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Abstract: Precision agriculture aims to optimize field management to increase agronomic yield,
reduce environmental impact, and potentially foster soil carbon sequestration. In 2015, the Copernicus
mission, with Sentinel-1 and -2, opened a new era by providing freely available high spatial and
temporal resolution satellite data. Since then, many studies have been conducted to understand,
monitor and improve agricultural systems. This paper presents results from the SolumScire project,
focusing on the prediction of the spatial distribution of soil zones and topsoil properties, such as pH,
soil organic matter (SOM) and clay content in agricultural fields through random forest algorithms.
For this purpose, samples from 120 fields were investigated. The zoning and soil property prediction
has an accuracy greater than 90%. This is supported by a high agreement of the derived zones with
farmer’s observations. The trained models revealed a prediction accuracy of 94%, 89% and 96% for
pH, SOM and clay content, respectively. The obtained models for soil properties can support precision
field management, the improvement of soil sampling and fertilization strategies, and eventually the
management of soil properties such as SOM.

Keywords: soil property prediction; pH; soil organic matter; soil clay content; precision agriculture;
Copernicus mission; Sentinel; multi-spectral imagery; synthetic aperture radar imagery; machine
learning; random forest

1. Introduction

Remote sensing plays an increasing role in near real-time soil, crop, and pest management in
precision agriculture [1]. The primary purpose of using remote sensing data for precision agriculture
is to identify the in-field variability of soil and plant properties and subsequently optimize crop
management to maximize crop performance and minimize environmental effects [2]. Hence, precision
agriculture needs effective decision support systems to optimize crop production while optimizing the
usage of resources.

In early precision agriculture applications, farmers used set markers with GPS coordinates to
understand and correct spatial vegetation variability in their fields. The field input applications
started to benefit from satellite and unmanned aerial vehicle (UAV) imagery [3–5] by the end
of the 1990s. Today, remote sensing data from satellites allow gathering spectral and temporal
information. Such data help to interpret not only crop vitality (chlorophyll content) [6,7] and
productivity (biomass) [8] but also soil properties, including physical (texture) [9], chemical (pH
value or nutrient contents) [10], and biological (soil organic carbon) [11] properties.
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In current precision agriculture practices, two of the most commonly used data sources are
multi-spectral optical (MS) [1] and synthetic aperture radar (SAR) [12] data. The imagery from
MS systems provides reflectance information in the visible and infrared part of the light spectrum,
which usually ranges between 300 to 2500 nm. They are considered as passive systems and need an
additional illumination source, the sun. Therefore, they cannot provide imagery during the night or
cloudy conditions. SAR, on the other hand, is an active system that has >1 cm wavelength. By being an
active system and due to its high wavelength, SAR can provide data independent of the time of the day
and cloud conditions. SAR data carries intensity and phase information of scattered electromagnetic
waves. The intensity shows sensitivity towards the physical/texture properties of the scene, while
the phase includes information in the third dimension (surface roughness or crop height) via the
attenuation of the waves within the scene. In terms of agricultural practices, MS data provides info
on crop vitality and soil properties, and with its polarized waves, SAR data provides info on crop
morphology and scene topography [13–15]. Considering both systems, the combined use of SAR and
MS data broadens the extent of precision agriculture applications.

For precision agriculture applications, the monitoring of relevant soil and crop properties is
essential. For soil monitoring, moisture content, pH, soil texture, and soil organic matter (SOM) an
indicator for soil organic carbon (SOC) are among the most critical soil parameters needed to optimize
crop management [2,16–18]. For crop monitoring, remote sensing data often delivers information
on vegetative density, biomass, yield, growth stage, and canopy health [1,12,14,19]. It is essential to
emphasize the link between crop performance and the properties of the underlying soil to be able to
investigate the changes in the field.

Understanding the chemical, biological, and physical properties of soils, such as pH, SOM,
and texture, is crucial for optimizing field management. Such properties are particularly important
for fertilizer application for most nutrients and cropping systems [20–22]. In agricultural fields,
the stated soil properties often show significant spatial in-field variations in both, soil surface and
in the soil profile. Therefore, soil profiling was used to understand these variances for mapping of
soils or agricultural productivity potential. Their texture distinguishes the identified soil horizons,
i.e., clay, silt and sand content, pH, and SOM [23–25], among others. However, soil profiling is very
laborious and time-consuming. Today, remote sensing provides spatial guidance in crop performance,
such as biomass maps based on spectral indices such as the normalized difference vegetative index
(NDVI) [26,27]. Although crop performance and soil properties are tightly related, soil profiling
and biomass maps do not always reflect the same heterogeneity in the field [28]. Remote sensing of
soil properties can help to overcome this discrepancy and improve decision support for precision
agriculture applications allowing a high resolution and in-season identification of regions, where soil
shows similar bio-geochemical properties, often referred to as soil zones.

Soil zoning has been an exciting topic in research [26] for its importance in precision agriculture
practices [29,30]. Identification of spatial variation of soil properties in the field is particularly
significant for understanding crop dynamics and thus are often the base to defining management
zones [28,30].

Current soil property mapping campaigns have gained relatively high accuracy for the
detection of chemical, physical, and biological soil properties such as pH [10], SOM [11] and clay
content [9], respectively. Although these maps are relatively low in spatial and temporal resolution,
they are needed for precision crop management. Management zones can be defined as relatively
homogeneous sub-units of a field that can be managed with a different, but uniform customized
management practice [1], such as soil tillage, sowing density, fertilizer application, crop protection,
and other measures.

This research investigates the remote detection of soil zones with similar properties that are
potentially suitable for precision crop management. The soil zones and their properties are predicted
using both MS and SAR data as well as machine learning models. The first part of this research
combines MS and SAR data to identify regions of similar properties in fields, group them in zones,
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and validate zone differences with zone-based soil sampling. The second part focuses on the generated
zones and soil properties to predict the soil property distribution through random forest regressor
models on the pixel level. The chosen soil properties were soil pH, SOM, and clay content, which are
soil properties often used to define management zones or to classify soil properties for agronomic
interpretation. The SAR and MS data required for the soil zoning are obtained from the Copernicus
satellites via the Google Earth Engine (GEE) platform [31]. This manuscript contributes to precision
agriculture as supported by satellite remote sensing. In particular, it delivers unsupervised soil zoning
and subsequent zone sampling based soil property prediction enabling improved spatial management
of the field inputs.

2. Materials and Data Acquisition

2.1. Satellite Data

The S1 and S2 data are interesting for observing changes in soil moisture, roughness, topology,
and potentially nutrient mineralization via dielectric properties through SAR [32] and soil structure
and composition through MS [9,33] over a broad spectrum of soil types.

2.2. Google Earth Engine

For this research, the S1 and S2 imagery were downloaded using the Google Earth Engine (GEE)
Python API. The GEE was established in 2010, aiming to provide an online platform to access, analyze,
and visualize up-to-date remote sensing data. Within the GEE platform, S1 images are provided in
level-1 Ground Range Detected (GRD) format, which is back-scattering intensity values not having
the phase information. S2 images, on the other hand, are downloaded as level-2a surface reflectance
values [31].

2.3. Study Areas

This manuscript evaluates four fields selected from a larger dataset containing a total of 120 fields
from Switzerland and Germany. These four fields are managed by local farmers and known to have
different soil properties, management practices and sizes. Hasler, Figure 1a, is located in Switzerland
and has an area of 3.95 ha. Quellenacker, Kreuzhuegel, and Stadtfeld Figure 1b–d, are located in
Germany and have an area of 42.43 ha, 53.31 ha, and 72.30 ha, respectively. All fields were reported to
be heterogeneous in their soil characteristics and observed crop performance.

(a) Hasler (b) Quellenacker (c) Kreuzhuegel (d) Stadtfeld

Figure 1. Four investigated fields, Hasler (Switzerland), Quellenacker (Germany), Kreuzhuegel
(Germany) and Stadtfeld (Germany), are given with their location and area.

2.4. Soil Sampling and Vegetation Performance

Soil sampling for its properties analyses was conducted by the laboratory of the Chamber of
Agriculture of Lower Saxony (LUFA Nord-West) in Germany and by the Swiss Federal Institute of
Technology (ETH) Zürich for the Swiss fields. Soils were sampled during two sampling campaigns in
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2018 according to the satellite-based soil zoning approach. The first campaign aimed to generate data
for training and testing of the soil property prediction model. A minimum of 20 samples was taken
from each soil zone with a depth between 25 to 30 cm (according to managed soil depth) from 95 fields
in Germany and 25 fields in Switzerland, which sums up to more than 450 distinct zones, meaning soil
samples. The fields Hasler, Quellenacker, and Kreuzhuegel were sampled during the first campaign.
The mentioned fields lay in a typical arable farming area with heavy soils. The second campaign (only
in Germany) aimed to generate an independent validation data set where five independent fields
were selected and sampled on precise locations. The locations were identified using the variance of
the spectral features to sample them homogeneously. Stadtfeld represents the validation data in this
paper. The soil samples were analyzed by LUFA Nord-West and Agroscope laboratories for several soil
properties, including clay content, SOM being 1.74x times soil organic carbon (SOC), and pH, which are
presented here. Clay content was not measured in the second campaign samples. The soil analysis
was done according to reference methods [34]. For monitoring of crop performance, two remote
sensing-based vegetation indicator maps are evaluated in the investigated soil zones.

3. Processing and Analysis Methods

The proposed satellite-based soil zoning approach consists of six sequential steps to be applied
to a single field. The developed process chain, shown in Figure 2 as column names, starts with
data preparation and continues with data filtering, dimensionality reduction, clustering, and finally,
the generation of soil similarity maps. The process chain requires only the geo-referenced field shape
from a selected region of interest (ROI) as an input.

Figure 2. The developed process chain for the suggested field-scale soil zoning and property prediction
approach. The rounded rectangles represent data as ROI, image or image stack, and the diamond
shapes are for applied filters or algorithms, broken lines represent data input needed from the user,
and solid lines represent products calculated during the process.
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3.1. Data Preparation

The current implementation of the proposed soil zoning algorithm works at the field scale and
requires the field shape, i.e., ROI, as an input. On the provided ROI, the Python API of the GEE
platform was used to collect the available S1 and S2 data between 1 April 2015, and 31 December 2018.
S1 data have around 36 degree incidence angle and VV-VH polarizations. The polarization pair of
VV-VH was chosen due to its sensitivity to bare-soil and vertically structured vegetation [35]. S2 data
comes as a Level-2a product, which corresponds to bottom-of-atmosphere reflectance, filtered before
download with its derived cloud band to have clear sky images directly on the GEE servers.

Before filtering, downloaded S1 and S2 data is used to form a four-dimensional image stack.
The dimensions of the image stack correspond to image x-size, image y-size, image-bands, and the
number of images, respectively.

3.2. Soil Pipeline

3.2.1. Soil Filter

In the filtering step of the soil pipeline, we use NDVI as decision parameter to identify
non-vegetated, i.e., bare-soil images [36]. Therefore, the images in the S2 temporal stack that have a
mean NDVI value less than 0.4 were considered in the subsequent, dimensionality reduction step.
However, it is not possible to filter the S1 back-scattering intensity data due to a lack of co-polar phase
information. Hence, the S1 image stack filtering was done based on the results of the S2 filter. All S1
images that are within a time window of ±3 days of the remaining S2 images were kept for the next
processing step.

3.2.2. Dimensionality Reduction

The principal component analysis (PCA) is used to reduce the temporal dimensionality of soil
scene filtered S1 and S2 imagery stacks. The PCA re-projects the data to several orthogonal dimensions,
which are called principal components. Each principal component carries the variation of particular
information from the input dataset [37]. Also, the components are arranged from the highest variation
to the lowest variation. For example, considering the soil scene filtered S2 temporal stack, one of the
aspects that varies most over time is the color of the soil. Thus, one of the first principle components
will represent the variation in soil color.

After PCA, the re-projected S1 and S2 temporal stacks become independent of time.
The four-dimensional arrays become p times 2D arrays, where p stands for the number of components.
For the soil-zone calculation, the first two components of the S2 temporal stack and the first component
of the S1 temporal stack were considered for the subsequent clustering step. From this point onward,
the S2 based components are named optical index 1 and 2, while the S1 based component is called the
SAR index.

3.2.3. Clustering

Clustering approaches group data segments that have similar properties within a dataset. Towards
this aim, the optical indices and the SAR index are combined to form an index-RGB image. In this
image, the red and green channels are used for the optical indices, while the blue channel is used for
the SAR index.

The zones that behave temporally similar within a field were identified using a modified version
of the K-means clustering [38]. The modified K-means was chosen due to its capability of handling
image location-independent data and its simplicity compared to other clustering algorithms. K-means
is an unsupervised clustering algorithm. The algorithm finds user-specified a number of clusters
K iteratively within an unlabelled dataset. Because defining the number of clusters is a subjective
approach, the elbow-method was chosen to find the optimum number of clusters. The elbow-method
is a graphical technique to calculate the optimal number of clusters considering the structure and shape
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of the dataset [39]. In the elbow method, first, the percentage of the explained variance is calculated.
Next, the infliction point is detected in the graph between the number of clusters and the explained
variance. The number of clusters that trigger the infliction point is designated as the optimal number
of clusters K to the K-means above. The clustered index-RGB with the modified K-means algorithm
results in an image that has cluster IDs for every pixel.

3.2.4. Random Forest Regressor Model

The random forest regressor (RFR) [40] is a random feature selection based on regression trees.
The model predicts the target parameter fitting numerous decision trees obtained from several sub-sets
using averaging to ameliorate the accuracy and prevent over-fitting. Among several tested machine
and deep learning methods (e.g., support vector machine, convolution neural network), we found RFR
to produce robust predictions with higher accuracy and lower computation needs.

The data was organized using the samples that were collected during the ground campaigns
on the zone level. In the first step, pixels from the image stacks were combined with the zone soil
properties stemming from the representative soil sample from their corresponding zone. In a second
step, the samples were combined with all pixels belonging to a respective soil zone, to augment the
RFR training and testing dataset. During this procedure, a random variance of ±1.5% was introduced
to each soil property value assigned to a pixel to mimic some variance in the measured soil properties.
Now, the dataset reflects the much wider variety of observed data. The variance introduction increased
the sample size to more than sixty thousand for each soil property. Afterward, the shape of the
probability distribution functions (pdfs) of the data presented to the RFR trainer changed due to
sampling data size and introduced spatial weighting.

Later on, the data was divided into three groups: training (50 percent), testing (25 percent),
and validation (25 percent). Training of the model was done using the scikit-learn Python package [41]
with a maximum depth of 200, maximum features of 0.9, and the number of estimators of 1500.
The temporal zeroth, first and second moments of bands, were used as model input, while the output
was set to be the soil property. During the training process, data from a single field was left out in each
iteration (as a measure of leave-one-out error) to avoid over-fitting. The best accuracy was obtained
for each parameter, pH, SOM, and clay content using the same training settings.

3.3. Vegetation Pipeline

3.3.1. Vegetation Indices

The Normalized Difference Vegetation Index (NDVI) (1), is a commonly used spectral index [42],
generally having a high degree of correlation to vegetation biomass and chlorophyll content. In (1),
B4 and B8 stand for the red and NIR channel of S2. The normalized difference provides a scale
between −1 and 1; the range between 0 and 1 usually reflects changes between bare soil to dense and
healthy vegetation.

NDVI =
B8 − B4

B8 + B4
(1)

3.3.2. Temporal Crop Filter

The crop season needs to be defined to investigate crop performance through spectral indices.
Therefore, an NDVI threshold was applied, identifying crop vegetation by values higher than 0.4.
Subsequently, the period of the crop season starts when NDVI increases above 0.4 and ends when
it falls below 0.4. The area under the NDVI curve (AUCNDVI) was calculated using the trapezoid
method and mapped as an indicator for biomass production in the respective field. To detect the
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morphological changes in the canopy as well as the topographic effects, the SAR Vegetation Index
(SVI) (Equation (2)) for S1 polarizations, was used [13].

SVI = σVV
0 /σVH

0 (2)

In (2), σqp corresponds to the scattering coefficient. The subscripts q and p represent transmitted
and received polarizations as in V for vertical and H for horizontal. The images in the S2 temporal
stack that have a mean NDVI value starting from 0.4 and end with 0.4 is accepted as a growth cycle.
S1 back-scattering intensity data is also filtered with the same dates and used in the analysis.

The SVI index describes the biophysical changes in the canopy, reflecting crop morphology and
canopy properties such as height, density, and moisture content. Higher values stand for large and
dense vegetation and lower values for sparse and short vegetation. However, in the absence of, or for
very sparse vegetation, the SAR data might also reflect soil moisture [43,44].

3.3.3. Weather Data

The precipitation and temperature information of the corresponding growth season were
evaluated to check the plausibility of crop growth patterns and derived crop performance. The average
daily precipitation and temperature were acquired from the Meteomatics Weather API [45] with a
research license. The Weather API was called from Python, and the data was collected at 24-h intervals.

4. Results and Discussion

This manuscript presents a processing chain for soil zoning and property prediction, which relies
on S1 and S2 data. In this section, the results of the proposed algorithms are presented and discussed
in depth.

4.1. Soil Zoning

The soil zoning approach uses the S1 and S2 images obtained during non-vegetated periods.
The matching patterns (Figure 3) show that the satellite-based approach agrees with the field sampling,
expert based soil zoning and increases the amount of detail. This valuable information can be used by
the farmers to adjust their management practices according to spatial variability.

Although some areas do not match in detail the majority of the field, the satellite-derived
information shows more pronounced information. The additional information, or the changed
zone borders result very likely from the high spatial resolution of the information derived from
the satellite data and to practical limitations of the historical soil zoning mainly based on soil texture
and expert evaluation. Thereby, the soil zones were usually kept broad in size to match available
field management machinery size. However, the expert might have drawn sub optimal borders and
available field management technology has significantly changed.

The index-RGB images show the heterogeneity within the fields (Figure 4). In these index-RGB
images, every color (i.e., red, orange, pink, etc.) corresponds to a soil characteristic reflecting a similar
temporal signature for the combined S1 and S2 input data.

Afterward, this information is used to break down the image into soil zones (second row of
Figure 4). The color-coding in the figures is chosen based on the number of zones that are calculated
for that field. According to the soil zoning analysis on the fields that belong to the first campaign,
Hasler has six, Kreuzhuegel has twelve, and Quellenacker has eight zones. The varying number of
zones shows that using the presented approach, the number of zones is related to the temporal-spectral
heterogeneity of the field and soil, respectively, and not directly to its size.
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Figure 3. Soil zoning on the field “Stadtfeld”, Germany. Coloured areas depict satellite based soil
zoning as presented in this paper and red lines show soil zones as previously derived by an expert
using field sampling and historical soil map information [46].

Figure 4. Feature RGB, first row, and color coded soil zoning, second row, results on the chosen fields.
(a) Hasler, Switzerland; (b) Kreuzhuegel, Germany; (c) Quellenacker, Germany.

Initial validation of the soil zoning approach was done by investigating soil profiles according to
the German reference for soil mapping [47] and found distinctive differences supporting the zoning
approach. Later on, a plausibility check of the zoning approach was done by presenting the derived
zone maps to the owning farmers, during the SolumScire project meeting conducted on the 6 June
2019. The overall evaluation showed that more than 90% of the zones appear to reflect differences
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known or expected by the farmers reflecting natural background such as soil properties, hydrology
parameters or other features like previous amelioration practices.

The incorrectly identified zones are likely related to changes in the soil profile not detectable by
remote sensing, remaining plant residues, or the effect of infrastructures on the field border that affects
the SAR scattering. Different crop performances reported by farmers might also be due to in-season
varying nutrient availability, or to weather conditions affecting soil properties and plant growth at the
respective location during the experiment.

4.2. Soil Property Prediction

The soil property prediction algorithms were developed by training and optimizing a different
model for each soil property and subsequent testing and validation. For the training and testing
purposes, the data from the first sampling campaign was used. The first row of Figure 5 presents
the probability distribution function for measurements taken per zone (pdfzone) for pH, SOM and
clay content. In the histograms, pH and clay show a bi-modal distribution, while SOM shows a
right-tailed uni-modal distribution. The pdf for pH, Figure 5, is calculated from 504 measurements
and has peaks around 5.5 and 6.9. The pdf for SOM is calculated from 528 samples and has a peak of
around 3.5. Lastly, the pdf for clay is calculated from 387 samples and has peaks around 5.6 and 25.8,
corresponding to light sandy soils and heavier soils sampled in our study. Following the soil types,
two peaks can also be found in the pdf for pH.

Figure 5. Histograms of the measured pH, soil organic matter (SOM) and clay content of the taken
samples with respect to observance frequencies at zone (top) and pixel level (base).

The augmentation of the RFR training and testing dataset requires the assumption of zones having
similar soil properties. Hence, the zone level data is combined with the random variance of ±1.5% at
each soil property value, resulting in a more realistic distribution and representation of the observed
data at pixel level (Figure 5). Therefore the soil properties in the respective zone are weighted for
their actual spatial distribution by remotely sensed information. This additional variance has led to a
change in the pdfzone of the data presented to the RFR trainer.

For pH, pdfpixel indicates most values to be between 6 and 7.5 and some less than 6. Optimal
pH is dependent on SOM and clay content and is between 6 and 7 for most soils and can be lower
for sandy soils. For the percentage of SOM, most samples are observed between 0, and 6 and only
very few higher values are measured. Clay content observed in our study ranged from close to zero to
shortly above 40%, reflecting a typical range found for arable soils in Europe.

The RFR models were trained using the satellite data as input and variance introduced
ground measurement as output both at pixel-level. During the training procedure, leave-one-out
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cross-validation was applied for testing by selecting complete fields. In every iteration, the fields that
correspond to at least 25% of the total sample size were randomly chosen for testing. Also, the fields
that correspond to at least 20% of the total samples were left out for validation purposes.

The accuracy of the pH model was observed to be very high (Figure 6). The training data has
an R2 of 99.54% as accuracy and 0.57% mean absolute percentage error (mape) with its optimum
parametrization. Validation analysis of the model resulted in an accuracy of 94.40% R2 and 1.9% mape.
The difference between training and validation accuracy is small, indicating that over-fitting is not
likely. The observed over or underestimation of pH values is relatively low compared to other soil pH
mapping studies using satellite data [10]. The relative lower error may be a result of the higher spatial
resolution of Sentinel input data compared to the Landsat information used in previous studies [10],
but may also result from the focus on soils under intensive agricultural management in our dataset
and the use of soil only information in the prediction algorithm.

Figure 6. Predicted vs. measured (variance introduced pixel values) pH values for the training and
validation data. The red broken line represents the 1:1 line.

Figure 7. Validation of pH value prediction model with its error as a map and scatter plot on Stadtfeld
field [46] from the second sampling campaign.

An independent validation analysis was conducted on the second sampling campaign for pH
detection on the “Stadtfeld” field, including a total number of 76 samples. The point-wise pH values
(Figure 7) of the topsoil shows a high prediction accuracy with less than 5% mape in more than 80%
of the sampling points. The errors that are in the range of >5% might be observed due to missing
data coverage in the training dataset. However, we cannot entirely exclude other factors such as soil
amendments due to previous field management or edge effects in the remote sensing data such as
wave shadow and reflection effects close to buildings affecting mostly SAR data [48].
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The prediction model for SOM content (in percentage) covers a range from about 1.5% to almost
10% (Figure 8). However, above 5.5 the data available for training, testing an validation is sparse.
The training model has an R2 of 99.11% as accuracy and 1.33% mape with its optimum parametrization.
Validation analysis of the model resulted in an accuracy of 89.0% R2 and 5.00% mape. The training and
validation accuracy reflects the same pattern of having a lower dataset density in SOM above SOM of
5.5%. Some over and underestimation is found in the validation accuracy. However, the number of
such observations is relatively low. Therefore, we consider the risk for over-fitting of the RFR model is
relatively low. Nevertheless, the model can surely be improved by including more soil samples with
SOM >5.5% in the future. Compared to previous studies predicting SOC facilitated by land use models
and auxiliary data such as topography or climate data [11,49], the presented RFR model is capable of
providing high accuracy prediction of SOM at pixel-level based on soil only remote sensing data.

Figure 8. Predicted vs. measured (variance introduced pixel values) soil organic matter (SOM) content
for the training and validation data. The red broken line represents the 1:1 line.

Figure 9. Validation of SOM value prediction model with its error as a map and scatter plot on Stadtfeld
field [46] from the second sampling campaign.

The independent sampling campaign at the Stadtfeld field (Figure 9) reveals a good agreement
for the majority of measured points. However, a larger error than observed for the pH mapping was
found. Such a larger discrepancy of the predicted vs. measured SOM can be partly expected because
SOM and its related remote sensed features are affected by more factors. These factors may cause
(i) higher potential for variation and difference than for pH and clay content, (ii) show effect of crop
residues on the field surface or (iii) contribution of less spectral features to the parameter prediction.
Additionally, variable gradients of SOM in different soils might add a variation in the prediction.
Consequently, a larger database would be needed to obtain a higher prediction quality.
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The prediction of clay content (Figure 10) also shows high accuracy in the training and validation
set, having an R2 of 99.67% and mape of 1.85% with its optimum parametrization. Validation analysis
of the model resulted in an accuracy of 96.00% R2 and a 6.1% mape being, which in the prediction
than that obtained for SOM, but not as good as for pH. The observed over, or underestimation
in the validation set can be considered as small, making it plausible to assume that no significant
over-fitting of the RFR model is present. Compared to other satellite remote sensing approaches for
clay content prediction [9], the presented model has excellent performance allowing for practical uses.
The reasons for the better performance is likely found in the soil only remote sensing input data for
model development. Prediction accuracy of laboratory spectroscopy for clay content is usually very
high [50,51] being based on homogenized soil samples independent of soil management and use as
satellite data. Further, the restriction of the dataset to arable field soils can be another reason for the
higher predication power observed in our study compared to large scale mapping approaches of soil
properties based on a broad range of land use and land cover data [9].

Figure 10. Predicted vs. measured (variance introduced pixel values) clay content for the training and
validation data. The red broken line represents the 1:1 line.

4.3. In Field Soil Property Distribution

Three fields that are sampled during the first field campaign were selected to show potential
output and plausibility of the presented methodology. The results are presented using maps that are
generated for measured and predicted soil property, predicted percentage error, and indices that reflect
the vegetation performance, NDVI and SVI. Table 1, shows the summary of the soil and vegetation
characteristics for the fields that are sampled during the first field campaign.

Table 1. Statistical summary of soil zoning and soil property predictions for the four presented fields
that were sampled in the first field campaign.

Field Name Hasler Kreuzhuegel Quellenacker

min mean max min mean max min mean max

pH 6.5 7.2 7.6 6.3 6.8 7.4 6.9 7.1 7.3
SOM 2.3 3.1 3.5 2.2 3.8 4.7 2.7 3.5 5.2
Clay 16.1 18.8 21.8 22.0 36.4 52.7 20.5 27.9 35.7
Sand 38.7 41.8 45.7 2.5 4.9 22.0 18.9 26.9 36.5

# Zones 5 8 12
Crop Wheat Maize Oilseed rape
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4.3.1. Hasler, Switzerland

In the Hasler field, predicted pH and clay content mainly follow the soil zones initially identified
by the unsupervised methodology (Figure 11). The distribution of SOM is less clearly bound to those
zones. The observed error patterns also reflect this condition. For pH and clay, the more significant
errors can be found at the zone borders. In contrast, for SOM, errors are more distributed in the
field, indicating a considerable small scale variability. The higher variability can be related to many
factors, including soil-structure [52] but also field management and climate variables [53,54]. If field
management and climate data is available for analysis, it can be used in an updated model and
potentially increase prediction accuracy. However, the potential improvement and best methodology
remains to be investigated.

Figure 11. Predicted pH, SOM, and clay content and for the Hasler field located in Switzerland.
The columns represents zone averaged ground measurement, pixel level model prediction and percent
error, respectively. Also, area under the curve for normalized difference vegetative index (NDVI) and
SAR Vegetation Index (SVI) are given for the cultivation period 2018.

The crop properties seem less clearly bound to the observed soil zones. A low pH and clay content
seem to be linked to lower biomass productivity indicated by the NDVIAUC, but not necessarily linked
to the lower crop density in the winter wheat field. The SVI indicates the morphology and canopy
density differences around the region with the highest SOM. Besides, it shows lower values in the
lowest region of the field being an effect of topography. Particularly in sandy soils, as found in the
Hasler field, higher SOM can buffer the low storage capacity for water and nutrients, which may lead
to the higher canopy and morphology changes observed in the other parts of the field.

4.3.2. Kreuzhuegel, Germany

The field Kreuzhuegel shows a very high number of distinct zones, mainly affected by pH and
clay content having a positive correlation (Figure 12). The homogeneously distributed SOM shows
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relatively high values in the field. The large variation is originating from the strong heterogeneity of
the sub-soil silt and clay content.

The plant indicators partly reflect those zones, particularly SVI, but also show different patterns
potentially indicating differences in the soil profile and the root-able soil depth. The biomass
productivity indicated by NDVIAUC reflects a low growth in the clay lens zone but also the highest
growth in the green area not fully delineated by the pH or clay content.

Figure 12. Predicted pH, SOM, and clay content for the Kreuzhuegel field located in Germany.
The columns represent zone averaged ground measurement, pixel-level model prediction, and percent
error, respectively. Also, the area under the curve for NDVI and SVI are given for the cultivation
period 2018.

4.3.3. Quellenacker, Germany

In the Quellenacker, distinct soil zones are observed that are related to the evaluated soil properties.
However, here the three soil properties pH, SOM and clay reflect the zone patterns indicating more
pronounced differences between soils (Figure 13). As expected, the high pH values are linked to higher
clay and, additionally, to lower SOM.

Similar to the previously discussed fields, the canopy density indicator SVI shows no distinct
relation to the zones, likely indicating that crop growth was mostly homogeneous. In contrast,
the biomass productivity indication (NDVIAUC) reflects apparent differences in the field. The higher
biomass productivity was in the regions indicating higher SOM, clay content below 25, and pH below
7. As discussed above, the partial mismatch of soil and plant property zones may reflect differences
caused by differences in the subsoil and topographic differences in the field not reflected by the
presented algorithm.
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Figure 13. Predicted pH, SOM, and clay content for the Quellenacker field located in Germany.
The columns represent zone averaged ground measurement, pixel-level model prediction, and percent
error, respectively. Also, the area under the curve for NDVI and SVI are given for the cultivation
period 2018.

4.4. Future Work and Potential Applications

The presented study shows the high potential of satellite-based prediction of soil properties for
precision agriculture. In contrast to previous soil mapping studies [9,11] actual satellite missions such
as the Copernicus have higher spatial and temporal resolution applicable for time-dependent spatial
applications such as precision crop management. Examples for such uses are the application of lime
to adjust pH and the buffer capacity of the soils and fertilizer application. The prediction of lime
or fertilizer demand usually makes use of soil pH, SOM, and clay contents in most countries. Thus,
the methodology described here to predict the three parameters should be applied using existing
methodology supported by satellite input data to inform variable rate application of lime and fertilizer.

Soil pH and buffer capacity, for instance, can be modeled as a function of SOM and clay
content [55]. Such a model is applied for a comprehensive set of soils and soil sample information
combined in a geographic information system (GIS) to map the spatial variability of soil pH and
predict lime application demand in a large agricultural field. The presented soil property mapping
allows for much greater detail and even seasonal mapping depending on the crop and availability of
satellite data.

Similarly, the classification of the phosphorus fertility of soils is often based on clay and pH,
affecting plant availability of phosphorus [56]. Knowing the spatial extent of these properties would
not only allow adjustment of phosphorus fertilization based on these parameters without additional
information but also based on soil sampling followed by phosphorus extraction and interpretation
using the respective national interpretation schemes.

A third example is the prediction of the initial nitrogen fertilizer application as practiced for
many crops. The required amount of nitrogen cannot be based on vegetation status as it is used for
in-season fertilization. However, it can be based on known average crop nitrogen uptake and soil
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mineral nitrogen available to the plant determined by soil sampling [57]. Sometimes the prediction of
nitrogen available to the plant is done with basic models informed by pH, SOM, and clay content [58].
Mineralization models often combine these soil properties with climate and cropping information to
predict potential nitrogen mineralization to reduce the amount of N to be applied [59].

The presented study also shows that the sole basis of field management zones on either soil or
vegetation information should be challenged. While soil zones often refer to regions in a field that
need different agricultural management, they usually do not respect actual or later crop development
or release of nutrients. In contrast, management zones based on seasonal biomass maps or vegetation
indices reflect the actual situation but might under-represent plant-soil interactions, particularly during
seasons with different crops and weather conditions.

Future studies should focus on optimizing informed prediction of crop fertilizer demand based on
soil and vegetation information and evaluate the potential of financial gains and reduction of climate
and environmental risks posed by nutrient losses. Another field of interest is the improvement of SOM
prediction accuracy to allow monitoring of SOM changes even in relatively short term and eventually
soil carbon sequestration.

4.5. Limits of the Method and Potential Adaptation

The presented methodology is partially limited by the use of MS information, which restricts the
method to periods without cloud cover. Cloud cover can be substantial between autumn and spring
in Switzerland [60] and Germany. Although, SAR data may partly balance this, it can be assumed
that the MS spectrum plays still a pivotal role in soil property prediction. Including auxiliary data,
such as topographic information like slope altitude and topographic wetness index, might further
improve prediction of soil properties and delineation of management zones likewise under clouded
and non-clouded situations.

The soil zoning and property prediction can also be improved by identifying and stratifying the
input variables such as the satellite-derived input channels or auxiliary information for specific soil
properties. However, this can improve performance but also limit sensitivity to selected properties.
Another approach could be the use of a floating input according to the highest variability of
observed properties.

However, reliability for the prediction of some soil properties can be low as a result of the
significant variance of parameters influencing the target soil property to be predicted. Such variance
is often indirectly reflected by the number of spectral input features usable for the parameter
prediction. This condition seems more pronounced for dynamic soil properties, such as SOM, which can
change fast.

Such difficulties can potentially be overcome by the use of much larger data sets covering more
seasons, and field situations or by local adjustment of the model by support samples. The concept of
taking a limited set of soil samples to improve the model and thus improve pixel-wise predictions
for specific fields is particularly interesting. Such a method limits the number of samples needed to
be taken per field compared to historical sampling plans and delivers additional data to improve the
model in the long term. Additionally, an informed sampling procedure facilitates optimal placements
of sampling points according to the distribution and spread of the initially predicted variables.

4.6. Soil and Management Zoning in Agriculture

Existing soil maps—if digitized at all—are sometimes lacking scalability and are not always
up-to-date [46] or available. Additionally, soil maps are often not optimized for agricultural use
needing data processing or transformation by experts to allow intuitive interpretation by the farmer.

Many satellite-based field zoning approaches use biomass as the primary decision parameter.
However, biomass is dependent on crop properties and growth conditions, comprising variety-specific
crop traits, soil properties, and seasonal weather differences, which strongly interact as discussed
above [28]. The same is true for other sources of information used for soil and management zoning in
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the last two decades, such as apparent electrical conductivity and yield maps. Often these methods
reflect differences in soil characteristics or crop growth, but not the underlying reasons. However, these
have to be known in order to make appropriate agronomic decisions. Nevertheless, many indicators
for field heterogeneity are used successfully for precision agriculture and variable rate application
methodology in particular.

Expert derived zoning, on the other hand, has proven to be a valuable tool for precision farming.
The expert can use a selection of tools for mapping [61], including the mentioned above, and select
and eventually combine the most appropriate sources of information [46,55]. However, expert-based
zoning is time-consuming and expensive, and it often requires laborious work in the field and data
analysis. Additionally, the degree of detail is often not as high as many imaging or remote sensing
approaches, as presented in Figure 3. This situation is likely to change with tools like the presented
soil zoning becoming available user friendly and widely compatible.

The focus of the presented soil zoning approach lies in the unsupervised use of spectral data from
bare or nearly bare soils. For many agricultural applications, knowledge of soil properties is essential.
The availability of such information is particularly interesting for the three investigated parameters
pH, SOM, and clay content. Their spatial distribution can be used for variable rate fertilization of lime,
phosphorus, and nitrogen, as described above.

The approach shown here is finally combining spectral data and laboratory analysis to explain
soil heterogeneity. It is somewhat more time consuming than methods only indicating heterogeneity
because of the laborious and costly soil sampling and analysis. These points make it more expensive
than other maps taken on-the-go but also more reliable for agronomic decisions. However, the costs
are not higher as with traditional soil sampling and analysis performed on the farm. A decline of the
costs can be expected with increasing numbers of soil analyses and due to use of new lab techniques
such as spectroscopy, which will help to improve the large scale prediction of soil properties and its
application for agronomic uses.

5. Conclusions

This research presents a new remote sensing-based soil zoning and property prediction algorithm.
For this purpose, MS and SAR images were used from the Copernicus mission making use of
high-resolution satellite agricultural field imagery obtained during the plant free periods, consisting
of mostly soil input data. The retrieved products of the presented algorithms include predicted pH,
SOM, and clay content of each pixel in a field. Such products allow informed soil sampling and
precision agriculture applications such as variable-rate lime, phosphorus, and nitrogen fertilization.
Additionally, by considering the likelihood of seasonal changes in the soil and vegetation properties,
the algorithm can be adapted to detect dynamic changes in the soil properties that might support the
monitoring of SOM and soil acidity.
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Abbreviations

The following abbreviations are used in this manuscript:
ESA European Space Agency GEE Google Earth Engine
GIS Geographic Information System GRD Ground Range Detected
MS Multi-Spectral NDVI Normalized Difference Vegetation Index
NIR Near-Infrared PCA Principle Component Analysis
pdf Probability Distribution Function PolSAR Polarimetric Synthetic Aperture Radar
ROI Region of Interest SOM Soil Organic Matter
S1 Sentinel-1 satellite data S2 Sentinel-2 satellite data
SVI SAR Vegetation Index AUC Area Under the Curve
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