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Abstract: Wild bumblebees are key pollinators of crops and wild plants that rely on the continuous
availability of floral resources. A better understanding of the spatio-temporal availability and use of
floral food resources may help to promote bumblebees and their pollination services in agricultural
landscapes. We placed colonies of Bombus terrestris L. in 24 agricultural landscapes with various
degrees of floral resource availability and assessed different parameters of colony growth and fitness.
We estimated pollen availability during different periods of colony development based on detailed
information of the bumblebee pollen diet and the spatial distribution of the visited plant species.
Total pollen availability did not significantly explain colony growth or fitness. However, when using
habitat maps, the weight gain of colonies, the number of queen cells, and colony survival decreased
with increasing distance from the forest. The better explanation of bumblebee performance by forest
proximity than by (plant-inferred) pollen availability indicates that other functions of forests than
pollen provision were important. The conservation of forests next to agricultural land might help
to sustain high populations of these important wild pollinators and enhance their crop pollination
services. Combining different mapping approaches might help to further disentangle complex
relationships between B. terrestris and their environment in agricultural landscapes.

Keywords: agricultural landscapes; Bombus terrestris; colony development; landscape composition;
wild bees

1. Introduction

Animal pollination is crucial for around one third of worldwide food production, with 85%
of leading global crop types relying to varying degrees on pollination [1]. In addition to domestic
honeybees (Apis mellifera L.), wild bees greatly enhance and stabilize crop pollination, and they are
often the most effective pollinators [2–6]. However, habitat loss and intensive agricultural practices
contribute to pollinator declines in different regions of the world [7], while the dependency of global
agriculture on pollinators is increasing [8]. Hence, supporting wild bees in agricultural landscapes is
crucial to future economic and environmental stability [9,10].

Bumblebees are important wild pollinators that increase the yield of many crops, e.g., fruit trees,
pepper, pumpkin, strawberries, and tomatoes [11,12]. The buff-tailed bumblebee (Bombus terrestris L.) is
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one of the dominant crop pollinators in Europe [13]. Like all wild bees, wild bumblebees rely on foraging
and nesting resources provided by the surrounding landscape [14,15]. Thus, favorable foraging habitats
can enhance pollinator populations and crop pollination at the landscape scale [10,16–18]. As habitat
types differ in resource availability, habitat maps using broad land use categories are commonly
used to predict wild bee development and the service they provide [5]. For example, habitat maps
explained faster growing and heavier colonies of B. terrestris in suburban gardens than elsewhere [19].
In different studies, the pollen deposition of B. terrestris was higher with a decreasing proportion of
cropland in the surrounding landscape [20], and B. terrestris colonies had higher reproductive success
and survived longer in urban areas than agricultural areas [21]. In intensively managed agricultural
landscapes, floral resources are mainly offered by small fragments of semi-natural habitats [4,22,23] or
single mass flowering crops. Consequently, in addition to habitat maps, maps of single mass flowering
species, e.g., apple, oilseed rape, and strawberry, have been found to explain colony development of
B. terrestris [24–26]. Bombus terrestris mainly collects pollen on woody plants [27,28]. No single plant
accounts for >15% of the total pollen diet of B. terrestris [28]. Furthermore, the flowering of single
plant species is temporally restricted, and most pollinators use a sequence of specific plant species
during their flight season [28]. Resources may be limited, especially during early stages of colony
development [24,29–31]. Hence, comprehensive floral resource maps at the landscape scale that give
information on temporal resource availability may further improve our ability to predict the growth
and reproductive success of bumblebee colonies [32].

Here, we placed colonies of B. terrestris in 24 agricultural landscapes in southwest Germany,
quantified their pollen use, mapped the most commonly used plants (71 species derived from 30 pollen
types, offering 95% of the total pollen diet), and calculated a weighed pollen availability index for
the early and late flight period of the species in each landscape. We tested the effects of detailed
plant-inferred pollen availability versus classical land use maps (i.e., distances from and proportions
of land use categories in the landscapes) on colony development (i.e., colony growth and longevity).
We tested the following hypotheses: (1) pollen resources for bumblebees are mostly provided by woody
semi-natural habitats; (2) a high availability of pollen resources in the landscape enhances colony
development; (3) early pollen resources have stronger effects on the weight gain of colonies than late
pollen resources; and (4) floral resource maps predict colony development better than habitat maps.

2. Materials and Methods

2.1. Study Landscapes and Creation of Floral Resource Maps

The study was conducted in the surroundings of Landau in the Upper Rhine Valley,
Rhineland-Palatinate, Germany (Electronic Supplementary Materials, Figure S1). A total of
24 agricultural landscapes of 500 m radius were selected to represent gradients of the amounts
of early and late pollen resources for B. terrestris [33]. Landscape centers were at least 800 m away
from each other and were placed in grassy field margins. The cover of plants offering selected pollen
types and the major land use types were mapped according to field inspections between June and
November 2017 (woody plants) and between April and June 2018 (land use and annual herbaceous
plants; for further details see Supplement S1). We used Copernicus (Sentinel-2; L2A–L2C) optical
satellite imagery (2016; 10 m resolution), processed by the Federal Agency for Cartography and
Geodesy (BKG), as orientation in the field during mapping. We ground-truthed each landscape
element via field inspection during our mapping process in 2018 and noted every change if necessary.
Obtained data were later digitized as polygon (land use classes) and point layers (single resources),
and they were analyzed with QGIS 3.6.2 [34] using the above-mentioned satellite imagery as a base
map. To create land use/land cover (LULC) maps (hereafter: “habitat maps”), the following habitat
types were distinguished: arable land, permanent crops, forest edges (i.e., the first ten meter into
forests), forest (i.e., forest interiors without its edges), open woody semi-natural habitat (i.e., hedgerows
and single standing trees including those of semi-natural orchards), herbaceous semi-natural habitat
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(i.e., intensively and extensively managed meadows and pastures), and built-up area (i.e., rural
settlements). The proportions of habitat types across the landscapes are shown in Table S2. We also
measured the Euclidean distances of colonies to forests because these were important predictors of
wild bee development or performance in previous studies [23,35–37]. To analyze single resources,
the cover of and distance to dominant pollen types were used: Brassica napus L. (hereafter: oilseed
rape), because it has been an important predictor of bumblebee densities and colony development in
earlier studies [24,38,39], and Cornus, Lonicera, Prunus, Rubus, and Tilia because each of these plant
taxa contributed more than 10% of pollen availability to B. terrestris in at least one season during our
study (Electronic Supplementary Materials, Table S1). To create floral resource maps, the area covered
by plant species offering pollen types that constitute at least 5% of the pollen diet of B. terrestris in
our study region in at least one season, and all remaining woody plant species were mapped [28].
These maps accounted for the area covered by 71 plant species derived from 30 pollen types. Plants in
forest interiors (i.e., deeper than ten meters into a forest) were not mapped because most bees [40],
and B. terrestris in particular, prefer open habitat for foraging [41–43]. Floral resource indices were used
as described in [33]. Indices considered the relative cover of plants offering pollen types multiplied by
their utilization (i.e., percentage of the total collected pollen volume) by B. terrestris during a specific
period, summed up over all pollen types. An index value of 1 denotes the average pollen availability of
all studied landscapes, while larger or smaller values describe the proportional difference of resource
availability in a given landscape relative to the average. Pollen availability was calculated over the
whole duration of B. terrestris colony field placement (from mid-April to mid-June) and separately
for the early and late phase of colony development. The early season started with the placement of
colonies in the field (mid-April) and ended when they reached their maximum weight (end of May).
The late season was from when the colonies had their maximum weight until colony termination
(i.e., when no evidence of living bumblebees could be detected at the nest boxes during measurements;
mid-June). Floral resource maps accounted for 96.3% of early, 83.2% of late, and 94.9% of the total
pollen diet of B. terrestris according to the analysis of pollen diets from the 48 colonies when considering
45,900 pollen grains out of 306 samples (Table S1).

2.2. Placement of B. terrestris Colonies

Two commercially bred B. terrestris colonies (STB Control, Aarbergen, Germany) were established
in the center of each of the 24 landscapes (48 colonies in total) on a grassy field margin in mid-April
2018. Colonies were even-aged, consisted of one queen and approximately 50–60 workers, and were
embedded in a nest box. For acclimatization, a tank filled with sugar water was provided for each
colony. Nesting box and tank were enclosed by a cardboard box to protect colonies against unfavorable
weather conditions. To protect colonies from soil moisture, boxes were placed on wooden plates that
were 10 cm above ground level. Colony entrances were facing south-east. The day after placement,
colonies were weighted and colony entrances were opened. After one week of acclimatization,
sugar tanks were closed. The weight of nest boxes containing colonies was measured every second
week until colony termination. After that, colonies were harvested and frozen at −18 ◦C for later
dissection in the laboratory. Weight gain was obtained by subtracting the maximum colony weight by
its initial weight. After colony dissection, cells were counted and assigned to two classes: queen cells
(diameter ≥ 11 mm or length ≥ 19 mm if diameter was not measurable because cells were fragmented)
and other cells (i.e., male/worker cells with diameter < 11 mm and length < 19 mm; [44]). Male and
worker cells could not be consistently differentiated and were therefore grouped together [19,29,31].
Days of survival were measured from the day of colony placement until colony termination. Weight
gain, the number of cells, and the survival of the two colonies in each landscape were averaged.

2.3. Pollen Collection, Preparation and Determination

The pollen diet of B. terrestris was recorded at up to four sampling dates between 24 April and
16 June 2018. At each nest, pollen loads were collected from up to four workers returning from foraging
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trips per sampling date. The start of the sampling period coincided with the peak flowering of oilseed
rape and Crataegus spec., while at the end, Rubus fruticosus L. and Tilia spec. were flowering, which are
dominant flowering resources of B. terrestris in the respective seasons [28]. Pollen was stored in water,
frozen at −18 ◦C, and then acetolyzed [45]. Acetolyzed pollen was mounted on permanent slides in
glycerin, and 150 pollen grains per sample were counted starting at a random position of the slide and
identified to the highest possible taxonomic resolution using a light microscope (400×magnification),
a palynological key [46], a photo atlas [47], and the reference pollen collection of the Institute of Plant
Sciences of the University of Bern. Pollen types that contributed more than 3% of the diet of B. terrestris
colonies in any period (i.e., before colonies reached their maximum weight or from this moment
until colony termination) were classified as key pollen types. Deformed pollen grains that could not
be assigned to pollen types (2.2% of detected pollen) and pollen fragments were excluded from the
analysis. The pollen type Brassicaceae could not be identified to the species level. However, oilseed
rape accounted for 98.3% of the cover of Brassicaceae in the landscapes.

2.4. Statistical Analysis

Correlations between colony response (i.e., weight gain, queen cells, and survival) and explanatory
variables (i.e., variables used to describe floral resource maps, habitat maps, or single resources) were
tested with linear regression. To visualize the interaction among variables, a correlation matrix among
all variables was drawn (Figure S3). All variables were standardized before the analysis using the
standardize function of the arm package [48] in order to allow for a comparison between effect sizes
between models. To compare the predictive power of the mapping approaches, three different sets of
linear candidate models were set up for each colony response variable. The explanatory variables of the
candidate models were either the pollen availability indices, the parameters derived from habitat maps,
or the single pollen resources. The correlations of variables in models were below |r| ≤ 0.7 (Figure S3).
Models were compared via the Akaike second-order Information Criterion (AICc) [49–52] using the
dredge function from the MuMin package [53]. We compared the overall best model(s) using ∆i < 2
as a cutoff rule [50,52]. In addition to this statistically based model comparison, models with single
explanatory variables that contain either one of the focal predictors of this study (resource availability
and dominant single pollen resources) or key variables reported in the literature (distance to forests,
cover of arable land and built-up area, see introduction) are displayed. To compare the predictive
power of the different mapping approaches, the best models of each approach were compared to each
other. Data analyses were conducted in R 4.0 [54]. Model diagnostic plots were visually checked
(residuals vs. fitted values and normal Quantile–Quantile plots). A pollen network graph was created
using the package bipartite [55]. The plotting of bar plots and linear models was done using the
package ggplot2 [56], and the correlation matrix was drawn using the corrplot package [57].

3. Results

3.1. Pollen Diet

We identified 45,900 pollen grains collected from 306 returning foragers of B. terrestris. The key
pollen types collected in the early season were Prunus (16.2%), Rubus (15.5%), and Rosaceae other
than Prunus (12.3%); these were followed by Cornus sanguinea (8.5%), Brassicaceae (8.4%), Acer (7.3%),
Papaver rhoeas type (5.5%), Lonicera xylosteum type (4.8%), Sorbus (4.0%), and Lamium album type (3.5%;
Table S1). Key pollen types in the late season were Rubus (28.6%), Tilia (26.8%), Phacelia tanacetifolia
(10.3%), Vitis (3.6%), and Rosaceae (3.5%; Table S1). During both periods, the majority of pollen was
collected on woody plants (74.1% in the early season and 67.4% in the late season; Figure S2).

3.2. Landscape and Pollen Availability

The studied landscapes were dominated by arable land (69.0% ± 0.047—average ± standard error),
followed by the herbaceous semi-natural habitat (10.7% ± 0.024), forest (5.7% ± 0.024), permanent
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crops (4.0% ± 0.012), woody semi-natural habitat (3.2% ± 0.006), built-up area (2.1% ± 0.010), and forest
edges (0.8% ± 0.003).

After giving each pollen type a weight proportional to its use by bumblebees, open woody
semi-natural habitats (woody semi-natural habitat excluding forests and forest edges) provided 75.2%
of the total pollen availability (expressed with indices) in the 24 studied landscapes (Figure 1). In open,
woody semi-natural habitats, plants offering Cornus sanguinea, Lonicera xylosteum type, and Prunus
type pollen were the most important contributors to pollen availability in the early season (39.8%,
15.4%, and 6.8%, respectively). In the late season, Tilia, L. xylosteum type and Rubus were the most
important contributors (25.2%, 23.2%, and 17.4%, respectively). Forest edges contributed to 11.3% of
total pollen availability. Additionally in the early season, C. sanguinea and L. xylosteum type were most
important contributors (5.0% and 1.6%, respectively); and in the late season Rubus, Tilia, and L. xylosteum
type (9.7%, 4.2%, and 2.4%, respectively). The herbaceous semi-natural habitat contributed 3.5%
to early pollen availability and 8.5% to late pollen availability. Here, the main contributors in the
early season were Papaver rhoeas type, Lamium album type, and Trifolium pratense type (1.4%, 1.3%,
and 0.6%, respectively), and the main contributors in the late season were T. pratense type and Phacelia
tanacetifolia (5.3% and 2.8%, respectively). In permanent crops (average cover: 4.0%), the most important
contributors were fruit trees in the early season (5.2%) and Vitis in the late season (1.8%). Though arable
land covered the major part of the landscapes, its contribution to pollen availability over the seasons did
not exceed 3.2%. The most important crop pollen resources were oilseed rape in the early season (2.5%)
and Asparagus officinalis type in the late season (1.1%). The contributions of built-up area to pollen
availability were low (<2.1% in any season). Figure 1 shows the average area of habitat categories in
the studied landscapes, as well as their average contributions to pollen availability (indices) during
different periods. For a list of the plants detected in the landscapes offering collected pollen types and
their contributions to pollen availability during different time periods, see Table S1.

3.3. Colony Development and Survival

On average, each colony contained 675 ± 218 male/worker cells (minimum: 177; maximum: 1206),
contained 88 ± 64 queen cells (min: 2; max: 245), gained 648 ± 202 g of weight (min: 146; max: 1076),
and survived for 68 ± 9 days (min: 50; max: 84). The maximum weight gain increased with the number
of total cells (i.e., male/worker and queen cells; t1,22 = 3.15, R2

mult = 0.311, and p < 0.01) and with the
number of queen cells (t1,22 = 4.54, R2

mult = 0.484, and p < 0.001). Colony survival and the number of
queen cells were positively correlated (t1,22 = 4.07, R2

mult = 0.430, and p < 0.001). Correlations between
other colony variables were non-significant (i.e., p ≥ 0.05; Figure S3).Agronomy 2020, 10, x FOR PEER REVIEW 6 of 17 
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Figure 1. Average (±1 standard error) area of habitat categories (arable, permanent crops, forest edges,
herbaceous semi-natural habitats, and woody semi-natural habitats but excluding forests and built-up
area) in the studied landscapes (a), their average contribution to pollen availability per landscape (b),
in the early season (c), and in the late season (d). Pollen availability is based on the relative area covered
by plant species offering a pollen type in the respective habitat type across all landscapes multiplied by
the relative collected pollen volume of each type over the whole season.

3.4. Pollen Availability and Colonies

The total pollen availability in the landscapes during any time did not significantly affect colony
weight gain, survival, or the number of queen cells (p > 0.35; Table 1 and Figure S3). Using habitat
maps, we found that the weight gain of colonies, queen cells, and survival decreased with distance to
forests (Figure 2). In addition to the distance from forests, the best models contained either increases of
survival with distance to built-up area or decreased survival with an increasing proportion of it in the
landscapes (Table 1). Using important predictors from previous studies, we found that the number of
queen cells tended to decrease with the proportion of arable land (Table 1). However, this model was
distinctly worse than models containing distance to forests (∆i ≥ 2; Table 1).Agronomy 2020, 10, x FOR PEER REVIEW 7 of 17 

 

 
Figure 2. Relations of (a) weight gain (t1,22 = −2.28, R2mult = 0.191, and p = 0.033), (b) number of queen 
cells (t1,22 = −3.09, R2mult = 0.302, and p < 0.01), and (c) survival and distance to forests (t2,21 = −2.67, R2adj 
= 0.286, and p = 0.015). Predicted linear relations (regression lines) and 95% confidence intervals 
(shaded area) are drawn for significant relations. 

Regarding single pollen resources, weight gain decreased with increasing distance to oilseed 
rape, and no significant relationship was found with any other variable (Table 1). The number of 
queen cells showed no significant relationship with any of the single pollen resources. Colony 
survival decreased with increasing distance to Cornus sanguinea in all of the best-ranking models 
(Table 1). Alternatively, a negative correlation also existed between colony survival and the distance 
to Rubus (Δi = 2.11). For correlations among all observed variables, see Figure S3. 

Figure 2. Relations of (a) weight gain (t1,22 = −2.28, R2
mult = 0.191, and p = 0.033), (b) number of queen

cells (t1,22 = −3.09, R2
mult = 0.302, and p < 0.01), and (c) survival and distance to forests (t2,21 = −2.67,

R2
adj = 0.286, and p = 0.015). Predicted linear relations (regression lines) and 95% confidence intervals

(shaded area) are drawn for significant relations.

Regarding single pollen resources, weight gain decreased with increasing distance to oilseed rape,
and no significant relationship was found with any other variable (Table 1). The number of queen cells
showed no significant relationship with any of the single pollen resources. Colony survival decreased
with increasing distance to Cornus sanguinea in all of the best-ranking models (Table 1). Alternatively,
a negative correlation also existed between colony survival and the distance to Rubus (∆i = 2.11).
For correlations among all observed variables, see Figure S3.



Agronomy 2020, 10, 1993 7 of 16

Table 1. Comparison of models explaining bumblebee colony response variables with pollen availability indices, classical habitat maps, and single resources (see main
text for description of mapping approaches). The abbreviation “SNH” is used for “Semi-natural habitat”. The Akaike second-order Information Criterion (AICc) and
the dredge function from the MuMin package [53] were used to select the best models (∆i < 2). Delta weight (∆i) is the difference between the AICc of the model and
the best model. Best models containing pollen availability and important predictors using habitat maps or single pollen resources are displayed regardless of AICc
values (see main text). Models listed below a dashed line are not included in the best model set (∆i < 2). Variables were standardized [48].

Explanation Response Model Description df R2
mult AICc ∆i Predictor Estimate SE t-Value p Value

Pollen
availability
indices

Weight
gain

(Empty) 23 319.7 0.00 (Intercept) 648.90 35.85 18.10 <0.001
Early pollen availability 22 0.001 322.3 2.60 Early 12.55 74.84 0.17 0.868
Total pollen availability 22 0.000 322.4 2.62 Total 7.29 74.87 0.10 0.923
Late pollen availability 22 0.000 322.4 2.63 Late 0.72 74.89 0.01 0.992

Queen cells (Empty) 23 256.2 0.00 (Intercept) 87.73 9.54 9.20 <0.001
Late pollen availability 22 0.007 258.7 2.46 Late 7.85 19.86 0.40 0.697
Total pollen availability 22 0.006 258.7 2.47 Total −7.49 19.87 −0.38 0.710
Early pollen availability 22 0.005 258.7 2.51 Early −6.64 19.88 −0.33 0.741

Colony
survival

(Empty) 23 166.8 0.00 (Intercept) 67.54 1.48 45.62 <0.001
Early pollen availability 22 0.040 168.4 1.66 Early 2.89 3.03 0.95 0.350
Total pollen availability 22 0.033 168.6 1.82 Total 2.63 3.04 0.87 0.396
Late pollen availability 22 0.027 168.7 1.97 Late 2.39 3.05 0.78 0.442

Habitat
distance
and cover

Weight
gain

Distance forest 22 0.302 313.7 0.00 Distance forest −193.12 62.55 −3.09 0.005
Distance forest and built-up 21 0.342 315.2 1.51 Distance forest −208.73 63.74 −3.28 0.004

Built-up −71.38 63.74 −1.12 0.275
Distance forest and woody SNH 21 0.339 315.3 1.59 Distance forest −210.35 64.29 −3.27 0.004

Woody SNH −69.82 64.29 −1.09 0.290
Distance forest and distance built-up 21 0.333 315.6 1.83 Distance forest −202.71 63.37 −3.20 0.004

Distance built-up 62.11 63.37 0.98 0.338
Arable 22 0.060 320.9 7.20 Built-up 85.85 72.61 1.18 0.250
Built-up 22 0.035 321.5 7.80 Arable −65.42 73.58 −0.89 0.384
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Table 1. Cont.

Explanation Response Model Description df R2
mult AICc ∆i Predictor Estimate SE t-Value p Value

Queen cells Distance forest 22 0.191 253.8 0.00 Distance forest −40.82 17.93 −2.28 0.033
Distance forest, herbaceous SNH,
and built-up 20 0.344 254.9 1.10 Distance forest −45.71 18.16 −2.52 0.020

Herbaceous SNH −22.37 18.16 −1.23 0.232
Built-up −34.66 18.74 −1.85 0.079

Distance forest and built-up 21 0.245 255.0 1.23 Distance forest −45.71 18.16 −2.52 0.020
Built-up −22.37 18.16 −1.23 0.232

Arable 22 0.142 255.2 1.41 Arable −35.20 18.46 −1.91 0.070
Forest edge 22 0.135 255.4 1.60 Forest edge 34.31 18.54 1.85 0.078
Distance forest and herbaceous SNH 21 0.232 255.4 1.66 Distance forest −33.46 19.19 −1.74 0.096

Herbaceous SNH 20.31 19.19 1.06 0.302
Permanent crops and distance forest 21 0.227 255.5 1.84 Permanent crops 17.97 18.02 1.00 0.330

Distance forest −42.59 18.02 −2.36 0.028
Arable and distance forest 21 0.225 255.6 1.87 Arable −19.86 20.67 −0.96 0.348

Distance forest −30.98 20.67 −1.50 0.149
Built-up 22 0.018 258.41 4.61 Built-up −12.38 19.75 −0.63 0.537

Colony
survival

Distance forest and distance built-up 21 0.348 162.0 0.00 Distance forest −6.90 2.59 −2.67 0.015
Distance built-up 6.23 2.59 2.41 0.025

Distance forest and built-up 21 0.337 162.4 0.40 Distance forest −7.27 2.64 −2.75 0.012
Built-up −6.12 2.64 −2.32 0.031

Distance forest, distance built-up,
and permanent crops 20 0.401 163.2 1.20 Distance forest −7.23 2.55 −2.83 0.010

Distance built-up 6.25 2.54 2.46 0.023
Permanent crops 3.35 2.52 1.33 0.199

Distance forest, distance built-up,
and built-up 20 0.396 163.4 1.38 Distance forest −7.43 2.59 −2.87 0.009

Distance built-up 4.22 3.01 1.40 0.177
Built-up −3.85 3.05 −1.26 0.221

Built-up 22 0.026 168.8 6.75 Built-up 2.36 3.05 0.77 0.448
Arable 22 0.016 169.0 7.02 Arable −1.81 3.07 −0.59 0.561
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Table 1. Cont.

Explanation Response Model Description df R2
mult AICc ∆i Predictor Estimate SE t-Value p Value

Single
resource
distance
and cover

Weight
gain Distance Brassicaceae 22 0.209 316.7 0.00 Distance

Brassicaceae −160.60 66.60 −2.41 0.025

Distance Brassicaceae and distance
Lonicera 21 0.258 318.1 1.37 Distance

Brassicaceae −193.91 71.82 −2.70 0.013

Distance Lonicera −84.62 71.82 −1.18 0.252
Distance Brassicaceae and cover
Prunus 21 0.243 318.6 1.86 Distance

Brassicaceae −181.46 70.08 −2.59 0.017

318.6 1.86 Prunus −67.92 70.08 −0.97 0.344
Distance Brassicaceae and cover
Lonicera 21 0.243 318.6 1.86 Distance

Brassicaceae −184.22 71.04 −2.59 0.017

Lonicera 68.63 71.04 0.97 0.345
Cover Brassicaceae 22 0.136 318.7 2.16 Brassicaceae 129.50 69.61 1.86 0.076
Distance Prunus 22 0.016 322.0 5.28 Distance Prunus 44.26 74.29 0.60 0.557
Cover Rubus 22 0.007 322.2 5.51 Rubus 28.43 74.64 0.38 0.707
Distance Cornus 22 0.003 322.3 5.59 Distance Cornus 20.06 74.76 0.27 0.791
Cover Tilia 22 0.002 322.3 5.63 Tilia −14.02 74.83 −0.19 0.853
Cover Prunus 22 0.001 322.3 5.64 Prunus −12.17 74.84 −0.16 0.872
Cover Cornus 22 0.001 322.3 5.65 Cornus 10.06 74.85 0.13 0.894
Distance Lonicera 22 0.001 322.3 5.65 Distance Lonicera −8.28 74.87 −0.11 0.913
Distance Rubus 22 0.001 322.4 5.66 Distance Rubus −8.07 74.87 −0.11 0.915
Distance Tilia 22 0.000 322.4 5.66 Distance Tilia −7.50 74.87 −0.10 0.921
Cover Lonicera 22 0.000 322.4 5.66 Lonicera 5.23 74.88 0.07 0.945

Queen cells (Empty) 23 256.2 0.00 (Intercept) 87.73 9.54 9.20 <0.001
Distance Prunus 22 0.066 257.2 1.00 Distance Prunus 23.95 19.27 1.24 0.227
Distance Rubus 22 0.026 258.2 1.99 Distance Rubus −15.19 19.67 −0.77 0.448
Distance Tilia 22 0.015 258.5 2.28 Distance Tilia 11.28 19.79 0.57 0.574
Cover Prunus 22 0.013 258.5 2.32 Cover Prunus −10.58 19.80 −0.53 0.598
Cover Rubus 22 0.011 258.6 2.37 Cover Rubus 9.72 19.82 0.49 0.629
Distance Cornus 22 0.007 258.7 2.46 Distance Cornus −7.87 19.86 −0.40 0.696
Cover Tilia 22 0.005 258.7 2.51 Cover Tilia 6.56 19.88 0.33 0.744
Distance Lonicera 22 0.004 258.7 2.52 Distance Lonicera −6.27 19.89 −0.32 0.756
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Table 1. Cont.

Explanation Response Model Description df R2
mult AICc ∆i Predictor Estimate SE t-Value p Value

Cover Cornus 22 0.003 258.7 2.55 Cover Cornus −5.44 19.90 −0.27 0.787

Distance Brassicaceae 22 0.001 258.8 2.59 Distance
Brassicaceae 3.60 19.92 0.18 0.858

Cover Lonicera 22 0.000 258.8 2.63 Cover Lonicera 0.55 19.93 0.03 0.978

Cover Brassicaceae 22 0.000 258.8 2.63 Cover
Brassicaceae 0.22 19.93 0.01 0.991

Colony
survival

Distance Cornus 22 0.253 162.4 0.00 Distance Cornus −7.29 2.67 −2.73 0.012
Distance Cornus and cover Tilia 21 0.301 163.7 1.29 Distance Cornus −7.40 2.65 −2.80 0.011

Cover Tilia 3.21 2.65 1.21 0.239
Distance Cornus and distance Lonicera 21 0.294 164.0 1.55 Distance Cornus −9.15 3.15 −2.91 0.008

Distance Lonicera 3.48 3.15 1.10 0.282
Distance Brassicaceae and distance
Cornus 21 0.289 164.1 1.71 Distance

Brassicaceae −2.80 2.70 −1.04 0.311

Distance Cornus −7.69 2.70 −2.85 0.010
Distance Cornus, distance Lonicera,
and cover Tilia 20 0.376 164.2 1.81 Distance Cornus −10.04 3.08 −3.26 0.004

Distance Lonicera 4.87 3.15 1.55 0.138
Cover Tilia 4.33 2.67 1.62 0.120

Distance Cornus and distance Prunus 21 0.281 164.4 1.97 Distance Cornus −8.10 2.83 −2.87 0.009
Distance Prunus 2.58 2.83 0.91 0.373

Distance Rubus 22 0.184 164.5 2.11 Distance Rubus −6.23 2.79 −2.23 0.036
Distance Tilia 22 0.102 166.8 4.42 Distance Tilia 4.63 2.93 1.58 0.129
Cover Cornus 22 0.047 168.2 5.84 Cover Cornus 3.15 3.02 1.04 0.308
Cover Tilia 22 0.041 168.4 5.98 Cover Tilia 2.95 3.03 0.98 0.340
Cover Prunus 22 0.030 168.7 6.27 Cover Prunus 2.50 3.05 0.82 0.421

Distance Brassicaceae 22 0.014 169.1 6.66 Distance
Brassicaceae −1.70 3.07 −0.55 0.585

Distance Lonicera 22 0.010 169.2 6.77 Distance Lonicera −1.42 3.08 −0.46 0.650

Cover Brassicaceae 22 0.010 169.2 6.77 Cover
Brassicaceae 1.42 3.08 0.46 0.650

Cover Rubus 22 0.002 169.3 6.94 Cover Rubus 0.67 3.09 0.22 0.830
Cover Lonicera 22 0.000 169.4 6.99 Cover Lonicera 0.31 3.09 0.10 0.922
Distance Prunus 22 0.000 169.4 7.00 Distance Prunus 0.02 3.09 0.01 0.994
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4. Discussion

As expected, B. terrestris mostly used pollen from woody semi-natural habitats. Surprisingly,
however, species-specific floral resource maps at the landscape level did not explain the colony
development of B. terrestris, although they accounted for the vast part of their pollen diet. Instead,
all three parameters of colony performance declined with the distance to forests. This suggests that
forest edges had other important functions for bumblebees than pollen provision, such as protection
from adverse weather or nectar provision. Alternatively, our results could indicate that the proximity
to floral resources is more important than their amount in the landscape, which was expressed
by the pollen availability index. In line with a high importance of proximity rather than amount,
colony survival decreased with increasing distance to major pollen sources like Cornus sanguinea and
Rubus. In turn, the cover of Rubus and Tilia declined with distance from the forest (see Supplementary
Materials, Figure S3). Our findings therefore suggest that, in addition to pollination [37], pollinator
species richness and flower visitation rate of pollinators [23], bumble bee colony growth and fitness
might be positively affected by proximity to forests. Positive effects of forests on B. terrestris may be
surprising, because the species is considered an inhabitant of open landscapes [41–43]. Following the
literature on B. terrestris habitat use, we only mapped pollen resources in open habitats and in the first
10 m of forests (“forest edge”). Still, we cannot fully exclude that bumblebees were exploiting floral
resources, e.g., Acer spec., Castanea sativa Mill., Tilia spec., and Rubus fruticosus, within forests and that
our floral resource index is thus incomplete. Flower use by pollinators in the forest canopy is difficult to
quantify, and we are unaware of studies that have comprehensively described pollinator communities
of trees growing in European forest interiors. Furthermore, other pollen resource plants commonly
used by B. terrestris such as Asparagus officinalis L., Brassica napus, Cornus sanguinea L., Papaver rhoeas
L., Phacelia tanacetifolia Benth., and Trifolium pratense L. are absent or rare in forest interiors. Of the
most important pollen resource plants collected by bumblebees in our study, only Lonicera xylosteum
L. and Rubus fruticosus can be commonly found in forest interiors, but they are equally found along
forest edges, in hedgerows, and in gardens. Typically, forests are semi-natural habitats that often have
positive effects on pollinator richness, visitation rate, or pollination service [5,23,58,59]. Apart from food
availability, possible benefits of forests for pollinators were summarized in [60]: already established
bumblebee colonies may benefit from the reduced daytime temperature in forest interiors in comparison
to open habitats during summers (e.g., [61]), and B. terrestris might have benefited from microclimatic
conditions along and inside forests during its foraging flights. Other benefits of forests include the
reduction of air movement, which leads to reduced energetic costs of foraging flights compared to open
habitats (e.g., [60,61]). In addition, in the same study year, B. terrestris was found collecting honeydew
from a colony of the giant willow aphid in England, probably due to an increase of nectar sugar
concentration while floral nectar resources were simultaneously restricted, followed by exceptional
hot and dry weather [62]. Our study year was extremely hot, with the highest average temperature
ever recorded in Germany along with drought due to low summer rainfall in combination with a high
sunshine duration [63]. These extreme weather conditions could have caused a shift in limitations
from pollen towards nectar resources and potentially enhanced the collection of honeydew in forest
interiors. Weather conditions that exceed the thermal tolerance limits of species are likely to increase
with climate change [64,65].

Bombus terrestris tend to forage on close-by patches with high resource densities [27,42,66],
and their average flight distances lie below or close to 500 m if rewarding resources are available [67,68].
However, they were also found foraging up to several kilometers from their nests [42,69]. Hence,
although bumblebees prefer patches of abundant floral resources close to their colonies, the unexpected
low effect of local floral resource availability on colony development might partly be explained by
the potentially long foraging distances of B. terrestris. On the other hand, during early phases of
colony development, the number of workers is still low and every lack of resources is detrimental to
colony development [30,70]. In addition, long distance flights are more energy-consuming than short
distance flights, making close resources more valuable than resources further away from the nest [70].
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Further, a mean foraging range of 275.3 ± 18.5 m with a range of 70–631 m was observed for B. terrestris,
indicating that the major part of their foraging may occur at that scale [71]. Thus, we believe that our
landscape radius of 500 m is still appropriate.

The negative effect of built-up area on colony termination contrasts with findings of increased
weight gain, higher numbers of males and queens, higher queen survival, and more food stores
in colonies of B. terrestris in suburban areas and sites with varying degrees of urbanization [19,21].
Bumblebees can profit from large proportions of beneficial habitats at the outskirts of urban areas
related to urban sprawl [72]. In our landscapes, built-up areas had a minor role in providing pollen
resources compared to some previous studies [73], probably because landscapes were selected to be
dominated by agricultural land use.

The increasing amount of arable land in the landscape provides an alternative explanation for the
decreased colony performance with increasing distance to forests. The negative effects of arable land on
pollinators have commonly been observed (e.g., [20]) and can be explained by, e.g., the negative effects
of pesticides or the scarcity of floral resources in intensive agriculture. Pollen availability in our study
was lowest in arable land. In addition, longer foraging trips and foraging on scarce, widely distributed,
and distant pollen resources (thus less efficient foraging flights) might have had a negative influence
on colony development. Large fields in arable land largely lack the beneficial microclimate offered by
rural settlements or woody semi-natural habitats [61,72]. The decreasing number of queen cells with
arable land was in accordance with the decrease of seed set in Vicia faba L. with arable land observed
in [33]. When we excluded forest distance from our models, weight gain increased with the proximity
to oilseed rape fields in the landscape. This resembled the results of [24,38], the authors of which
found increasing abundance and weight gain in colonies of B. terrestris with larger amounts of oilseed
rape in the landscape. The less strong effect on weight gain on B. terrestris observed in our study
may be explained by the lower amounts of oilseed rape in our study (the mean proportion of oilseed
rape was 1.8%, compared to 7.0% in [24]). In addition, weight gain during the early season does not
account for differences in colony growth during the different phases of early colony development.
In our study, pollen from Cornus sanguinea and from oilseed rape were collected in similar amounts,
despite oilseed rape, as a mass flowering crop, theoretically being highly attractive for B. terrestris.
In addition, Brassicaceae pollen has a lower mean pollen grain volume than Cornus sanguinea pollen.
Thus, despite its benefits for colony development, oilseed rape has a rather low contribution to early
pollen availability indices. The high effect of oilseed rape on colony growth despite low pollen use
indicates that B. terrestris might visit oilseed rape mostly for nectar rather than for its pollen [27]. Thus,
the true effect of oilseed rape and of plants visited for nectar rather than for pollen might also be
underestimated when using the pollen diet as base for floral resource indices.

The high importance of pollen from woody plants in the diet of B. terrestris, especially in the early
season (mid-March to end of May) is in line with other studies [27,28]. A positive effect of woody
floral resources on the development on wild pollinators might be stronger in the beginning of the early
season, with the full flowering of Salix, Acer, and Prunus (especially Prunus spinosa, Prunus domestica,
and Prunus avium), which are important floral resource plants of B. terrestris in the early season [28].

5. Conclusions

Classical habitat maps predicted the colony development of B. terrestris better than detailed
landscape-scale floral resource maps based on pollen use. This indicates that high amounts of attractive
pollen food resources in the landscape alone are not sufficient to ensure a high fitness of bumblebee
colonies. Still, the floral resource maps and diet analyses provided information that was not accessible
only through classical habitat maps, e.g., that hedgerows play an overriding role in pollen availability
to bumblebees in our study region despite their very small cover. More knowledge of floral resource
use by B. terrestris inside forest areas is needed to better understand its effects on colony development.
Microclimatic conditions in or along forests may help bumblebees to better survive hot and dry weather
periods and counteract possible stressors like pesticide exposure in arable land. Overall, our study
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demonstrates how predictors created by different mapping approaches are needed to complement
each other and help to explain their complex relationships between B. terrestris colonies and their
development in agricultural landscapes. Using a combination of predictors created by different
mapping approaches might help to clearly identify dominant drivers of wild pollinator development
and their service in crop pollination in agricultural landscapes.

Supplementary Materials: The following materials are openly available in figshare (https://figshare.com/) at
DOI:10.6084/m9.figshare.13233893, Figure S1: Location of landscapes, Supplement S1: Floral resource mapping,
Figure S2: Pollen collection network, Figure S3: Pearson correlation matrix between colony parameter and
predictors using different mapping approaches, Table S1: Use and availability of key pollen types included in the
study and used for calculating the resource availability index for B. terrestris, Table S2: Proportions of habitat types
across landscapes, Table S3: Composition of remaining pollen diet of returning foragers of B. terrestris excluded
from index calculation, data presented in this study, and R script used for the analysis.
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