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T
he application of autonomous robots in agriculture is gaining 
increasing popularity thanks to the high impact it may have on 
food security, sustainability, resource-use efficiency, reduction 
of chemical treatments, and optimization of human effort and 
yield. With this vision, the Flourish research project aimed to 

develop an adaptable robotic solution for precision farming that 
combines the aerial survey capabilities of small autonomous unmanned 
aerial vehicles (UAVs) with targeted intervention performed by 
multipurpose unmanned ground vehicles (UGVs). This article presents 
an overview of the scientific and technological advances and outcomes 
obtained in the project. We introduce multispectral-perception 
algorithms and aerial and ground-based systems developed to monitor 
crop density, weed pressure, and crop nitrogen (N)-nutrition status and 
to accurately classify and locate weeds. We then introduce the navigation 
and mapping systems tailored to our robots in the agricultural 
environment as well as the modules for collaborative mapping. We finally 
present the ground-intervention hardware, software solutions, and 
interfaces we implemented and tested in different field conditions and 
with different crops. We describe a real use case in which a UAV 
collaborates with a UGV to monitor the field and perform selective 
spraying without human intervention.

Background
Collaborative aerial- and ground-based robotic systems offer significant 
benefits to many practical applications, as they can merge the advantages of 
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multiple heterogeneous platforms. This is especially useful for 
precision agriculture scenarios, where the areas of interest 
are usually vast. For example, a UAV allows for rapid inspec-
tions of large areas, e.g., mapping weed distributions or crop 
nutrition-status indicators. This information can then be 
shared with a UGV, which can perform targeted actions, e.g., 
selective weed treatment or fertilizer applications on 
required areas, with relatively high operating times and pay-
load capacities. One of the main objectives of the Flourish 
project (see Figure 1) [1] is to exploit this combined work-
flow in an autonomous robotic system for precision agricul-
ture to achieve high yields while minimizing on-field 
chemical applications via targeted intervention.

This article presents an overview of the scientific and tech-
nical outcomes obtained within the Flourish project, provid-
ing insights and practical details on the lessons learned in 
several areas ranging from robot navigation, mapping, and 
coordination up to robot vision, multispectral data analysis, 
and phenotyping.

Robotics in Agriculture: An Overview 
of Recent Projects
Robotic applications in agriculture have significant potential 
to improve field monitoring and intervention procedures. 
However, these technologies are still in a development phase, 
with many possible uses yet to be explored.

A project similar to Flourish is Robot Fleets for Highly 
Effective Agriculture and Forestry Management (RHEA) [2], 
which aims at diminishing the use of agricultural chemical 
inputs by 75%, improving crop quality, enhancing human 
health and safety, and reducing production costs by means of 
sustainable crop management using a fleet of small hetero-
geneous robots (ground and aerial) equipped with advanced 
sensors, enhanced end effectors, and improved decision-
control algorithms. Likewise, the Precision Farming of 
Hazelnut Orchards (PANTHEON) project [3] looks to 
develop a supervisory control and data acquisition system 
for precision farming in hazelnut orchards using a team of 
aerial–ground robots.

Other recent projects dealing with the development of 
autonomous ground platforms are the Ground Robot for 
Vineyard Monitoring and Protection (GRAPE) [4] and 
Sweet Pepper Harvesting Robot (SWEEPER) [5] projects. 
The former aims at creating agricultural service companies 
and equipment providers to develop vineyard robots that 
can increase the cost-effectiveness of their products as com-
pared to traditional practices. In particular, the project 
addresses the market of instruments used for biological con-
trol by developing the tools required to execute (semi) 
autonomous vineyard monitoring and farming tasks with 
UGVs, thereby reducing environmental impact with respect 
to traditional chemical control. The SWEEPER’s main 

(a) (b)

(c) (d)

Figure 1. A conceptual overview of the Flourish project. (a) A UAV continuously surveys a field during the growing season. (b) The 
UAV collects data about crop density and weed pressure and (c) coordinates and shares information with a UGV, which is used for 
(d) targeted intervention and data analysis. The gathered and merged information is then delivered to farm operators for high-level 
decision making. 
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objective is to put  first-generation greenhouse harvesting 
robots on the market.

UAVs are increasingly used in many agricultural robotics 
applications, e.g., for tree 3D reconstruction and canopy esti-
mation [6], fruit counting [7], yield estimation [8], and auto-
mated monitoring using lightweight devices [9].

On the industry side, several start-ups have been initiat-
ed, and many more are expected to be funded. The major 
services provided are UGVs for weed removal [10]–[12] and 
in-season data analytics or early pest and disease detection 
from aerial or satellite imagery.

Experimental Platforms
The Flourish project exploited existing state-of-the-art 
farming and aerial robots, extending them in various 
ways to improve both autonomous navigation and 
environment modeling capabilities and enable them to 
perform robust plant classification and/or selective weed-
removal operations.

Multirotor Used in the Flourish Project
The main UAV platform in the project is a fully sensorized 
DJI Matrice 100 [see Figure  2(a) and (b)]. The platform 
includes an Intel NUC i7 computer for onboard process-
ing, a NVIDIA TX2 GPU for real-time weed detection, a 
GPS module, and a visual-inertial (VI) system for egomo-
tion estimation. We employed a VI sensor developed at the 
Autonomous Systems Lab [13] and also tested and inte-
grated a commercially available sensor, the Intel ZR300, 
for wider usage.

Ground Vehicle

The BoniRob Farming Robot
Bosch Deepfield Robotics’ BoniRob [see Figure 2(c)] is a 
flexible research platform for agricultural robotics. Its four 
wheels can be independently rotated around the vertical 
axis—resulting in omnidirectional driving capabilities—
and are mounted at the end of lever arms, letting the robot 
adjust its track width from 1 to 2 m. To execute complex 
tasks, the BoniRob carries a multitude of sensors: GPS, 
real-time kinematic (RTK) GPS, a push broom lidar, two 
omnidirectional lidars, red-green-blue (RGB) cameras, a 
VI system, hyperspectral cameras, wheel odometers, and 
so forth. These sensors are directly connected to a set of 
onboard PCs that run the Robot Operating System (ROS) 
and communicate through an internal network. The Boni-
Rob’s batteries are complemented by a backup generator 
that facilitates long-term field application.

Weed-Intervention Module
Supporting the target use case of selective weed interven-
tion, the robot is equipped with an extension module, the 
weed-intervention module (Figure 3), which consists of a 
perception system for weed classification, multimodal 
actuation systems, and their supporting aggregates.

The main design objectives of this unit are high weed 
throughput, precise treatment, and flexibility. The weeds 
are treated mechanically with two ranks of stampers or 
chemically with one rank of sprayers. The weeds are 
detected and tracked in real time using three cameras with 
nonoverlapping fields of view (FoV).

The weed unit’s perception system consists of three 
ground-facing global shutter cameras and three narrow-
beam sonars. To protect this perception system from natu-
ral light sources, the weed-control unit is covered, and 
artificial lights are installed to control the illumination. A 
first RGB + near-infrared response camera is used for 
weed detection and tracking, while the other two RGB 
cameras are used for tracking. The sonars help recover the 
absolute scale of the camera images. Further details about 
the weed-intervention module can be found in the “Selec-
tive Weed Removal” section.

Data Analysis and Interpretation 
in a Farming Scenario
Precision farming applications aim to improve farm pro-
ductivity while reducing the use of fertilizers, herbicides, 
and pesticides. To meet these challenges, in-field measure-
ments of plant-vitality indicators and weed density are 
required. We addressed both of these requirements from a 
“robotic” point of view by proposing a set of methods to 1) 
accurately detect plants and classify them as crops and 
weeds (see the “Crop and Weed Detection” and “Automatic 
Synthetic Data Set Generation” sections) and 2) automati-
cally analyze the N status of crops from multispectral aeri-
al images (see the “Multispectral N-Status Detection and 
Phenotyping” section). 

Crop and Weed Detection
A prerequisite for selective and plant-specific treatments 
with farming robots is an effective plant-classification sys-
tem that provides the robot with information on where 
and when to trigger its actuators to perform the desired 
action in real time.

In the Flourish project, we focus on vision-based 
approaches for plant classification and use machine learn-
ing techniques to effectively cope with the large variety of 
different crops and weeds as well as with changing envi-
ronmental conditions. Figure 4(a)–(c) illustrates the 
results obtained by our plant-classification systems for 
both the UGV and UAV platforms. The further distinc-
tion between weeds and grass-like weeds allows our sys-
tem to perform different treatments in a targeted manner 
depending on the type of weed. For example, local 
mechanical treatments are most effective when applied to 
the stem location of the plants. In contrast, grass-like 
weeds can be effectively treated by spraying herbicides on 
their leaf surfaces.

We developed several data-driven plant-classification 
systems, ranging from approaches based on handcrafted 
features and random forests [14], [15] to deep learning 
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approaches based on lightweight, fully convolutional net-
works (FCNs) [16]. The latter showed superior perfor-
mance and better generalization capability.

To effectively generalize to new conditions (different 
fields, weather, and so on), we exploited geometric 

patterns resulting from the fact that several crops were 
sown in rows. Within a field of row crops, the plants share 
a similar lattice distance along the row, whereas weeds 
appear randomly. In contrast to visual cues, this geometric 
signal is much less affected by changes in visual 
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Figure 2. The two main robots used in the experiments and demonstrations: (a) a DJI Matrice 100 UAV multirotor performing an 
autonomous flight over a sugar beet field, (b) the UAV with the installed sensors, and (c) the Bosch BoniRob farming UGV. PPP: 
Precise Point Positioning. 
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appearance. We propose a semisupervised online approach 
[17] that exploits additional arrangement information 
about the crops to adapt the visual classifier. We also suc-
cessfully tested approaches that operated on image 
sequences obtained along crop rows, enabling the classifier 
to learn features that describe the plant arrangement [see 

Figure 5(a) and (b)] [16]. The image sequence reveals that 
crops grow along the row and have similar spacing, where-
as the weeds appear randomly in the field strip. We show 
that incorporating this geometric information boosts the 
classification performance and generalization capabilities 
of the plant classifiers.
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Figure 3. (a) A schematic rendering of the weed-intervention module. (b) An overview of our proposed weed-control system, 
composed of weed detection, tracking, and predictive control modules. The weeds are tracked across the cameras and finally fed 
into a predictive control module to estimate the time and position of treatment at which they will be approaching the weeding tools. 
SLAM: simultaneous localization and mapping; NBC: naive Bayes classifier. 

(a) (b) (c)

Figure 4. The example results obtained by our plant-classification systems. (a) A UGV-based semantic segmentation into crop, weed, 
and grass-like weed. (b) Stem detection providing the accurate location of crops and weeds. (c) A UAV-based semantic segmentation.
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The same underlying lightweight FCN structure was 
deployed on our UAV systems [18]. Here, we used the FCN in 
a classical single-image fashion, as the larger footprint of 
the camera implicitly covered enough information 
about the plant arrangement. Through our crop and weed 
classification systems, we enabled UGVs to perform 
plant-specific, high-precision in-field treatments and 
transformed the UAVs into an efficient system for crop-
monitoring applications.

Automatic Synthetic Data Set Generation
High-performing, data-driven plant-classification approach-
es usually require large annotated data sets acquired from 
across different plant growth stages and weather conditions. 
Annotating such data sets at a pixel level is an extremely 
time-consuming task.

We address this problem by proposing an automatic, 
model-based data set generation procedure [19] that pro-
duces large synthetic training data sets by rendering a large 
number of photo-realistic views of an artificial agricultural 

scenario using a modern 3D graphic engine. To do so, we 
randomize a few key parameters (e.g., the size, deforma-
tion, and distribution of leaves; the structure of plants; 
types of soil; and so on) using a bottom-up procedure 
(see Figure 6):

 ●  We model the leaves of the target plants using kine-
matic chains upon which we apply a few real-world 
RGB textures.

 ●  We model the plants through radially distributed leaf 
layers, where the number of leaves per layer depends on 
plant species and their growth stages.

 ●  A virtually infinite number of realistic agricultural 
scenes can be then rendered by adding random soil 
backgrounds and sampling random illumination con-
ditions and plant distributions; the ground-truth seg-
mentation masks are automatically generated by the 
graphic engine;.

 ●  The generated synthetic data sets can be used to effec-
tively train modern deep learning-based image-segmen-
tation architectures.

(a)

(b)

Figure 5. (a) The BoniRob UGV acquiring images while driving along the crop row. Our approach [16] exploits an image sequence by 
selecting those images from the history that do not overlap in object space. (b) The exemplary prediction of crop plants and weeds 
for the entire image sequence. Note that the model was trained on data acquired in a different field. 
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Multispectral N-Status Detection  
and Phenotyping
The nutrition status of a crop is linked to yield formation 
and the environmental footprint of agronomy. Well-fertil-
ized crops produce optimal yield and quality and are more 
stress resilient. Fertilizer deficiency hampers yield, whereas 
a surplus supply increases the risk of nutrient loss to the 
environment and increases susceptibility to pests and dis-
eases. N plays a prominent role in the management of 
most crops because of crops’ generally high demand for N 

and its very high mobility in soil. Al  though sugar beet N 
demand is relatively low, its yield and quality are strongly 
dependent on N management: too low an N application 
limits the tuber yield, while a high N application reduces 
the extractable sugar content in the tuber [20].

Therefore, it is important to apply N fertilizer at the 
right time, rate, and place. These decisions can be support-
ed by optical remote sensing tools that make use of visible 
or nonvisible parts of the spectral reflection of crops, as 
employed for N-status detection in the Flourish project 
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[21]. It serves as an example among others for the image-
based assessment of plant traits, which play an increasingly 
prominent role in the development of sustainable agro-
nomic practices in precision farming [22], [23].

To validate the spectral and imaging methodology for 
sugar beets in the Flourish project, randomized field trials 
were established in commercial sugar beet fields, and dif-
ferent N-input treatments were applied from 2015 to 
2017. Aerial-image spectroscopy was realized with a mul-
tispectral Gamaya VNIR 40 camera mounted on a UAV. 
For the ground-truth plant N status, tuber yield and sugar 
content were measured. As for other crops, our results 
show red-edge-based spectral indices, such as the simple 
ratio and the normalized-difference red-edge ratio [24]; 
this indicates the N status in sugar beets successfully 
obtained from the UAV-based sensor, resulting in useful 
N-fertilizer application maps. 

Positioning and Environment Modeling
The ability to localize and build a model of the surrounding 
environment is an essential requirement to support the reli-
able navigation of an autonomous robot. Such tasks are 
even more challenging in a farming scenario where 1) the 
environment is mainly composed of repetitive patterns 
with no distinctive landmarks and 2) multispectral infor-
mation should be included in the modeling process to sup-
port decision making for farm management. Moreover, in a 
multirobot setup as in the Flourish project, the UAV and 
the UGV should be able to cooperatively build a shared 
model of the environment. The following presents the main 
contributions we proposed for localizing and modeling cul-
tivated fields using a UAV (the “UAV Localization and 
Mapping” section) and a UGV (the “UGV Global Position-
ing and Mapping” section) as well as in terms of fusing this 
information among robots (the “Cooperative UAV–UGV 
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Figure 7. (a) A block diagram of our UAV state-estimation framework depicting the sensor suite and major software components. 
(b) A comparison of our VI-GPS fusion-based state estimation with raw GPS and ground truth. w.r.t.: with respect to; WGS: World 
Geodetic System; MAG: magnetometer; ENU: east, north, up coordinates; Abs.: absolute; Acc.: acceleration; Ang.: angular.
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Environment Modeling” section) and across time (the 
“Long-Term Temporal Map Registration” section). 

UAV Localization and Mapping
The aim of the UAV perception system is to collect high-
resolution spatiotemporal, multispectral maps of the field. 
These data are critical as they allow for mission planning 
before the UGV actually enters the field, thereby optimiz-
ing the time/location of ground-intervention procedures 
without the risk of crop damage and soil compaction. The 
perception pipeline requires two main competencies: 
1)  motion estimation and precise localization within the 
field and 2) multiresolution, multispectral aerial mapping 
based on the indicators needed to assess plant health.

The key challenges for on-field vision-based localiza-
tion are the homogeneous appear-
ance of crops and the accuracy of the 
GPS which, when used alone, is not 
sufficient to construct maps for 
defining paths for UGV interven-
tion. To address this, we developed 
an onboard state-estimation system 
that combines data from a synchro-
nized VI sensor, a GPS sensor, the 
UAV inertial measurement unit 
(IMU), and, optionally, a laser altim-
eter to estimate the six degree-of-
freedom (6-DoF) pose. Figure 7(a) 
provides an overview of the system. 
The robust visual inertial odometry 
(ROVIO) [25] framework is used to 
produce a 6-DoF pose output based 
on raw images and the IMU data 
from the VI sensor. The multisensor 
fusion framework [26] then com-
bines the ROVIO output and the 
UAV IMU data to obtain state esti-
mates that are passed to our model 
predictive controller for trajectory 
tracking. To improve its accuracy and 
robustness, we integrated our system 
with MAPLAB [27], a framework 
that has map-maintenance and pro-
cessing capabilities. On-field results 
using the AscTec NEO and DJI Ma -
trice 100 UAV platforms demonstrate 
a high state-estimation accuracy 
compared to the ground truth from a 
Leica Geosystems Total Station [see 
Figure 7(b)].

High-resolution field map models 
are a key prerequisite for enabling 
robots in precision agriculture. To 
this end, we developed a UAV envi-
ronmental modeling framework 
using the pose estimate from our 

localization system as well as color and multispectral cam-
era information over multiple flights to create spatiotem-
poral spectral field models. Figure 8 depicts our pipeline. 
Taking raw RGB and multispectral images and UAV poses 
as inputs, we radiometrically corrected the spectral data 
to create a spatial field model in the form of a dense point 
cloud. For each point, the spectral reflectances in the mul-
tispectral wavelength bands were estimated and stored. 
The field evolution over time can be viewed through lay-
ered orthomosaics generated from this data through a 
custom browser-based visualization module, as shown in 
Figure 9(a) and (b). We used higher-quality RGB camera 
images, which recovered high-resolution field geometry, 
and also used the relative position and orientation between 
the RGB and multispectral camera to estimate its spectral 
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reflectance. Importantly, our strategy eliminated the need 
for a separate reconstruction step for each band and the 
subsequent alignment step.

UGV Global Positioning and Mapping
Currently, most positioning systems used in commercial 
farming UGV rely on high-end RTK-GPSs that are, how-
ever, not robust enough against base station signal loss or 
multipath interference and cannot provide the full 6D 
position (translation and rotation) of the vehicle. We tack-
le this problem by proposing a UGV positioning system 
[28] that effectively fuses several heterogeneous cues 
extracted from consumer-grade sensors and exploits the 
specific characteristics of the agricultural context with a 
few additional constraints. We formulate the global local-
ization problem as a 6D pose graph optimization problem. 
The constraints between consecutive nodes [Figure 10(a)] 
are represented by motion estimations (the wheel and 
visual odometries and so on). Noisy, but drift-free GPS 
and IMU readings are directly integrated as prior nodes. 
Driven by the fact that both GPS and visual odometry 
(VO) provide poor estimates along the z-axis (i.e., parallel 
to the gravity vector), we introduce two additional alti-
tude constraints:

 ●  an altitude prior, provided by a digital elevation model
 ●  a smoothness constraint for the altitude of adjacent 

nodes.
The integration of such constraints improves the accu-

racy of the altitude estimation and also benefits the estima-
tion of the remaining state components. The optimization 
problem is cyclically solved online by using a sliding-win-
dow strategy, as presented in Figure 10(b).

Cooperative UAV–UGV Environment Modeling
Building a shared map of the environment is an essential 
but challenging task: the UAV can provide a coarse recon-
struction of large areas, which should be updated with 

more detailed information collected by the UGV. We 
introduced Aerial–Ground Collaborative 3D Mapping for 
Precision Farming (AgriColMap) [29], an effective map-
registration pipeline that registers heterogeneous maps 
built by the UGVs and UAVs.

AgriColMap leverages a multimodal field representa-
tion and formulates the data-association problem as a large 
displacement dense optical flow (LDOF) estimation. The 
complete pipeline is schematized in Figure 11(a). We 
assume that both the UAV and UGV can generate colored, 
georeferenced point clouds of a farm environment, MA  and 

,MG  e.g., using photogrammetry-based 3D reconstruction. 
Our goal is to estimate an affine transformation :F R R3 3"

that allows their accurate alignment by compensating for the 
geo-tags misalignments and the reconstruction and scale 
errors. We start looking for a set of point correspondences 

, : ,m p q p M,A G A!= ^ h"  q MG! , that represents points 
pairs belonging to the same global 3D position. Inspired by 
the fact that the points in MA  locally share a coherent “flow” 
toward the corresponding points in ,MG  we cast the data-
association problem as a dense, regularized matching 
approach. This problem recalls the dense optical flow estima-
tion problem for RGB images: we introduce a multimodal 
environment representation that allows for the exploiting of 
such 2D methods on 3D data while enhancing both the 
semantic and geometrical properties of the maps. We exploit 
two intuitions:

 ●  A digital surface model (DSM) well highlights the geo-
metrical properties of a cultivated field.

 ●  A vegetation index can highlight the meaningful parts 
of the field and its visual patterns.
We transform MA  and MG  into 2D grid maps 

,, :R RJJA G
2 2"  where, for each cell p, we provide 

the surface height h and the excess green index (ExG), 
( ) ,ExG p g r b2 p p p= - -  with ,rp  ,gp  b p  being the (aver-

age) RGB components of the cell. To estimate the off-
sets map, we employ a modified version of the LDOF 

(a) (b)

Spatiotemporal-Spectral Mapping Spatiotemporal-Spectral Mapping

Figure 9. A visualization interface for the spatiotemporal spectral database showing (a) RGB orthomosaics and (b) the corresponding 
index maps for a sugar beet field over time. The user can select spectral layers to view a georeferenced reflectance orthomosaic 
corresponding to a wavelength band, view the color orthomosaic, and toggle through all of the available surveys using the timeline. 
(Images courtesy of Flourish.) 
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coarse-to-fine PatchMatch framework (CPM) [30]. We 
apply the visual descriptor of the original CPM method 
directly to the ExG channel of JA  and JG  while we 
exploit a 3D descriptor computed over the DSM to 
extract salient geometric information; the matching cost 
has been modified accordingly to take into account 
both descriptors.

The largest set of coherent flows defines a set of match-
es m ,A G  that are used to infer a preliminary alignment .Ft  
Finally, we estimate the target affine transformation F by 
exploiting the coherent point drift registration algorithm 
[31] over point clouds MA

veg  and ,MG
veg  which are obtained 

from MA and MG  by extracting only the points that belong to 
vegetation using an ExG-based thresholding operator.
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Long-Term Temporal  
Map Registration
Continuous crop monitoring is an 
important aspect of phenotyping and 
requires the registration of sensor 
data over the entire season. This task 
is challenging due to significant 
changes in the visual appearance of 
the growing crops and the field itself. 
Conventional image registration 
based on visual descriptors is typical-
ly unable to deal with such drastic 
changes in appearance. To overcome 
this challenge, we developed a meth-
od for registering temporally separat-
ed images by exploiting the inherent 
geometry of the crop arrangement in 
the field, which remains relatively 
invariant over the season. We pro-
posed a scale-invariant geometric 
feature descriptor that encodes the 
local plant-arrangement geometry 
and uses these descriptors to register 
the images even in the presence of 
strong visual changes [32]. The regis-
tration results allow for the spatiotem-
poral analysis of data collected over 
the crop season. This includes appli-
cations such as monitoring growth 
parameters at a per-plant level, as 
illustrated in Figure 12.

Planning, Navigation, and 
Coordination
The UAV and UGV have different 
working areas and roles within each 
field analysis and targeted-interven-
tion mission. Their action planning 
and navigation policies should reflect 
these differences. We introduced an ad 
hoc UAV navigation module (see the 
“UAV Mission Planning and Navi-
gation” section) using a planner to 
effectively perform field-monitoring 
missions while respecting battery 
constraints. Crop row localization 
and safe in-field UGV navigation 
are addressed in the “UGV Position 
Tracking and Navigation” section, 
where the high number of DOF of 
the UGV is used to improve motion 
efficiency and smoothness. The inter-
robot mission-coordination frame-
work is then introduced in the 
“UAV–UGV Mission Coordina-
tion” section.
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UAV Mission Planning  
and Navigation
A key challenge in agricultural mon-
itoring is developing mission-plan-
ning algorithms to define the path 
for a UAV to optimally survey the 
field. The planning module needs to 
maximize mapping accuracy given 
battery-life constraints, taking into 
account field coverage and scientifi-
cally defined areas of interest. We 
developed an informative path plan-
ning (IPP) framework for adap-
tive mission planning to meet these 
requirements [33].

Our framework is suitable for 
mapping a terrain depending on the 
type of data received from an 
onboard sensor, e.g., a depth or mul-
tispectral camera. In terms of map-
ping, the main challenge is fusing 
the dense visual imagery into a com-
pact probabilistic map in a computa-
tionally efficient way. To address 
this, we present a new method for 
multiresolution mapping that con-
siders the patterns of the target dis-
tributions on the farm. We used 
Gaussian processes (GPs) to encode 
the spatial correlations common in 
biomass distributions. A GP model 
was exploited as a prior for recursive 
Bayesian data fusion with probabi-
listic, variable-resolution sensors. 
In doing so, our approach enables 
mapping without the computational 
burden of standard GP regression, 
making it suitable for online, on-
platform applications.

In terms of planning, a funda-
mental problem we tackled is trad-
ing off image resolution and FoV to 
find the most useful measurement 
sites at different flying altitudes. 
During a mission, the terrain maps 
built online are used to plan trajec-
tories in continuous 3D space that 
maximize an information-based 
objective, e.g., the targeted, high-res-
olution mapping of areas infested by 
weeds. Our planning scheme pro-
ceeded in a finite-horizon fashion, 
alternating between replanning and 
plan execution. This allowed us to 
create adaptive plans, taking new 
sensor data into account online to 

U
A

V
 Im

ag
es

F
ro

m
 M

ul
tip

le
 S

es
si

on
s

S
pa

tio
te

m
po

ra
l A

na
ly

si
s

S
es

 1

S
es

 3

S
es

 2

S
es

 4

S
es

 1

S
es

 3

S
es

 2

S
es

 4

S
es

 1

S
es

 3

S
es

 2

S
es

 2

R
ob

us
t L

on
g-

T
er

m
 R

eg
is

tr
at

io
n 

of
 Im

ag
es

B
un

dl
e 

A
dj

us
tm

en
t a

nd
 D

en
se

 P
oi

nt
-C

lo
ud

 R
ec

on
st

ru
ct

io
n

S
es

 3
S

es
 2

q 3
q 2

q 1
q 4

q 2

q 4
q 3

q 1

P
b

P
a

D
(P

a)

D
(P

b)

D
dr

D
an

g

C
om

pu
te

 G
eo

m
et

ric
 F

ea
tu

re
 D

es
cr

ip
to

r
C

om
pu

te
 R

ob
us

t D
at

a 
A

ss
oc

ia
tio

ns
1

0.
8

0.
6

0.
4

0.
2 0 1

0.
8

0.
6

0.
4

0.
2 0

70
0

60
0

50
0

40
0

30
0

20
0

10
0 0

Leaf Cover (cm2)

S
ite

 1

S
ite

 2
S

ite
 3

S
ite

 4

S
ite

 5

1
2

3
4

H
ig

h

Lo
w

Fi
gu

re
 1

2.
 T

he
 p

ip
el

in
e 

us
ed

 fo
r 

pe
rf

or
m

in
g 

lo
ng

-t
er

m
 r

eg
is

tr
at

io
n 

of
 c

ro
p-

fie
ld

 U
AV

 im
ag

es
. T

he
 r

eg
is

tr
at

io
n 

ap
pr

oa
ch

 c
om

pu
te

s 
ro

bu
st

 d
at

a 
as

so
ci

at
io

ns
 b

et
w

ee
n 

te
m

po
ra

lly
 s

ep
ar

at
ed

 
im

ag
es

 b
as

ed
 o

n 
a 

sc
al

e-
in

va
ria

nt
 g

eo
m

et
ric

 d
es

cr
ip

to
r. 

Th
es

e 
as

so
ci

at
io

ns
 a

llo
w

 fo
r 

re
gi

st
er

in
g 

th
e 

da
ta

 in
 a

 c
om

m
on

 r
ef

er
en

ce
 fr

am
e,

 w
hi

ch
 t

he
n 

fo
rm

s 
th

e 
ba

si
s 

fo
r 

pe
rf

or
m

in
g 

sp
at

io
te

m
po

ra
l a

na
ly

si
s.

 S
es

: s
es

si
on

. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2023 at 12:30:49 UTC from IEEE Xplore.  Restrictions apply. 



42 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  SEPTEMBER 2021

focus on areas of interest as they were discovered. For replan-
ning, we leveraged an evolutionary technique, i.e., the covari-
ance matrix-adaptation evolution strategy, to optimize the 
initial trajectory solutions obtained from a coarse 3D grid 
search in the UAV workspace. Our approach was evaluated 
extensively in simulation, where it was shown to outperform 
existing methods (Figure 13) and was validated on the field.

UGV Position Tracking and Navigation
For autonomous navigation on fields, the BoniRob UGV 
needs to accurately steer along the crop rows without crush-
ing any of the value crops. Moreover, to transition between 
crop rows, performing tight and accurate turns at the end of 
the field is essential. There are three key requirements to 

achieve this: a pose estimate relative to the rows, a path along 
the crop rows through the field, and smooth velocity com-
mands to precisely follow this path. To this end, we devel-
oped a crop row detection algorithm, the pattern Hough 
transform [34]. We first processed the input from vision or 
lidar data by extracting the plant features and projecting 
them onto a feature grid map in the local robot frame [see 
Figure 14(a)]. Then, our pattern Hough transform deter-
mined the pattern of parallel and equidistant lines that is 
best supported by the feature map, as shown in Figure 14(c). 
Such a pattern is defined by the orientation ,i  the spacing 
between adjacent lines s, and the offset of the first line to the 
origin o, as displayed in Figure 14(b). Because our approach 
takes into account all of the available data used to detect crop 

30

20

10

0
–15

–15

0 0

15

15

x (m)
y (m)

z 
(m

)

30

20

10

0
–15

–15

0 0

15

15

x (m) y (m)

z 
(m

)

0 50 100 150 200
Time (s)

120

110

100

90

80

70

60
100 200 300 400 500 600

Time Budget B (s)
100 200 300 400 500 600

CMA-ES Time Budget B (s)

(c) (d)

(a) (b)

CMA-ES
CMA-ESCoverage

Coverage

R
el

at
iv

e 
F

in
al

 T
ria

l (
P

)
C

M
A

-E
S

/C
ov

er
ag

e 
(%

)

1,400

1,200

1,000

800

600

400

200

0

T
im

e 
T

ak
en

 (
s)

–4.84%

17.1%

20.1%

20.3%

50.7%

51.5%

Figure 13. Example comparisons of (a) our covariance matrix adaptation-evolution strategy (CMA-ES)-based approach to (b) 
“lawnmower” coverage for mapping in 200-s missions. The colored lines and spheres represent the traveled trajectories and 
measurement sites. Ground-truth maps are rendered. (c) A comparison of the final map uncertainties (measured by the GP 
covariance matrix trace) for various path budgets. Ten CMA-ES trials were run for each budget. (d) A comparison of the times taken to 
achieve the same final map uncertainty given a fixed CMA-ES budget. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2023 at 12:30:49 UTC from IEEE Xplore.  Restrictions apply. 



43SEPTEMBER 2021  •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •

rows in a single step, it is robust against outliers like weeds 
growing between the crop rows and yields accurate results 
during turning, i.e., when the robot is not necessarily aligned 
with the crop rows.

We integrated the output from our pattern Hough trans-
form into the localization module of the BoniRob. The local-
ization was based on an extended Kalman filter. We fused the 
odometry and IMU measurements for the prediction. In the 
correction step, we aligned the detected crop row pattern 
with a GPS-referenced map of crop rows to correct the pose 
estimate of the robot relative to the field. Because the crop 
row pattern provides only lateral and orientation informa-
tion, i.e., no correction along the crop rows, we corrected the 
longitudinal position estimate using GPS signals.

We implemented a global planner based on a state lattice 
planner to ensure that the BoniRob found a path to any 
reachable pose in the field. The BoniRob can change its track 
width by adjusting the angles of the lever arms to which the 
wheels are attached, as shown in Figure 2(a). Thus, whether it 
can pass through a narrow gap or over an obstacle depends 
on the wheel positions [see Figure 14(d)]. We developed a 
path planner that considers the lever angles explicitly [35] by 
including the arm angles in the state space and adding actions 
that allow the planner to change them. Adding the arm angles 
greatly increases the size of the state space, which makes plan-
ning with commonly used search algorithms inefficient. 
Thus, we introduced a novel method to represent the robot 
state with a reduced cardinality; that is, we tracked valid arm-
angle intervals instead of single-arm angles in the robot state.

Our local planner translates a pose path from the global 
planner into velocities while considering steering constraints. 
Any robot with slow-turning, independently steerable wheels, 
such as the BoniRob, has certain steering constraints. The 
most prominent constraints are limited steering velocity, non-
continuous steering, or wheel-angle instabilities when the 
center of rotation is on a wheel. To avoid violations of these 
steering constraints, we present a new approach that incor-
porates steering constraints when generating velocity roll-
outs [see Figure 14(f)] [36]. Our approach leverages the 
correspondence between the wheel angles and the instan-
taneous center of rotation (ICR) of the robot. After pro-
jecting the steering constraints into the ICR space, we 
computed a valid ICR path that satisfies the constraints. 
From this ICR path, we calculated valid velocity sequences 
that the robot can execute smoothly. Real-world experi-
ments show that our local planner improves efficiency and 
leads to smoother execution.

UAV–UGV Mission Coordination
To unlock the potential of the Flourish robotics system, the 
ability to run coordinated missions between the robots is 
essential. Because both robots share information via Wi-Fi, 
this information needs to be kept at a minimal level, and the 
coordination needs to be ensured even when communica-
tion is lost. The only data exchanged are the UAV and UGV 
poses, the coordinates of the areas of interest, the requests 
from one robot to the other, and their status messages. 
Because of the lossy communication, exchanging requests 
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and status is a reliable way to ensure that a message sent by 
one robot is indeed received by the other.

The mission framework used on both robots is based on 
ros_task_manager [37], a task scheduler developed for ROS 
that is particularly easy to use and allows for combining mul-
tiple behaviors with elements running in sequence or in par-
allel, eventually interrupting each other. This framework is 
based on tasks implemented in C++ that are combined into 
complex missions implemented in basic Python. Figure 15 is 
an example of a coordinated mission.

In-Field Intervention: The Collaborative  
Weeding Use Case
The main use case addressed in the Flourish project is the 
collaborative weeding application (Figure 1). The UAV flies 
over the field, running the navigation and planning algo-
rithms discussed in the “UAV Localization and Mapping” 
and “UAV Mission Planning and Navigation” sections while 
analyzing the weed pressure using the classification algo-
rithms presented in the “Crop and Weed Detection” section. 
The UGV is alerted to high weed-pressure areas using the 
coordination framework described in the “UAV–UGV Mis-
sion Coordination” section. Thus, the UGV starts to move 
toward the selected areas, running the algorithms discussed 
in the “UGV Global Positioning and Mapping” and “UGV 
Position Tracking and Navigation” sections. In the following, 
we describe the tools (see the “UAV Localization and Map-
ping” section) and methods (see the “Weed Tracking” sec-
tion) used for actual weed treatment with the possible 
agronomic impacts reported in the “Agronomic Impacts in 
Sugar Beet Crops” section. We successfully tested the whole 
pipeline in a public demonstration during a dissemination 
event held near Ancona (Italy) in May 2018.

Selective Weed Removal
The weed-intervention module [Figure 3(a)], whose percep-
tion system was introduced in the “Ground Vehicle” section, 
includes further tools designed to address the targeted weed 
treatment: a weed stamping tool and a selective spraying tool 
[Figure 3(b)]. The stamping tool is composed of 18 pneumatic 

stamps arranged in two ranks. All of the stamps are individu-
ally controllable, and highly precise positioning is ensured by 
allowing only 1 DoF for the positioning across to the driving 
direction. The spraying tool is positioned in the back. It is 
assembled out of nine nozzles, individually controlled by off-
the-shelf magnetic valves.

Both weeding tools are controlled using a scalable pro-
grammable logic controller. Modules requiring more compu-
tational resources, i.e., weed detection and tracking, are 
implemented on a computer dedicated to the weed control 
running Linux and ROS.

The bolt of the stamps has a 10-mm diameter, whereas 
the footprint of a sprayer is 30 mm when set in the lowest 
position, as in our experiments. To actually treat a weed 
while the robot is moving is a time-critical part of the process 
because a small delay can lead to a position error at the centi-
meter-level, which is large enough to miss a small weed. In 
our experiments, the decision of which tool to use on which 
weed is based only on a size criterion: large weeds are 
sprayed while small weeds are stamped.

Weed Tracking
The main challenge in weed tracking with nonoverlapping 
multicamera systems [Figure 3(b)] (see the “Weed-Inter-
vention Module” section) is to deal with the high variance 
delay between the instant when the image of the first cam-
era is acquired and when a target is sensed by the detection 
system. To address this issue, a novel tracking system was 
developed. The inputs were the images and the coordinates 
of the targets given by the classifier (see the “Crop and 
Weed Detection” section) in the images of the detection 
camera (see Figure 3). The outputs were the trigger time 
and position for the actuators. The main steps are illustrat-
ed in Figure 3: 
1)  The intracamera tracking module estimates the camera 

pose and the 3D scene map using VO direct methods.
2)  After receiving the delayed classification results and scene 

structures, the object initializer and updater module cre-
ates the templates of the received objects, propagates their 
updated poses, and accumulates their labels.
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3)  To prevent destroying a misclassified crop, a naive Bayes 
classifier validates its classification based on the accumu-
lated labels.

4)  Once a new weed object moves into the tracking camera’s 
FoV, intercamera tracking performs illumination-robust 
direct tracking to find its new pose and create a new tem-
plate for intracamera tracking.

5)  After repeated intracamera tracking, updating, and inter-
camera tracking, the weed finally approaches the end 
effector, where the control algorithm predicts the trigger 
time and position of actuation for intervention.

The novelty in this module resides in the intra- and inter-
camera tracking [38] (Figure 16). 

Intracamera Tracking
Unlike conventional multiobject tracking algorithms, our 
proposed VO approach recovers the 3D scene structure 
before obtaining object information, then formulates each 
template as a combination of trimmed image and inverse 
depth map for later tracking upon the arrival of the classifica-
tion results. This strategy guarantees a constant-time opera-
tion despite the change of the number of tracked objects.

Intercamera Tracking
Taking advantage of the fact that only the 2D positions of 
weeds in the image space were of interest, we extracted the 
small-frame template of each weed combined with a global 
illumination-invariant cost to perform a local-image align-
ment. Then, the weed center and its template boundary were 
transformed into the current frame using the pose estimate 
to generate a new template for intracamera tracking. To be 
robust to changes of viewpoint, the retrieval of weeds objects 
was achieved using 2D/3D direct template-based matching.

To evaluate the mechanical weed removal, real leaves with 
an average radius of 10 mm were chosen as targets, including 
the successfully stamped ones. To evaluate selective spraying, 
we set up a webcam to monitor the targets after spraying. 
These experiments and their results are illustrated in Fig-
ure 17, where we can observe that the successful treatment 
rate is almost invariant with the speed in both flat and rough 
field ground. 

Agronomic Impacts in Sugar Beet Crops
The potential impacts of the Flourish methodologies have 
been investigated through a three-year field campaign 

(b)

(a)

Figure 16. (a) An example of a reconstructed inverse depth map and (b) a 3D point cloud of plants and the ground surface from our 
proposed intracamera-tracking algorithm. 
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carried out in Italy. We compared traditional full-field herbi-
cide treatments with a chemical weeding system, targeting 
the areas with higher weed density and thereby simulating 
the Flourish selective intervention. We performed four trials 
on sugar beet experimental plots grown under the same 
agronomic conditions and on the same site. For each year, 
four 10-m2 plots (one plot per trial) were used; in 2017 and 
2018, each trial was replicated three times.

For each trial, different preemergence treatments (PRTs) 
and postemergence treatments (POTs) were performed 
before and after seedling emergence using dicotyledons/
monocotyledons herbicides. Table 1 lists the percentages of 
plots subjected to treatment (the PRT and POT columns).

At the end of each crop cycle, the sugar beet roots of each 
plot were harvested and weighed. Representative samples 

from each plot were delivered to the Agency for Agro-food 
Sector Services of the Marche Region laboratories for the 
refractometric estimation of the average root sucrose con-
tent (Brix degrees). The amount of sucrose produced in 
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Figure 17. (a) Experiments in a real environment for spraying evaluation and (b) in a real field with fake weeds for stamping 
evaluation. (c) The treatment rates results for both stamping and spraying in rough and flat environments, respectively. 

Table 1. The treatments and tons of sucrose per 
hectare produced during the 2016–2018 trials.
Trials PRT POT 2016 2017 2018

Trial A 100% 100% 15.2 8.4 10.1 

Trial B 100% 30% 12.3 8.5 11.5 

Trial C 100% 0 11.7 4.9 11.2 

Trial D 0 0 11 3.4 6.6 
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each experimental plot was then computed and related to 
the agronomic surface unit (the tons of sucrose per hect-
are). The results are reported in Table 1. The 2017 and 2018 
results were calculated for each trial by averaging the results 
of the three replicates.

The results suggest that sugar beet selective POT (trial B), 
when associated with an ordinary PRT, represents a sustain-
able alternative to conventional POT full-field treatments 
(trial A) because it allows for achieving comparable sucrose 
production levels while reducing chemical inputs. In fact, 
compared to trial A, the average sucrose production of trial B 
was only 3.9% lower over the three years. At the same time, 
both the selective and full-field POTs turned out to be an 
effective support to production, especially in the case of crops 
subjected to marked grass-like weeds pressure. Traditional 
full-field PRT was essential in controlling weeds (mainly 
dicotyledons) in a slow-growing sugar beet crop (trial D’s 
average production was 24.5% lower than that of trial C).

Besides the impacts on production and the environ-
ment, the introduction of precise agriculture technologies 
into ordinary cultural practices could also have a larger-
scale effect on the farming sector. To support this intuition, 
a participatory evaluation (a metaplan model and a 
strengths, weaknesses, opportunities, and threats analysis) 
was carried out within the project involving a panel of 17 
stakeholders professionally operating in the farming sector. 
This evaluation highlighted that the application of such 
technologies would potentially be able to improve the effi-
ciency, efficacy, and safety of farming operations and so 
reduce labor costs and provide more information on crops, 
field structure, and meteorological events to increase farm-
ing-environmental sustainability and food safety.

Open Source Software and Data Sets
Many of the methods presented in the previous section have 
been released as open source software with downloadable 
links reported in the corresponding papers:

 ●  a modified version of the DJI Onboard ROS Software 
Development Kit [39]

 ●  plant-stress phenotyping data set and analysis software 
[40] (see the “UAV Localization and Mapping” section)

 ●  the IPP framework (see the “UAV Mission Planning and 
Navigation” section) used for terrain monitoring [33] 
(https://github.com/ethz-asl/waypoint_navigator) 

 ●  Multi-Cue Agricultural Positioning System (see the “UGV 
Global Positioning and Mapping” section) [28]

 ●  AgriColMap (see the “Cooperative UAV–UGV Environ-
ment Modeling” section) [29]

 ●  algorithms for synchronizing clocks (https://github.com/
ethz-asl/cuckoo_time_translator). 
We also created and made publicly available several novel 

data sets:
 ●  Sugar Beets 2016: a novel, vast, long-term data set of a 

sugar beet field [41]
 ●  Flourish Sapienza data sets [42]: a collection of data sets, 

with related ground truths, acquired from farming robots

 ●  a data set of four- and five-channel multispectral aerial 
images dedicated to plant-semantic segmentation [18], [43]

 ●  pixel-wise, ground-truthed sugar beet and weed data sets 
collected from a controlled field experiment [18] (https://
goo.gl/UK2pZq) 

 ●  a WeedMap data set [43], which contains high-fidelity, 
large-scale, and spatiotemporal, multispectral images.

Conclusions
The main goal of the Flourish research project was to devel-
op an adaptable robotic solution for precision farming by 
combining the aerial survey capabilities of a small, autono-
mous UAV with a multipurpose agricultural UGV. In this 
article, we presented an overview of the custom-built hard-
ware solutions and the methods and algorithms developed 
for the project, which were tailored for cooperation between 
aerial and ground robots. We demonstrated a successful in-
field intervention task integrating the various modules.

We believe that the proposed solutions represent, from 
several points of view, a step forward in the state of the art of 
robotic systems applied to precision agriculture, with solu-
tions that are easily applicable to a wide range of robots, 
farm-management activities, and crop types.
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