

CHEMSTAT

Federal Department of Economic Affairs, Education and Research EAER

Agroscope

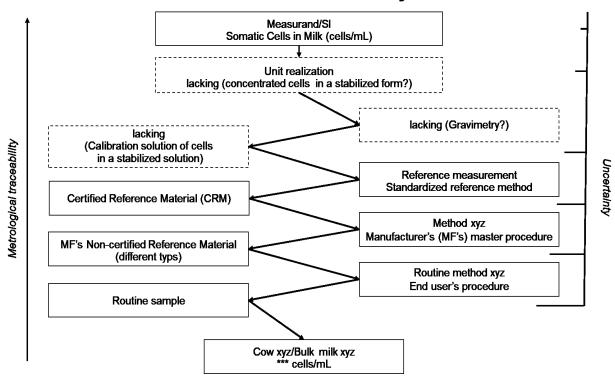
CHEMSTAT Bern

Calculation model to compare different proficiency tests –

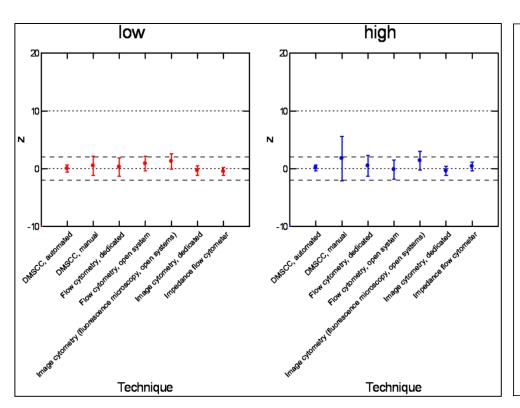
Modello di calcolo per la comparazione dei proficiency tests

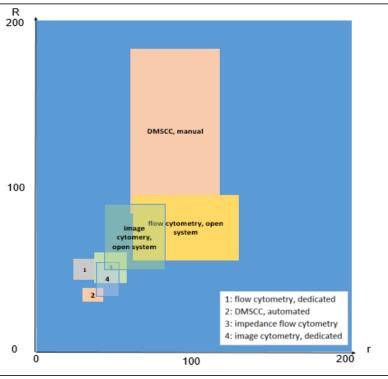
Thomas Berger (Agroscope)
Werner Luginbühl (ChemStat)

AEOS ANALYTICA 2019, Roma, 21 March 2019


Topics

- Introduction
- What could happen today?
- SCC Reference System


What is normal in metrology?


Reference Measurement System

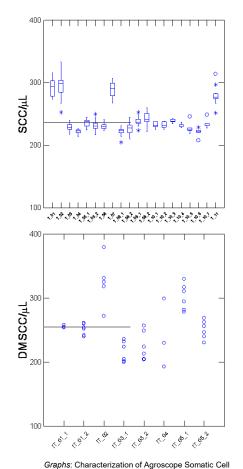
Reference measurement system for Somatic Cell Counting in milk as proposed in draft IDF Bulletin "Inventory, Evaluation, and Perspectives on methods for determination of SCC", Berger T. and Schwarz D., 2019

What about the reference method?

z-values per type of method and standard level using data of the feasibility study conducted in the framework of IDF Action Team S15

Draft IDF Bulletin "Inventory, Evaluation, and Perspectives on methods for determination of SCC", Berger T. and Schwarz D., 2019

Graphical comparison of the methods using repeatability and reproducibility data of the feasibility study conducted in the framework of IDF Action Team S15
Draft IDF Bulletin "Inventory, Evaluation, and Perspectives on methods for determination of SCC", Berger T. and Schwarz D., 2019


What is the case in SCC measurement?

- The current reference method is based on microscopy, has been described as tedious, cumbersome, and challenging to work with
- It is a defining method, a method which determines a value that can only be arrived at in terms of the method per se and serves by definition as the only method for establishing the accepted value of the item measured (CODEX, 2018): what an individual operator counts are somatic cells → it's the microscopist's decision!
- The feasibility study performed in the framework of IDF AT15 revealed that the current reference method is not fit for purpose [.. but the search for alternative methods has started]
- No certified reference material (CRM) [..but the certification study started]

- Sufficiently good routine method
- Different proficiency testings (PTs) and secondary/working standards with a certain variability in measurand, concentration and matrix

...and what happens because of that?

Thomas Berger, Werner Luginbühl

- Generally a good comparability in routine measurements of labs from different countries and networks
- Generally comparable links to other proficiency testings

but...

- Insufficient traceability because of a lacking CRM and a reference method not fit for purpose
- Sometimes "islands" of labs show up indicating
 - · weaknesses in the system
 - that some efforts are needed to make the system comparable
- ..and sometimes the uncomfortable feeling that we deal with a Zanzibar effect

O

What could happen today?

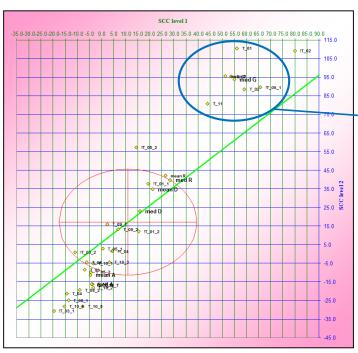
Circular traceability

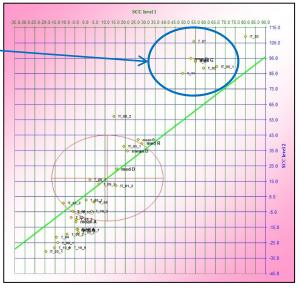
Zanzibar effect

The famous story of the retired sea-captain on the island who takes his time from the watchmaker in town only to find out that the watchmaker uses the sea-captain's cannon shots at 12 noon each day to set his own clocks!

(Examples of this kind of circular traceability in measurement are more common than one would hope.)

Source: L. Pendrill, Attributed to Harrison (MIT) by Petley, Applications of Statistics in Measurement & Testing (http://metrology.wordpress.com/statistical-methods-index/basic-theory-of-measurement-and-error/trueness-%E2%80%93-calibration-and-traceability/)


What could happen today?

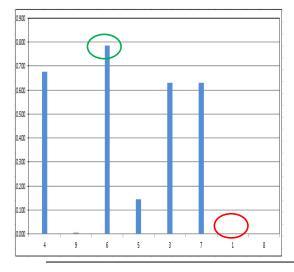

Focus on subgroup criteria

• Labs of a subgroup (country, organization, method/equipment) want to improve and focus on subgroup criteria

Labs of the subgroup move away from the general mean

What is a Reference System?

- A statistical approach for the comparability of PTs and of participating laboratories
- Using a Quality Index P_L to evaluate the analytical performance of laboratories and a Quality Index P_Q to evaluate PTs both deriving from probabilities
- The approach is making use of the precision parameters as reported in the international standard ISO 13366-2 and of assigned values of test materials


see also: Berger T.F.H., Luginbühl W. 2016. Probabilistic Comparison and Assessment of Proficiency Testing Schemes and Laboratories in the Somatic Cell Count of Raw Milk. Accred Qual Assur, 21, 3, 175–183 (https://link.springer.com/article/10.1007/s00769-016-1207-y)

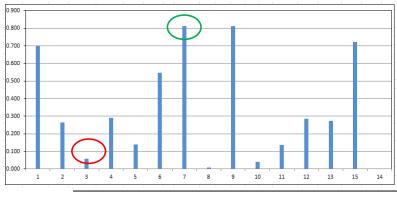
What are the influencing parameters?

Parameters influencing P_L

	s _r	ÿ	θ	σ _r	σ _R	n	\tilde{z}_n	q ₁	q ₂	q ₃	q ₄	q ₅	q	q(w)	$\hat{\chi}^2_{(r)}$	P (r)	$P(\tilde{z}_{\kappa})$	PL	$ ilde{P}_{\!\scriptscriptstyle L}$
	0.00	269.00	261.00	13.73	21.56	2	0.416	1	1	1	1	1	1.0000	1.000	0.000	1.000	0.678	0.678	0.2357
١.	0.71	207.50	261.00	13.73	21.56	2	-2.779	1	1	1	1	1	1.0000						
	2.12	263.50	261.00	13.73	21.56	2	0.130	1	1	1	1	1	1.0000	1.000	0.024	0.877	0.897	(0.787)	0.2736
	4.95	236.50	261.00	13.73	21.56	2	-1.273	1	1	1	1	1	1.0000	1.000	0.130	0.718	0.203	0.146	0.0508
	6.36	261.50	261.00	13.73	21.56	2	0.026	1	1	1	1	1	1.0000	1.000	0.215	0.643	0.979	0.630	0.2191
	6.36		261.00					1	1	1	1	1	1.0000						
		283.00						1	1	1	1	1							0.0000
3	5.56	305.50	261.00	19.73	21.56	2	2.312	1	1	1	1	1	1.0000	1.000	38.833	0.000	0.021	0.000	0.0000
3	5.56	305.50	261.00	19.73	21.56	2	2.312	1	1	1	1	1	1.0000	1.000	38.833	0.000	0.021	0.000	0.00

$$S_r < \sigma_r \rightarrow P_r \text{ high}$$

 $S_r > \sigma_r \rightarrow P_r \text{ low}$

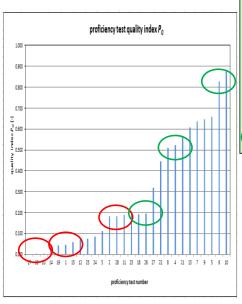

O

SCC Reference System

What are the influencing parameters?

Parameters influencing P_L

		_	_																
	Sr	ÿ	θ	σ_{r}	σ _R	n	\tilde{Z}_n	q ₁	q ₂	q ₃	q ₄	q ₅	q	q(w)	$\hat{\chi}^2_{(r)}$	P (r)	$P(\tilde{z}_n$) P L	$ ilde{P}_{\!\scriptscriptstyle L}$
0	0.00	97.00	94.00	5.99	8.81	2	0.388	1	1	1	1	1	1.0000	1.000	0.000	1.000	0.698	0.698	0.1373
2	2.12	101.00	94.00	5.99	8.81	2	0.906	1	1	1	1	1	1.0000	1.000	0.125	0.723	0.365	0.264	0.0519
1	.41	80.00	(94.00)	5.99	8.81	2	(-1.812)	1	1	1	1	1	1.0000	1.000	0.056	0.813	0.070	0.057	0.0112
4	.24	98.00	94.00	5.99	8.81	2	0.518	1	1	1	1	1	1.0000	1.000	0.502	0.479	0.605	0.289	0.0570
0	.71	105.00	94.00	5.99	8.81	2	1.424	1	1	1	1	1	1.0000	1.000	0.014	0.906	0.154	0.140	0.0275
0	.71	90.00	94.00	5.99	8.81	2	-0.518	1	1	1	1	1	1.0000	1.000	0.014	0.906	0.605	0.548	0.1078
0	.71	93.00	(94.00)	5.99	8.81	2	(-0.129)	1	1	1	1	1	1.0000	1.000	0.014	0.906	0.897	0.813	0.1599
4	.95	112.00	94.00	5.99	8.81	2	2.330	1	1	1	1	1	1.0000	1.000	0.683	0.409	0.020	0.008	0.0016
1	.41	94.00	94.00	5.99	8.81	2	0.000	1	1	1	1	1	1.0000	1.000	0.056	0.813	1.000	0.813	0.1600
3	3.54	80.00	94.00	5.99	8.81	2	-1.812	1	1	1	1	1	1.0000	1.000	0.348	0.555	0.070	0.039	0.0076
7	.78	91.00	94.00	5.99	8.81	2	-0.388	1	1	1	1	1	1.0000	1.000	1.686	0.194	0.698	0.135	0.0266
4	.95	97.00	94.00	5.99	8.81	2	0.388	1	1	1	1	1	1.0000	1.000	0.683	0.409	0.698	0.285	0.0561
0	.71	86.00	94.00	5.99	8.81	2	-1.036	1	1	1	1	1	1.0000	1.000	0.014	0.906	0.300	0.272	0.0536
0).71	92.00	94.00	5.99	8.81	2	-0.259	1	1	1	1	1	1.0000	1.000	0.014	0.906	0.796	0.721	0.1419



$$\bar{y} \approx \theta \rightarrow P(\tilde{y} \text{ high } \bar{y} \leq \theta \rightarrow P(\tilde{y} \text{ low } \bar{y})$$

What are the influencing parameters?

Parameters influencing P_Q

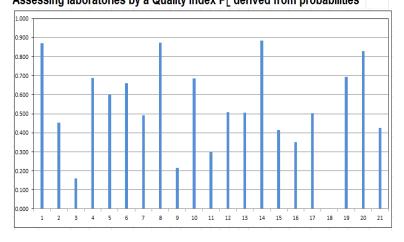
	30.48	33.00	15.07	13.13	Z1.56	16.62	0		0.623	- 1	- 1	- 1	- 1	- 1	1	1.00	56.334	16. 164	5.0000	0.023	0.026	0.000	0.0000000	JUUUI
	22.48)	33.39	24.63	12.65	19.61	14.98	8	2	-0.289	1	1	1	1	1	1	1.00	25.275	19.821	0.0014	0.006	0.919	0.000	0.0000009	254
	300	7.00	6.32	333	4.83	3.50	15	2	0.740	1	1	1	1	1	1	1.00	12.174	35.031	8,6658	0.001	0.849	0.007	0.0000993	3201
	16.87	29.47	24.17	15.38	24.78	19.43	8	2	0.643	1	1	1	1	1	1	1.00	9.620	10.254	0.2927	0.175	0.820	0.042	0.0050669	598
	12.00	73.00	72.01	29.52	59.04	51.13	15	2	8.037	1	1	1	1	1	1	1.00	2.479	24.130	0.9999	0.044	0.532	9:044	0.0052986	953
	8.60	10.26	5.60	12.62	19.56	14.94	22	15	9.403	1	1	1	1	1	1	1.00	143.031	3.253	1.0000	1.000	0.045	0.045	0.0054366	469
	13.55	34.52	31.74	16.86	28.09	22.47	8	2	0.908	1	1	1	1	1	1	1.00	5.170	11.897	0.7393	0.104	0.748	8.058	0.0069573	820
	12.62	39.70	37.64	18.67	33.01	27.22	8	2	1.178	1	1	1	1	1	1	1.00	3.658	11.446	0.8866	0.120	0.677	0.072	0.0087261	1218
	14.00	52.00	50.08	22.35	44.10	38.02	15	2	-0.698	1	1	1	1	1	1	1.00	5.886	21.524	0.9816	0.089	0.857	0.075	0.0090427	599
	23.00	98.00	95.26	41.88	83.76	72.54	15	2	-0.511	1	1	1	1	1	1	1.00	4.524	21.300	0.9954	0.094	0.895	0.084	0.0101424	123
	10.28	19.80	16.92	14.67	23.35	18.17	21	15	6.265	1	1	1	1	1	1	1.00	144.369	17.041	1.0000	0.650	0.172	0.112	0.0134827	406
	12.82	15.33	9.56	18.40	32.33	26.66	22	15	6.280	1	1	1	1	1	1	1.00	149.504	2.929	1.0000	1.008	0.181	0.181	0.0218279	472
	3.28	9.13	8.52	5.93	8.81	6.46	14	2	-0.388	1	1	1	1	1	1	1.00	4.208	16.992	0.9941	0.200	0.917	0.182	0.0220054	163
	11.50	31.70	29.54	17.24	28.07	23.41	8	2	0.216	1	1	1	1	1	1	1.00	3.560	9.435	0.8945	9.223	0.939	0.187	0.0226306	576
	4.00	16.00	15.49	10.53	15.99	12.03	15	2	0.990	1	1	1	1	1	1	1.00	2.164	17.339	1.0000	0.239	0.798	0.190	0.0230092	359
	9.22	28.33	26.78	16.24	26.61	21.08	8	2	0.541	1	1	1	1	1	1	1.00	2.578	9.231	0.9580	0.237	0.848	8.192	0.0232270	538
	14.00	39.00	36.40	19.98	36.18	30.16	15	2	(0.030)	1	1	1	1	1	1	1.00	7.365	17.958	0.9467	0.209	0.994	0.196	0.0237319	972
٦ŀ	13.55	71.79	70.50	35.66	71.33	61.78	14	2	8.062	1	1	1	1	1	1	1.00	2.021	14.783	0.9999	0.321	8.987	8.317	0.0382869	3317
Н	11.00	28.00	25.75	17.51	29.84	24.16	15	2	-0.147	1	1	1	1	1	1	1.00	5.920	13.741	0.9811	0.469	0.970	0.446	0.0539361	692
1	5.36	12.08	10.80	9.39	14.13	10.56	27	2	-1.767	1	1	1	1	1	1	1.00	8.794	21.887	0.9996	0.635	0.734	8.510	0.0615939	057
Ν	14.56	19.48	12.94	20.85	38.55	82.42	21	15	2.918	1	1	1	1	1	1	1.00	143.370	3.362	1.0000	1.000	0.524	0.524	0.0633523	237
IJ	6.00	19.00	18.03	14.04	22.14	17.12	15	2	0.202	1	1	1	1	1	1	1.00	2.739	12.262	0.9998	8.585	0.958	8.561	0.0677704	388
	6.58	19.02	17.85	14.96	23.93	18.68	8	2	0.144	1	1	1	1	1	1	1.00	1.548	5.170	0.9919	0.639	0.959	0.608	0.0735170	461
$\ \ $	15.07	35.89	32.57	23.37	46.75	40.49	27	2	2.132	1	1	1	1	1	1	1.00	11.223	15.965	0.9967	0.937	0.682	0.637	0.0769313	962
Н	12.75	33.24	30.70	29.62	59.23	51.30	27	2	2.383	1	1	1	1	1	1	1.00	5.006	8.671	1.0000	0.999	0.646	0.646	0.0780817	624
	16.48	27.09	21.51	19.10	34.02	28.15	27	2	0.993	1	1	1	1	1	1	1.00	20.089	15.958	0.8278	0.937	0.848	8.658	0.0794738	488
	7.71	16.44				20.53	27	2	-1.097	1	1	1	1	1	1	1.00	6.304	11.382	1.0000	0.994	0.833	0.828	0.1000597	963
41	16.62	49.59	46.72	35.48	70.95	61.45	27	2	0.649	1	1	1	1	1	1	1.00	5.929	13.697	1.9990	0.977	0.901	0.889	0.10631010	088
															_									$\overline{}$

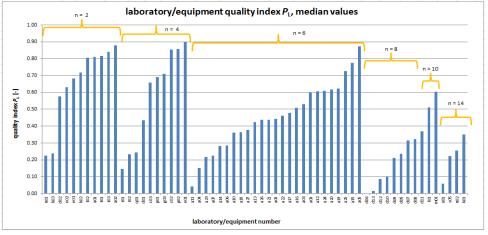
$$S_r < \sigma_r \rightarrow P_r \text{ high}$$

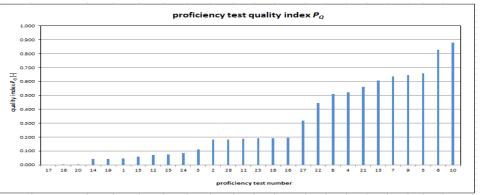
 $S_r > \sigma_r \rightarrow P_r \text{ low}$

$$S_R < \sigma_R \rightarrow P_{L,r}$$
 high $S_R > \sigma_R \rightarrow P_{L,r}$ low

$$|Z_P|$$
 (rob) = «small» $\rightarrow P_{Zp}$ high $|Z_P|$ (rob) = «high» $\rightarrow P_{Zp}$ small

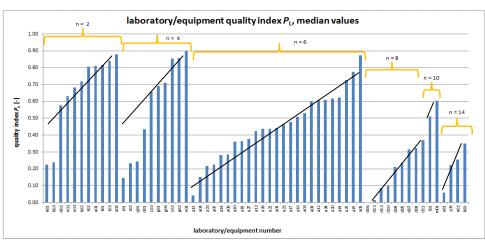

Where are we today?


• 28 interlaboratory study levels (5 interlaboratory studies on 2..10 levels) have been


included

- with 61 laboratories participating
- resulting in 360 data sets

SCC Reference Systems – Comparison of Proficiency Testings
Assessing laboratories by a Quality Index P_L derived from probabilities



Conclusion

- What is needed to implement the system?
 - Looking for a neutral body for the evaluation of the PT data (e.g. international organization, ...)
 - Automation of the evaluation
 - Define q-factors e.g. for number of participations, national/international PTs...?

 Statistical model might also be used for other parameters and other PT systems

thomas.berger@agroscope.admin.ch info@chemstat.ch

