unbedenklich für Pferde eingestuft, solche zwischen 50 und 100 g als riskant und Gehalte über 100 g als gefährlich.

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WB **Agroscope**

Fruktanbildung wetter- und temperaturabhängig

Kaltes Wetter oder Nachtfrost	Kein Graswachstum, aber gesteigerte Fruktanspeicherung	Mittelmässige Rehegefahr
Kaltes oder frostiges Wetter und strahlender Sonnenschein	Sehr hohe Energieproduktion und massive Speicherung von Fruktan, da kein entsprechendes Graswachstum	Sehr hohe Rehegefahr
Bedeckter Himmel und warmes Wetter	Wenig Energieproduktion, aber Graswachstum	Geringe Rehegefahr

Die Reihe der Gräserarten mit abnehmenden Zuckergehalten lautet:


- Ital. Raigras (Welsches Weidelgras)
- Engl. Raigras (Deutsches Weidelgras)
- Wiesenrispe
- Wiesenschwingel
- Knaulgras
- Rotschwingel
- · Wiesenlieschgras
- Wiesenfuchsschwanz

Der Fruktangehalt korreliert mit dem Gesamtzuckergehalt der Gräser.

Fruktane - Hufrehe

Entgegen der weit verbreiteten herkömmlichen Vermutung spielt Eiweiss bei Hufrehe <u>keine</u> Rolle. "Eiweissvergiftung" ist kein klassischer Auslöser für Hufrehe. Inzwischen weiss man, dass nicht das Eiweiss sondern bestimmte Kohlenhydrate (**Zucker, Stärke und Fruktan**) im Futter der Pferde die Auslöser für Hufrehe sind. Also auch die Stärke im Getreide spielt eine wichtige Rolle.

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WB Agroscope

Silierregeln

- Hochwertiges Futter im richtigen Zeitpunkt schneiden
- Nur sauberes Futter einsilieren
- Futter anwelken
- Siliergut zerkleinern, zügig einsilieren und gut verdichten
- Silos bzw. Ballen luftdicht abschliessen
- Bei Verfütterung auf ausreichende Entnahme achten
- Nach Bedarf Siliermittel einsetzen

Futter im richtigen Stadium mähen

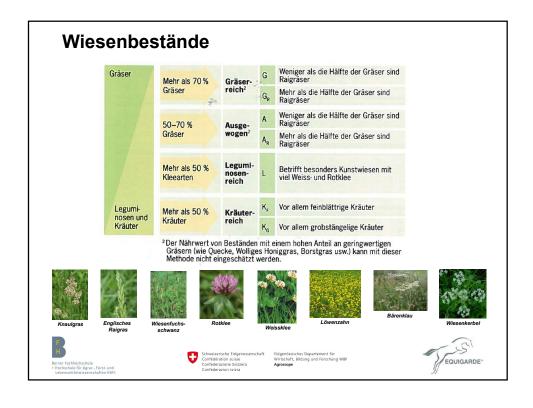
Schnittzeitpunkt und Silagequalität

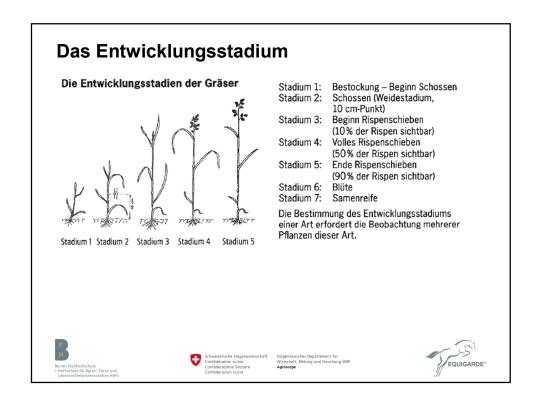
Junges Futter (Silage für Milchkühe):

- Wenig Rohfaser viel Zucker viel Energie
- Lässt sich gut verdichten
- Intensive Milchsäuregärung rasche pH-Absenkung gute Qualität

Älteres Futter ("Pferdefutter"):

- Viel Rohfaser (25 bis 35 % in der TS)
- Lässt sich nicht gut verdichten (Lufteinschluss)
- Geringe Milchsäuregärung pH-Absenkung nicht genügend Buttersäuregärung + evtl. Schimmel


Altes Futter (nicht immer für Pferde geeignet):


- Sehr viel Rohfaser (über 35 % in der TS) wenig Zucker wenig Energie
- Lässt sich nicht gut verdichten (Lufteinschluss)
- Hoher Keimbesatz

Botulismus

Pferde sind sehr anfällig für Botulismus. Die Botulismus auslösenden Toxine werden von Clostridium botulinum in fauligem, sich zersetzendem eiweisshaltigem Material (Tierkadaver, verdorbene eiweissreiche Pflanzen) gebildet. Das Bakterium Clostridium botulinum befindet sich ubiquitär in der Erde und gelegentlich im Darm von Vögeln und Säugetieren.

Die Sporen von Clostridium botulinum können nur unter anaeroben Bedingungen, bei hoher Feuchtigkeit und einem pH-Wert höher als 4,5 auskeimen und sich vermehren.

In der Regel erfolgt die Aufnahme des Toxins über Futter (Silage, Heu, Futterwürfel), welches mit Kadavern oder Erdbesatz kontaminiert ist. Vergiftungen durch kontaminiertes Wasser sind ebenfalls möglich.

Futter das für Pferde in Siloballen einsiliert wird, weist oft hohe TS-Gehalte (über 50 % TS) auf. Solches Futter macht nur eine wenig intensive Milchsäuregärung durch und entsprechend fällt der pH-Wert nicht so stark ab.

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

Silotypen

Hochsilo - Flachsilo - Siloballen

Unabhängig vom Silotyp ist es möglich, Silage von guter Qualität herzustellen.

Wichtig ist, dass die Silogrösse dem Tierbestand angepasst ist und täglich genügend Silage entnommen werden kann

Was ist der Unterschied zwischen Silage und Haylage?

Ursprünglich wurden alle silierten Futter Silage genannt.

Später hat man begonnen, eine trockene Silage als Haylage zu bezeichnen. Ab TS-Gehalten über 50 % spricht man von Haylage (Grenze ist jedoch nicht klar festgelegt).

Haylage wird auch Heulage oder Gärheu genannt.

Je trocknerer die Silage ist, desto weniger intensiv ist die Milchsäuregärung und desto weniger stark wird der pH-Wert abgesenkt.

TS-Gehalte über 65 % sind nicht zu empfehlen, da solche Silagen anfälliger für Hefen und Schimmelpilze sind.

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Agroscope

swissHorseHeulage

Haylage in Kleinballen für Pferde

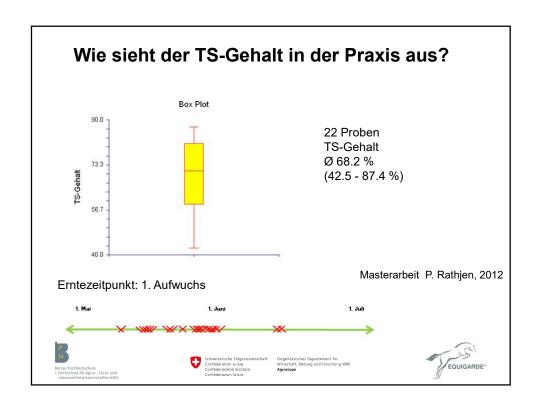
Portionenpackung: 16 bis 20 kg Futter www.heulage.com

Hippo-Haylage

erhalten Sie in handlichen, kleinen Quaderballen, gewickelt, palettiert (12 x Hippo-Haylage besteht aus reinen, hochwertigen Raygras-Beständen.

Die Konservierung der Bestände erfolgt mittels natürlicher Gärung bei einem Gehalt von ca. 65 % Trockensubstanz.

www.landwirt.ch

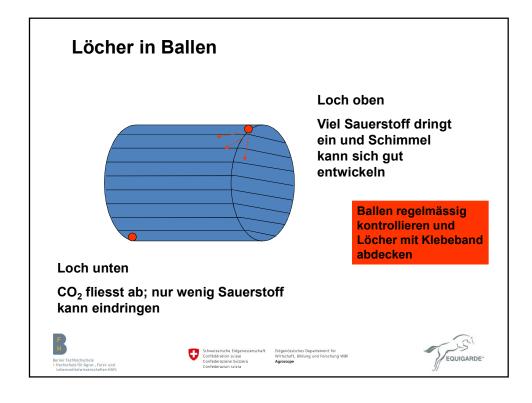


erner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Gärparameter und Rohnährtsoffegehalte von Pferdesilagen in Kleinballen

TS-Gehalt %	pH-Wert	Milch- säure g/kg TS	Essig- säure g/kg TS	Butter- säure g/kg TS	Roh- asche g/kg TS	Roh- protein g/kg TS	Roh- faser g/kg TS
35.9	4.48	78	15	2	155	104	304
53.8	5.21	45	7	0			
58.9	5.83	0	1	0	92	109	338
63.1	5.68	0	1	0	83	65	307
70.2	6.29	0	1	0	89	89	299

Rohaschegehalt sollte unter 110 g sein. Höhere Werte deuten auf Erdbesatz hin.



Ziel eines Siliermitteleinsatzes

- Zur Verbesserung des Gärverlaufs und zur Verhinderung von Fehlgärungen
- Zur Verhinderung von Nacherwärmungen bei der Entnahme

Grundsätzliche Bemerkungen zum Siliermitteleinsatz

- Siliermittel sind keine Wundermittel. Eine schlechte Arbeit und schlechtes Futter kann durch einen Siliermitteleinsatz niemals wettgemacht werden!
- Entscheidend für eine entsprechende Wirksamkeit der Siliermittelist deren exakte Dosierung von Verteilung (Dosiergeräte) in der gesamten Silage.
- Bei der Auswahl der Siliermittel sind auch deren Vor- und Nachteile (Korrosivität, Verätzung, Gase) zu berücksichtigen.

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WB

Verordnung vom 26. Oktober 2011 über die Produktion und das Inverkehrbringen von Futtermitteln, Futtermittelzusatzstoffen und Diätfuttermitteln 916.307.1

Liste der zugelassenen Zusatzstoffe

1. Kategorie: Technologische Zusatzstoffe

Funktionsgruppe: a) Konservierungsmittel

Stoffe oder gegebenenfalls Mikroorganismen, die Futtermittel vor den schädlichen Auswirkungen von Mikroorganismen oder deren Metaboliten schützen

Funktionsgruppe: k) Silierzusatzstoffe

Stoffe, einschliesslich Enzyme oder Mikroorganismen, die Futtermitteln zugesetzt werden, um die Silageerzeugung zu verbessern

Siliermittel Liste A: Förderung des Gärverlaufs und Verhinderung von Fehlgärungen

- Säuren
- Salze

Hemmung der schädlichen Mikoorganismen

Förderung der natürlichen Milchsäurebakterien durch pH-Absenkung

Nachteile: korrosiv und ätzend

 Homofermentative Milchsäurebakterien (Impfzusätze) ohne und mit Enzymen

Förderung der Milchsäuregärung durch Bakterienzusatz

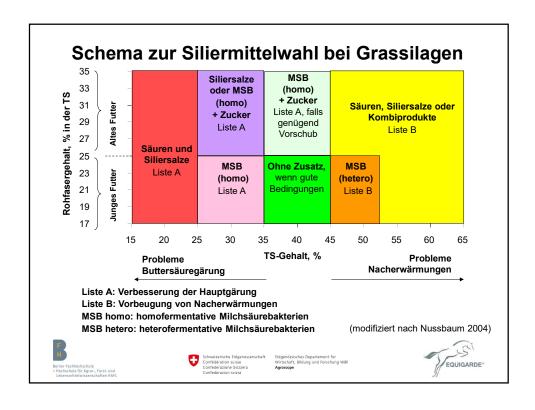
Voraussetzung: genügend Nährsubtrat

Bei den Milchsäurebakterien-Impfzusätzen Lagerungsbedingungen für das Produkt und Haltbarkeitsdauer beachten

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF **Agroscope**

Siliermittel Liste B: Vorbeugung von Nacherwärmungen

- Säuren
- Salze
- Heterofermentative Milchsäurebakterien
- Kombiprodukte (chemische Komponenten und homofermentative Milchsäurebakterien)



Silagen behandelt mit einem Milchsäurebakterien-Impfzusatz (homofermentative MSB) sind oft anfälliger für Nacherwärmungen

Trocknungsarten für Dürrfutter

- Bodenheu: durch Sonnenwärme und Luft auf dem Feld getrocknet.
- Belüftungsheu: vorgetrocknet auf dem Feld; nachgetrocknet durch Luft einer Belüftungsanlage in der Scheune.
- Künstlich getrocknetes Gras Trockengras: durch den Heissluftstrom einer Grastrocknungsanlage getrocknet.

Feuchtheu - Ausgangslage

- Das Bodenheu ist beim Pressen selten genügend trocken
- In den grossen Ballen entweicht die Feuchtigkeit nur sehr langsam
- Negative Auswirkungen auf die mikrobiologische Qualität und den Nährwert sind die Folge

Schweizerische Eidgenossensch Confédération suisse Confederazione Svizzera

Brandverhütung 100 ° C 90 ° C Durch die natürliche, Über 70° C mikrobielle Gärung kann 80 ° C Selbstentzündungsgefahr sich das Heu selbst Die Feuerwehr alarmieren entzünden. 70 ° C Die Gärintensität ist vom 60 ° C Bei übermässiger Gärung Wassergehalt des verliert das Futter stark Futters abhängig. 50 ° C an Nährwert 40 ° C **Normale Gärung** 30 ° C

Berner Fachhochschule

Hochschule für Agrar-, Forst- und

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Agroscope

Temperatur für gut getrocknetes Futter

20 ° C

10 ° C

<u>0</u> ° C


Konservierungsmittel für Feuchtheu

- Kofa Grain pH 5
- Kroni 909.01 Stabisil flüssig
- Lupro Grain
- Navi Sil TS
- RB-sil
- Schaumasil supra NK flüssig
- Selko Heu

Wichtige Punkte zur Feuchheukonservierung mit Konservierungsmitteln

- Die Zusätze müssen homogen appliziert werden.
- Der Schwad sollte möglichst breit sein, damit das Produkt gut appliziert werden kann.
- Die Schätzung des TS-Gehaltes ist schwierig und ist entscheidend für die richtige Dosierung. Es gibt Geräte zur Bestimmung der Feuchtigkeit im Futter.
- Bei TS-Gehalten unter 75 % TS wird der Einsatz nicht empfohlen.
- Die Erfahrung ist zum Gelingen sehr wichtig.

Heu oder Silage?

Heu (Dürrfutter)

- TS-Gehalte über 85 %
- · Lufteinfluss (Sauerstoff)
- Staub

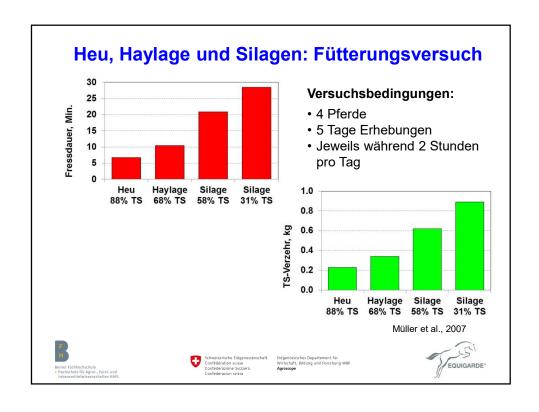
Silage

- TS-Gehalte zwischen 20 und 80 %
- Keine Luft (kein Sauerstoff)
- Milchsäuregärung
- Kein Staub

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WB Agroscope

Gehaltswerte von Heu, Haylage und Silagen

		Heu	Haylage	Silage	Silage
TS-Gehalt	%	88.4	68.4	57.7	30.9
Rohasche	g/kg TS	64	68	66	66
Rohprotein	g/kg TS	108	116	110	113
NDF	g/kg TS	605	607	608	585
Zucker	g/kg TS	101	71	69	26
pН		-	5.8	5.6	4.9
Milchsäure	g/kg TS	-	<1	3	32
Essigsäure	g/kg TS	-	1	1	7
Ethanol	g/kg TS	-	4	8	23


Zucker: wasserlöslicher Zucker

Müller et al., 2007

388834-6 61.5 52 82	388835-3 74.2 51	388836-0 69.5 72	388837-7 83.8 73	388838-4 69.1	388839-1 76.8
52	51			00.1	76.8
	• • •	72	72		
82				67	103
	48	78	62	108	164
332	382	332	318	397	255
347	452	369	369	466	290
584	715	594	638	749	528
140	108	125	98	49	77
126	125	127	139	67	95
48	38	43	69	0	8
9.5	8.6	9.2	9.4	8.5	10.3
8.9	7.9	8.5	8.7	7.5	9.6
7.6	6.8	7.2	7.6	5.8	7.8
	347 584 140 126 48 9.5 8.9	347 452 584 715 140 108 126 125 48 38 9.5 8.6 8.9 7.9	347 452 369 584 715 594 140 108 125 126 125 127 48 38 43 9.5 8.6 9.2 8.9 7.9 8.5	347 452 369 369 584 715 594 638 140 108 125 98 126 125 127 139 48 38 43 69 9.5 8.6 9.2 9.4 8.9 7.9 8.5 8.7	347 452 369 369 466 584 715 594 638 749 140 108 125 98 49 126 125 127 139 67 48 38 43 69 0 9.5 8.6 9.2 9.4 8.5 8.9 7.9 8.5 8.7 7.5

Haylageproben 2017

		Probe 401	Probe 402	Probe 403	Probe 404	Probe 405	Probe 406
		388834-6	388835-3	388836-0	388837-7	388838-4	388839-1
pН		5.6	5.7	5.6	6.8	6.3	5.9
Milchsäure	g/kg TS	6	3	2	2	< 1	1
Essigsäure	g/kg TS	2	2	1	1	1	1
Propionsäure	g/kg TS	< 1	4	1	< 1	< 1	< 1
Buttersäure	g/kg TS	< 1	< 1	< 1	< 1	< 1	< 1
Ethanol	g/kg TS	28	2	9	< 1	2	3
NH3-N/N tot	%	3.4	4.1	3.7	1.8	2.5	1.3
Putrescin	g/kg	<0.32	<0.32	<0.32	<0.32	<0.32	<0.32
Cadaverin	g/kg	< 0.60	< 0.60	< 0.60	< 0.38	< 0.38	< 0.38
Histamin	g/kg	2.0	1.9	< 1.2	< 1.2	< 1.2	< 1.2
Phenylethylamin	g/kg	0.2	0.2	0.2	0.2	0.3	0.2
Tryptamin	g/kg	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
Tyramin	g/kg	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
biogene Amine	g/kg	2.2	2.1	0.2	0.2	0.3	0.2

Biogene Amine: Werte < 5 g/kg TS – Der Gehalt ist nicht erhöht

Fachhochschule schule für Agrar-, Forst- und

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WB

Haylageproben 2017

- · Haylage ist nicht sauer!
- In guter Haylage gibt es keine Probleme mit biogenen Aminen

Definitionen von Haylage bzw. Heulage

- Pferdefütterung: Einsatz von "Heulagen"
- Beschreibung Heulagen
 - Trockensubstanzgehalt > 50 %
 - Geringe Gärphase bzw. Silierung
 - Ähnl. hohe Nährstoffverluste durch Konservierung wie beim Heu
 - pH-Wert : > 6
 - Geringe Haltbarkeit nach dem Öffnen
 - Sommer < 24 h

Brennpunkt Pferd 2017, I. Vervuert

rner Fachhochschule Bochschule für Agrar-, Forst- und Schweizerische Eidgenossensch Confédération suisse Confederazione Svizzera

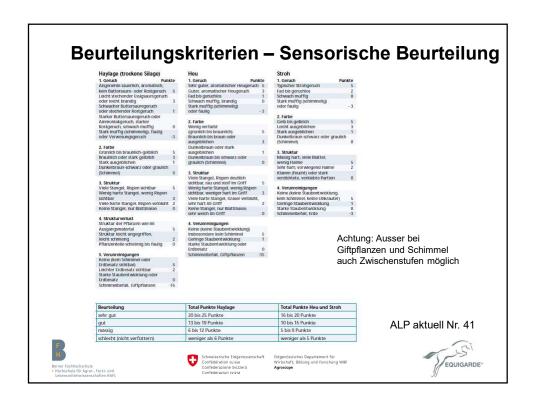
Probenahme

Repräsentative Proben

Aus einem kleinen Teil einer Partie Werte finden, die dem Mittelwert der Partie entsprechen.

 Analysenergebnisse zur Überprüfung der Gehalte bzw. zur Rationenberechnung

Selektive Proben


Nur das Material wird beprobt, welches einen wesentlichen Unterschied aufweist resp. vermutet wird.

 Analysenergebnisse zur Abklärung der Ursachen in Problemfällen

Richtwerte für hochwertige Silagen Grassilage für Grassilage für Milchkühe Pferde TS-Gehalt % 35 - 45 50 - 65 Rohasche g/kg TS < 110 < 100 Rohprotein g/kg TS 150 - 200 120 - 150 Rohfaser g/kg TS 200 - 250 260 - 300 NEL MJ/kg TS 5.8 - 6.4 5.0 - 5.8 VEP MJ/kg TS 10.8 - 12.2 9.0 - 10.5 pH-Wert 4.3 - 4.7 5.0 - 5.5 Milchsäure g/kg TS 50 - 100 > 50 < 30 Essigsäure g/kg TS < 10 Buttersäure g/kg TS 0 0 Ethanol g/kg TS < 10 < 10 NH₃-N/N tot. < 10 < 10 NEL: Nettoenergie Laktation (Milchkuh) VEP: Verdauliche Energie Pferd EQUIGARDE

Richtwerte für Pferdefutter

		Heu	Silage	Stroh
TS-Gehalt	%	> 88	50 – 65	> 88
Rohasche	g/kg TS	< 100	< 100	50 - 70
Rohprotein	g/kg TS	90 - 110	120 - 150	30 - 40
Rohfaser	g/kg TS	300 - 330	260 - 300	430 - 490
Verdauliche Energie Pferd	MJ/kg TS	8.0 - 10.0	9.0 - 10.5	5.5 - 7.0
Verdauliches Protein Pferd	g/kg TS	40 - 60	80 - 100	10 - 20

Orientierungswerte zur Beurteilung der mikrobiologischen Qualität in Futtermitteln (Qualitätsstufe I: normale Qualität)

		Heu	Silage	Stroh
Aerobe mesophile				
Bakterien				
-produkttypische Arten	KBE/g	< 30 Mio	< 200'000	< 100 Mio
-verderbanzeigende Arten	KBE/g	< 2 Mio	< 200'000	< 2 Mio
-Streptomyceten	KBE/g	< 150'000	< 10'000	< 150'000
Hefen				
-verderbanzeigende Arten	KBE/g	< 150'000	< 200'000	< 400'000
Schimmel				
-produkttypische Arten	KBE/g	< 200'000	< 5'000	< 200'000
-verderbanzeigende Arten	KBE/g	< 100'000	< 5'000	< 100'000
-Mucoraceen	KBE/g	< 5'000	< 5'000	< 5'000

Arbeitskreis Futtermittel - Mikrobiologie der Fachgruppe VI des VDLUFA, 2001

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Agroscope

Orientierungswerte zur Beurteilung der mikrobiologischen Qualität in Futtermitteln (nach VDLUFA)

Mikrobiologische Analysen haben zum Ziel den hygienischen Zustand eines Einzelfutter-, Mischfutter- oder Raufuttermittels zu beurteilen. Die Orientierungswerte liefern dazu die Basis für eine quantitative Information über die Gehalte an lebenden Mikroorganismen in der untersuchten Probe. Dabei werden vier Qualitätsstufen festgelegt:

Qualitätsstufe I: Qualität normal (Orientierungswert)

Qualitätsstufe II: Keimgehalt leicht erhöht bis erhöht, Qualität etwas

herabgesetzt (1 bis 5 x Orientierungswert)

Qualitätsstufe III: Keimgehalt deutlich erhöht, Qualität deutlich

herabgesetzt (5 bis 10 x Orientierungswert).

Qualitätsstufe IV: Keimgehalt überhöht bis stark übererhöht, Qualität

verdorben (mehr als 10 x Orientierungswert)

Verfütterung

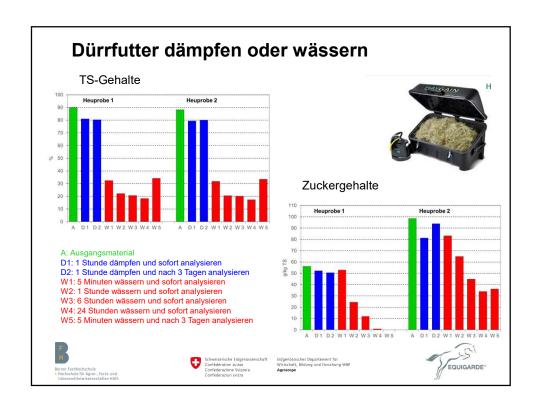
Soll die Haylage vor der Verfütterung aufgeschüttelt oder kompakt gelagert werden?

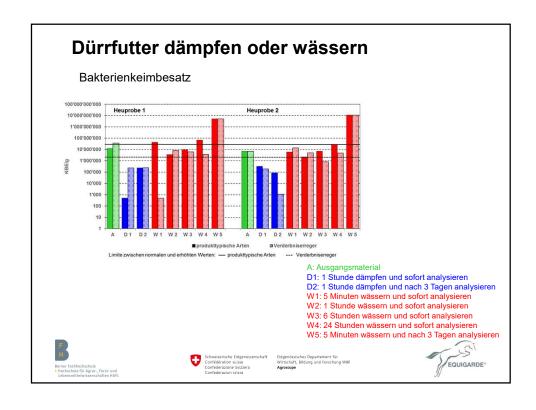
Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

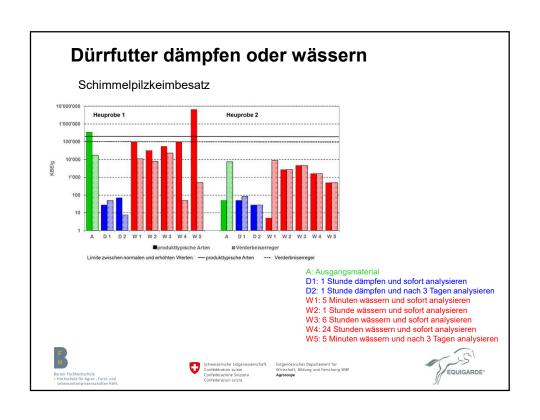
Temperaturmessung im Futter

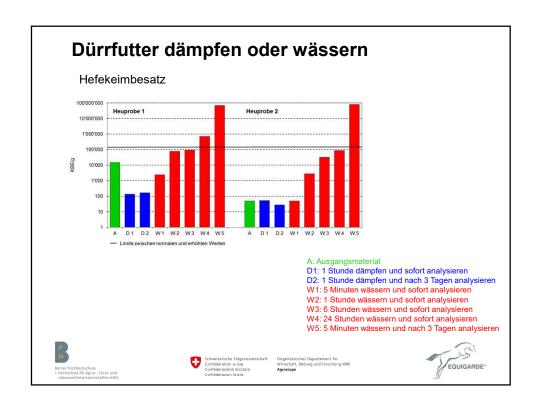
Schweizerische Eidgenossensch Confédération suisse Confederazione Svizzera

Ergebnisse Versuch Aufschütteln ja-nein


- Temperaturmessungen sind ein guter Parameter zum Hinweis von Verderb.
- Folie entfernen Kondenswasserbildung Verderb.
- Verschimmelte Partien nicht verfüttern.
- Aufgeschüttetes Futter mit hohen TS-Gehalten (über 60 %) trocknet stärker ab und ist weniger anfällig für Schimmelbefall.
- Futter um 50 % TS eher kompakt lassen.
- Ballengrösse dem Tierbestand anpassen Balle innerhalb einer Woche verfüttern.
- Konservierungsmittel hat Keimbesatz nicht stark reduziert (Dosierung?)


Fazit: Haylage vor der Verfütterung aufschütteln





Giftpflanzen und Konservierung

Art	Vorkommen	Giftstoffe	Wirkung
Jakobs-Kreuzkraut (Senecio jacobaea)	Grünlandbrachen, schlechte Weiden	versch. Alkaloide wie Senecin, Senecionin	Koliken, Gelbsucht, blutiger Durchfall Auch im Heu und Haylage giftig
Herbstzeitlose (Colchicum autumnale)	Feuchtwiesen Extensiv- Grünland Brachen	Colchicin (Alkaloid) sehr giftig + über 20 weitere Alkaloide	Erbrechen, Durchfall, Atemlähmung, Tod Auch im Heu und Haylage giftig
Sumpf-Schachtelhalm (Equisetum palustre)	Nasswiesen, Extensiv- Grünland	Alkaloide Palustrin(= Equisetin) und Palustridin Thiaminase (Enzym)	Durchfall mit Gewichtsverlust Auch im Heu und Haylage giftig
Zypressen-Wolfsmilch (Euphorbia cyparissias)	trockene Magerwiesen und -weiden, Extensiv- Grünland	Verschiedene stick- stofffreie Diterpen-Ester, Euphorbon Phorbol	Erbrechen, Durchfall, Krämpfe, Durchfall, Blutharnen Giftwirkung im Heu und Haylage etwas abgeschwächt

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

Giftpflanzen und Konservierung

Art	Vorkommen	Giftstoffe	Wirkung
Scharfer Hahnenfuss (Ranunculus acris)	Grünland bis 4 Nutzungen	Anemonine Saponine	Durchfälle, Koliken Im Heu und Haylage nicht mehr giftig
Klappertopf (Rhinanthus spec.)	frische bis mässig trockene Wiesen	Rhinanthin (Aucubin) = ein Glycosid	Erbrechen, Krämpfe, blutiger Durchfall, Nieren-Entzündung Im Heu und Haylage nicht mehr giftig
Wiesen-Schaumkraut (Cardamine pratensis)	feuchte bis nasse Wiesen	Butyl-Senföl Glycon-Nastutiin	Verliert beim Trocknen die Giftigkeit
Adlerfarn (Pteridium aquilinum)	kalkfreie oder ent- kalkte Böden auf Ur- gestein, Bergweiden	Thiaminase (Enzym) Pteridin (ein Saponin) Blausäure-Glycosid	Durchfall, Blutharnen, Schleimhaut-Blut Nur im grünen Zustand giftig
Sumpf-Dotterblume (Caltha palustris)	nasse Wiesen, Extensiv-Grünland	Saponine im Kraut Magnoflorin (Alkaloid) in den Wurzeln	Unklare Giftwirkung (wahrscheinlich nur im grünen Zustand giftig)

Zusammenfassung

- Zur Herstellung von Silagen und Dürrfutter von guter Qualität und angepasst an die Pferdefütterung muss man die Grundregeln der Konservierung beachten.
- Zur Bestimmung der Qualität des konservierten Futters kann man das Futter analysieren lassen.
 Doch auch mit einer sensorischen Beurteilung kann die Qualität des Futters gut eingeschätzt werden.

