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A B S T R A C T   

The development of relevant predictive models for single-cell lag time and growth probability near growth limits 
is of critical importance for predicting pathogen behavior in foods. The classical methods for data acquisition in 
this field are based on turbidity measurements of culture media in microplate wells inoculated with approxi-
mately one bacterial cell per well. Yet, these methods are labour intensive and would benefit from higher 
throughput. In this study, we developed a quantitative experimental method using automated microscopy to 
determine the single-cell growth probability and lag time. The developed method consists of the use of direct cell 
observation with phase-contrast microscopy equipped with a 100× objective and a high-resolution device 
camera. The method is not a time-lapse method but is based on the observation of high numbers of colonies for a 
given time. Automation of image acquisition and image analysis was used to reach a high throughput. The single- 
cell growth probabilities and lag times of four strains of Listeria monocytogenes were determined at 4 ◦C. The 
microscopic method was shown to be a promising method for the determination of individual lag times and 
growth probability at the single-cell level.   

1. Introduction 

In the field of predictive microbiology, mathematical models are 
developed since decades to describe the bacterial behavior in foods. 
Multiple (experimental and biological) factors may affect the bacterial 
behavior hampering the precise assessment of bacterial responses, 
especially in harsh environmental conditions (Aryani, Den Besten, 
Hazeleger, & Zwietering, 2015; den Besten, Aryani, Metselaar, & 
Zwietering, 2016). Besides the variability among different strains of a 
species, the heterogeneity within a population should be taken into 
account during growth or inactivation predictions (Aspridou & Kout-
soumanis, 2015; Koutsoumanis & Lianou, 2013). Two main approaches 
are usually adopted in an experimental design to assess bacterial phe-
notypes: the “population” and the “individual cells” ones. In the first case, 
the behavior is modeled without taking into account the variability of 
the cells that constitute the population. Yet, not all bacteria in a clonal 
population react in the same way to environmental changes (Koutsou-
manis & Aspridou, 2017; Koutsoumanis & Lianou, 2013). Indeed, some 

individual cells can show extreme tolerance to a given stressor or 
extreme sensitivity compared to the majority of the cells within the 
population. A particular attention should be paid to the bacterial cells 
showing higher resistance to stressful environmental conditions 
(Aguirre & Koutsoumanis, 2016; Aspridou & Koutsoumanis, 2015; 
Margot, Zwietering, Joosten, & Stephan, 2016). This enhanced resis-
tance can promote the persistence of bacterial pathogens (e.g. 
L. monocytogenes) in food processing plants and the colonization of new 
environments, increasing the risk of food contamination (Pascual, 
Robinson, Ocio, Aboaba, & Mackey, 2001). In addition, a shorter lag 
time has been reported for bacterial cells with enhanced resistance to 
environmental stresses in comparison to sensitive ones (Margot et al., 
2016). 

Food matrices are often contaminated with low levels of bacteria 
(Ross & McMeekin, 2003). Thus, application of the single-cell approach 
offers the advantage of generating more realistic contamination sce-
narios. The “individual cells” approach considers the individual behavior 
of each cell within a bacterial population in an independent manner. 
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Data acquisition at the single-cell level requires the establishment of 
methods capable of isolating each bacterial cell and at the same time to 
generate large data sets (Swinnen, Bernaerts, Dens, Geeraerd, & Van 
Impe, 2004). For the determination of single-cell lag time, different 
methods are available. The most commonly practiced rely on the mea-
surement of the optical density in broth media over time (Smelt, Otten, 
& Bos, 2002). This technique requires that one cell develops a high 
number of generations to reach the detection level for turbidity mea-
surement (~107 cells/ml). The determination of lag time based on this 
method requires the fine determination of the concentration of cells at 
the detection limit (Métris, George, Peck, & Baranyi, 2003). Neverthe-
less, there are certain weaknesses in this indirect approach, especially 
under particular experimental conditions (e.g. at temperatures close to 
bacterial growth limits the experiments will take a long time). In addi-
tion, the fact that this approach is conducted in broth media makes it 
harder to transfer results into solid food matrices. The micro- 
environment of planktonic cells is indeed quite different from that of 
immobilized cells in colonies, thus the bacterial growth capacity might 
differ greatly (Verheyen et al., 2019). In case of pathogens’ growth 
prediction, the improvement of knowledge on immobilized growth is of 
greater concern to avoid over- or under-estimations (Skandamis & 
Jeanson, 2015). Other indirect methods to estimate the individual lag 
time of bacterial growth on solid media have been published (Guillier, 
Pardon, & Augustin, 2006; Levin-Reisman, Fridman, & Balaban, 2014). 
These authors proposed a method based on image analysis of the bac-
terial colony growth on agar, where the lag times are estimated by 
detection times required to form macroscopically visible colonies. 
Mertens et al. (2012) published a method based on a similar approach, 
but the growth was monitored through the measurement of OD of col-
onies (Mertens, Van Derlinden, & Van Impe, 2012). In this case, the 
throughput was improved with the use of 48 well-plates. However, all 
these approaches are presenting the same weakness as the indirect 
method in broth regarding the time required to reach an observation 
level, especially under conditions close to growth limits. 

In order for the aforementioned limitation to be overcome, ap-
proaches based on the use of a gel cassette in combination with image 
analysis to study the growth parameters of bacterial single colonies 
constitute an interesting starting point (Brocklehurst, Mitchell, & Smith, 
1997; Skandamis, Brocklehurst, Panagou, & Nychas, 2007). In addition, 
some direct methods have been proposed based on microscopy, such as 
the flow chamber technique and the time-lapse microscopy (Elfwing, 
LeMarc, Baranyi, & Ballagi, 2004; Koutsoumanis & Lianou, 2013). 
Elfwing and colleagues’ flow chamber technique is based on the moni-
toring of the consecutive divisions of a single cell attached to a solid 
surface (Elfwing et al., 2004; Niven, Fuks, Morton, Rua, & Mackey, 
2006). On the other hand, Koutsoumanis and Lianou (2013) presented a 
less complex system to study the single-cell lag time by contrast phase 
microscopy. This method allows a direct follow up from one cell to a 
microcolony in real-time. The growth of several cells present in the same 
microscopic field can be recorded as long as the cells are initially well 
apart from each other. Only one microscopic field can be recorded per 
experiment. 

Besides the single-cell lag time, it is essential to explore the impact of 
the growth probability on the outcome of predictive models and thus, on 
the exposure assessment part of microbiological risk assessment. 
Augustin and Czarnecka-Kwasiborski (2012) studied the single-cell 
growth probability of L. monocytogenes under different conditions (i.e. 
temperature, pH and water activity) in broth media by using most 
probable number (MPN) approach. However, drawbacks of this method 
are the long experiment duration (i.e. 3 months) and the great uncer-
tainty of concentrations estimated with the MPN method. In this 
perspective, the objective of this study was to develop a quantitative 
experimental investigation to determine the single-cell growth proba-
bility and lag time of different L. monocytogenes strains, using a time- 
efficient and automated microscopy method. 

2. Material and methods 

2.1. Strains 

Four strains of L. monocytogenes were tested for establishing the 
herein developed method (Table 1). They were selected based on their 
phenotypic and genetic diversity. Three of them (i.e. SOR100, AER101 
and Lm14) were part of Symp’Previus project (Couvert et al., 2010) with 
known cardinal temperatures (i.e. Tmin). The O228 strains was isolated 
in shrimp (Palma et al., 2020). It has not been characterized for cardinal 
temperatures. Before use, the strains were stored in cryobeads at − 80 ◦C. 

2.2. Preparation of inocula 

The preculture of each strain was carried out by inoculating a cry-
obead in 10 ml tryptone soy broth (TSB, Oxoid, UK). After 7 h at 37 ◦C, 
0.1 ml was transfered to 9.9 ml fresh TSB. The dilution was then incu-
bated for 17 h at 37 ◦C. Following, successive dilutions were made in 
tryptone salt diluent (TS, Biomerieux, UK) to obtain a final concentra-
tion of 105 CFU/ml. 

2.3. Preparation and storage of the microscope slides 

Glass slides were prepared by placing 200 µl of melted tryptone soy 
agar (TSA, Oxoid) in the middle of the slide. After cooling, 10 µl of the 
diluted inoculum were pipetted on the solid layer TSA. The samples 
were dried in a laminar flow hood for 5 min and then covered with a 
glass coverslip. Following, the prepared glass slides were put in a seal-
able box and were stored in the incubator at 4 ◦C. At each point of 
measurement, the required number of slides were pulled out for ana-
lyses. Before starting the microscopic observation, coverslips were fixed 
with silicone. 

2.4. Microscopic observation of cells 

For the microscopic observation of the cells, a motorized phase- 
contrast microscope (Nikon, Eclipse Ni-E) was used in combination 
with a 100 × objective and a high-resolution camera (Nikon, DS-Fi3). 
Software from Nikon (NIS-Elements, version 4.60) was applied for 
automatically capturing images in two different areas, each with a 
surface of 0.25 mm2, corresponding to 88 images per area. For each 
defined area, the capture of images was systematic along a virtual grid 
defining 88 distinct fields. Images were taken even if there are no cell, 
object inside the optical field. 

2.5. Image analysis procedure 

The images were captured in TIFF format. Images were then 
analyzed with Matlab (R2018b) including the Image Processing 
Toolbox™. The applied image analysis procedure was previously 
adapted from Guillier and colleagues (Guillier et al., 2006). For object 
recognition, a threshold was estimated to separate pixels associated to 
bacterial cells from the TSA background pixels. Because of the variation 
in thickness of the TSA, the threshold was adapted for each of the image 
series. Based on the threshold, intensities associated to background were 
displayed in black and those corresponding to cells in white by using the 
ind2gray and im2double functions of Matlab (Fig. 1B). Following, two 

Table 1 
Metadata of L. monocytogenes stains.  

Isolate Origin Tmin 

SOR100 Sausage − 2.52 ◦C 
AER101 Dairy − 0.15 ◦C 
Lm14 Meat processing plant environment − 0.86 ◦C 
O228 Shrimp unknown  
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morphological operations were applied using bwmorph Matlab func-
tion. One to bridge the previously unconnected pixels and another for 
gap closing (Fig. 1C). Images with no objects or objects below the size of 
one cell were automatically removed from the analysis. Images with 
more than three cells or colonies were discarded to avoid bias due to 
interactions. The detected objects were filtered out when smaller than a 
single L. monocytogenes cell (e.g. arrow in Fig. 1D bottom). 

As last step of the procedure, each detected object and the relative 
number of pixels were exported into a csv file. 

2.6. Growth curve at population level 

In order to estimate the single-cell lag time and growth probability, 
the population growth parameters are needed. For the determination of 
growth parameters of each tested strain at 4 ◦C, a total of 20 tubes 
containing each 50 ml TSA were inoculated with 200 µl of the 105 CFU/ 
ml suspension to obtain a final concentration of 103 CFU/ml. Kinetics 
were characterized with a minimum of 20 data points by plate counting. 
The primary model of Baranyi & Roberts (1994) was fitted to the 
collected growth data and growth kinetic parameters (i.e. lag time and 
maximum specific growth rate) were estimated using the nlsMicrobio 
package (Baty & Delignette-Muller, 2004) Three repetitions were 

carried out. 

2.7. Determination of growth probability 

The individual cell growth probability was determined by comparing 
the number of single-cells (ns) and number of micro colonies (nc), after 
incubation at 4 ◦C. The probability of growth was simply estimated with 
the following relation: ns/(ns + nc). This calculation is possible as long 
as the micro-colonies have not been merged during their growth. The 
chosen density of inoculation corresponded to a target of 25 cells per 
area, that is an average of one cell every three fields. It permitted to limit 
the probability of merging of micro colonies. 

The length of incubation time was chosen to ensure that the indi-
vidual cells that did not initiate growth at that stage have a low prob-
ability to still be in lag phase. The relationships proposed by Guillier and 
Augustin (2006) were first used to estimate the distribution of physio-
logical state, measured through the work to be done values (h0i), ac-
cording to the lag time duration observed at population level. The 95th 
percentile of the estimated h0 values (h0i-95) was used to estimate the 
incubation time (Tprob) with the following relation h0i-95/µmax. Thus at 
Tprob, the probability that an observed single-cell is still in the lag phase 
is lower than 5%. 

Fig. 1. Different process steps of image analysis used to identifies cells and micro colonies. A) Captured images; B) Black and white contrast; C) Gap closing; D) 
Detection of objects above the given pixel size threshold defining a cell minimal size. A number is automatically assigned to detected objects. The arrow is high-
lighting an example of a filtered object according to its size. 

Fig. 2. Schema of the principle to determine single-cell lag times according to the size of microcolonies. Images of micro colonies are captured at Tobs. Given the 
maximum specific growth rate, the lag time duration of the cells that generated the microcolonies can be interpolated. 
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The uncertainty of the observed probability of growth at Tprob was 
calculated by using the beta distribution (Vose, 1998): 

Beta((1-ns) + 1, nc + 1) 
The uncertainty intervals were used to test if there were significant 

differences between strains. 

2.8. Individual lag time determination 

The estimation of single-cell lag time is based on the vertical distri-
bution method (d’Arrigo et al., 2006). This method relies on the distri-
bution of numbers of cells observed in different samples (each sample 
being inoculated with one cell) after a given incubation time. The dis-
tribution of lag times of the cells is then transposed with the help of 
maximum growth rate. 

The individual cell lag time lagi was thus determined using the time 
of observation Tobs, the cell number per micro colony (ln(x)) and the 
growth rate (µ) of the corresponding strain based on number of cells in 
the microcolony and the growth rate (Fig. 2). 

lagi = Tobs −
ln(X)

μ 

Twenty samples were stored in the incubator (4 ◦C) during the 
experiment. Then the samples were analyzed at three different Tobs, to 
ensure at least that one point of analysis corresponds to a time where 
most of the cells have already left lag-time, but without starting to grow 
in the third dimension (double-layer and multi-layer). After microscopic 
observation, which was carried out at room temperature in less than 20 
min, the samples were destroyed. For each measurement point, new 
samples were used. The number of cells per colony was estimated based 
on the number of pixels per colony and a correlation function. 

The lognormal distribution was fitted to the estimated individual lag 
time distribution and the fitdistcens function from the fitdistrplus 
package (Delignette-Muller & Dutang, 2015). Parametric bootstrap was 
used to assess credibility interval on quantiles characterizing the median 
of individual lag times. The rogme package (https://github. 
com/GRousselet/rogme) was used to compare all deciles. 

3. Results 

3.1. Growth rates 

Table 2 shows the population growth parameters at 4 ◦C for all tested 
strains. The strain SOR100 had the longest lag time (58 h) compared to 
the others. Contrary, the strain O228 showed the shortest lag time of 28 
h. 

Regarding the maximal specific growth rate, AER101 (0.049 h− 1) 
was the fastest while Lm14 (0.038 h− 1) the slowest strain under the 

Table 2 
Population growth parameters of the four tested strains with their 95th confi-
dence interval [0.025 0.0975].   

SOR100 AER101 Lm14 O228 

Lag time (lag in h)] 58 [18 94] 44 [23 55] 42 [886] 28 [10 43] 
maximal specific 

growth rate (µmax 

in h− 1) 

0.044 
[0.039 
0.052] 

0.049 
[0.047 
0.052] 

0.038 
[0.035 
0.045] 

0.043 
[0.039 
0.045] 

Work to be done 
(µmax ⋅lag) h0 

2.5 2.2 1.6 1.2  

Fig. 3. Examples of L. monocytogenes images obtained with phase-contrast microscope (Nikon, Eclipse Ni-E) in combination with a 100 × objective and a high- 
resolution camera (Nikon, DS-Fi3) after various time of incubation on agar surface at 4 ◦C. ,. a) Cell of AER 101 strain after 3 days. b) Microcolony of AER101 
at Tobs (time used for lag time determination). c) and d) Micro colonies of SOR100 strain captured at Tprob (time used for growth probability determination). The 
arrow is indicating a double-layer. 
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tested conditions. It is worth to notice that SOR100 had the highest h0 
value of 2.5 and O228 the lowest value of 1.2. 

3.2. Determination of cell numbers in the captured images 

Fig. 3 presents four examples of the captured images. Fig. 3a shows a 
single-cell of strain AER101 after 3 days at 4 ◦C. The cell had already 
initiated cell elongation (compared to cells at day 0). Fig. 3b displays a 
microcolony of AER101 at Tobs for lag time determination. Fig. 3c and 
d were both captured at Tprob. The single-cell (Fig. 3c) was not able to 
grow under the tested conditions, whereas the Fig. 3d presents an 
example of a microcolony (with double-layer) developed from a single- 
cell of the same strain (SOR100). 

In order to determine the number of cells in a microcolony from pixel 
size, a calibration curve was established for each strain. An example is 
presented in Fig. 4. Especially, the number of pixels that corresponds to 
single cells are quite variable, ranging from 875 to 2624 pixels. In 
contrast, for the number of pixels corresponding to micro colonies a 
lower variability can be observed. 

3.3. Growth probability 

Fig. 5 shows the different experiments carried out for the four strains. 
The variability observed among experiments was smaller than the 

variability observed among strains. The different experiments were thus 
merged in a single dataset for each strain. The comparison of individual 
cell growth probability according to the strain was thus carried out on 
merged dataset (Fig. 6). More than 200 observations were used to 
determine the growth probability for each strain. 

The strain SOR100 has the highest growth probability with 81% 
[76%, 85%]. The lowest growth probability is represented by strain 
O228 with 18% [17%, 22%]. For strain Lm14 a growth probability of 
57% [51%, 63%] was determined. It is the second lowest of the tested 
strains and significantly different from AER101, SOR100, and O228. The 
growth probabilities of the strains SOR100 (81% [76%, 85%]) and 
AER101 (73% [67%, 78%]) are not significantly different. 

3.4. Individual lag times of single-cells 

Fig. 7 shows the difference between the different experiments carried 
out for the four strains. The variability observed between experiments 
was smaller than the variability observed among strains. The different 
experiments were thus merged in a single dataset for each strain. The 
comparison of individual lag times according to the strain was thus 
carried out on merged dataset. 

The range and variability of individual cell lag times is shown on 
Fig. 8A. The Fig. 8B presents the pairwise comparison of deciles of the 
individual cell lag times. Regarding Fig. 8B1 B3 and B5, O228 strain 
shows significantly lower deciles. Individual lag times of strains Lm14 
and SOR100 cannot be distinguished (Fig. 8B2). The first fifth deciles of 
strain AER101 are similar to SOR100 and Lm14. The other deciles for 
this strain are significantly lower compared to SOR100 and Lm14 
(Fig. 8B4 and B6). 

4. Discussion 

The method presented in this study allows to generate a high amount 
of observations for single-cells growing under unfavorable growth 
conditions in order to estimate lag time and growth probability. 
Compared to indirect methods where the duration of the experiment is 
dependent on the time needed for a cell to generate enough generations 
according to the detection threshold, the proposed microscopy method 
saves time by reducing the number of generations to obtain lag time and 
growth probability results. For instance, Augustin and Czarnecka- 
Kwasiborski (2012) studied the single-cell growth probability in broth 
based on MPN approach. Under cold conditions (5 ◦C), their experi-
ments took up to three months to determine the growth probability of 
L. monocytogenes. The herein developed method was more than six times 
faster (less than two weeks) at similar temperature conditions. 

Fig. 4. Relationship between the number of cells per colony and the number of 
pixels for L. monocytogenes strain O228. The linear regression lines are adjusted 
with several series of points corresponding to the different repetitions of the 
experiment; blue = R1, red = R2 and green = R3. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 5. Cell growth probability at 4 ◦C of the four L. monocytogenes strains tested according to the different repetitions.  
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Compared to indirect methods, microscopy-based approaches appear 
to be much faster also regarding the single-cell lag time determination 
(Amselem, Guermonprez, Drogue, Michelin, & Baroud, 2016; Levin- 
Reisman et al., 2010). Francois and colleagues inoculated microtiter 
plates with approximately one cell per well. They determined about 100 
individual lag phases for each set of conditions (Francois et al., 2005). 
Based on a relation between optical density and cell count, they were 
able to estimate single-cell lag time. However, 24 generations are 
needed for the initial cell to reach the lower limit for optical density 
measurement (around 107 CFU/ml) (Francois et al., 2005). Microscopy 

methods counteract the limitations related to the detection limit since 
each single-cell can be directly observed. Hence, between these methods 
a difference in experimental duration is observed especially at low 
temperature conditions where generation times can be particularly long. 

Koutsoumanis and Lianou (2013) proposed a direct method for 
monitoring single-cell colonial growth dynamics on agar media based on 
time-lapse microscopy (Koutsoumanis & Lianou, 2013). Compared to 
optical density measurement and its correlation to obtain the cell 
number (Francois et al., 2005), the advantage of this method is the direct 
following up of cells. Even though the time to determine the lag time of 

Fig. 6. Uncertainty distribution of individual growth probability of the four strains of L. monocytogenes at 4 ◦C on TSA agar.  

Fig. 7. Median of the individual cell lag times of the four L. monocytogenes strains at 4 ◦C on TSA agar according to the different repetitions of the experiment.  
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one cell is shorter, with this approach it is possible to track only few cells 
at the same time. In contrast, the novel approach herein presented 
permits to investigate many slides at the same time resulting in a higher 
amount of data achievable in comparison to the time-lapse approach. 
However, the drawback of the method is that different slides are 
recorded at each time of measurement, which presents a source of un-
certainty. Both these microscopy approaches permit the following up of 
cells on agar. Due to the fact that planktonic cell behave in a different 

manner compared to immobilized cells, the use of agar better simulates 
the food matrix (Skandamis & Jeanson, 2015). Moreover, the colonial 
growth dynamics of bacteria on solid foods can be influenced by matrix- 
specific interactions and gradients within or around the micro colony 
(Augustin, Ferrier, Hezard, Lintz, & Stahl, 2015; Ferrier, Hezard, Lintz, 
Stahl, & Augustin, 2013; Malakar, Barker, Zwietering, & Van’t Riet, 
2003; Walker, Brocklehurst, & Wimpenny, 1997). The method proposed 
by Elfwing and colleagues permits to study bacterial mother cells 

Fig. 8. A) Random individual lag times at 4 ◦C drawn from fitted lognormal distributions for the four L. monocytogenes strains. B) Pairwise strain comparisons of 
individual lag time deciles. 
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attached to a solid surface and its daughter cell, however, it is not able to 
observe colonial growth (Elfwing et al., 2004) as the case of agar-based 
methods. Another huge advantage lies in the possibility to apply dy-
namic experimental conditions to estimate the growth probability. The 
slides can be easily stored in incubator with changing temperature to 
study the effect of temperature flows on the bacterial growth ability, for 
example to reproduce possible cold chain scenarios. 

The presented results for the growth probability are different from 
those obtained by Augustin and Czarnecka-Kwasiborski (2012). They 
used in their study the strain Lm14 and obtained at 5 ◦C a growth 
probability of 14% (95% Cl 7–20%), whereas in the present study the 
probability of growth for the same strain was 57% (95% CI 51–63%) at 
4 ◦C. Considering that the uncertainties have been correctly character-
ized with experimental reproducibility, a potential explanation lies in 
the different experimental approaches, which is based in one hand on 
microtiter plates with broth media and in the other hand on growth on 
surface agar. In this system, the oxygen transfer to the bottom of the 
wells is limited due to missing agitation, likely impacting the growth 
probability. 

Regarding the results for single cell growth probability, a huge 
variability can be observed among different L. monocytogenes strains. 
More precisely, the growth probability is highly variable between 
SOR100 and O228 (18% and 81% respectively), highlighting that 
growth variability could have an impact on exposure assessment. 
Interestingly, the strain SOR100 with the lowest minimal growth tem-
perature (-2.52 ◦C) showed the highest growth probability at 4 ◦C and 
seems thus more resistant to low temperatures than the other tested 
strains. However, more strains should be investigated for such a trend to 
be ascertained. 

In case of the individual lag time (without prior stress exposure), 
Francois and co-workers observed a mean of 40.1 h in broth at 4 ◦C 
(Francois et al., 2005). A similar result was observed for the strain O228 
in the present work. However, the median of individual lag times of 
O228 was about 70 h shorter compared to the three other tested strains. 
The longer lag times compared to those in the study of Francois and co- 
workers could be explained by the use of a single strain and/or a 
different culture media (broth vs agar). Indeed, Koutsoumanis and col-
leagues showed that growth limits of L. monocytogenes are affected by 
the use of solid or liquid media (Koutsoumanis, Kendall, & Sofos, 2004). 
They observed a lower growth probability when bacteria are grown on a 
solid surface compared to suspensions. They supposed that modifica-
tions of the local environment can lead to a reduced metabolic activity in 
some regions of the colony. 

Although the main purpose of this study was to set up an efficient 
method for high throughput phenotypic data generation, unexpected 
differences were observed among the experimental replicates of the 
fours tested strains. Even when the observed variability between ex-
periments was smaller than the variability among strains, the variability 
could be decreased by the standardization of datasets to correct the 
sources of variability between experiments as applied by Guillier et al. 
(Guillier, Pardon, & Augustin, 2005). 

5. Conclusion 

This work describes a novel approach to study individual lag times as 
also single cell growth probability with a high throughput data gener-
ation in a short time. This is a promising method for the study of bac-
terial cells’ behaviors at different environmental conditions (e.g. static 
or dynamic), during colonial growth starting from a single cell. Findings 
from this study demonstrate that the herein presented approach allows 
to obtain a high amount of data faster than using indirect growth 
monitoring approaches or time-lapse microscopy methods, even at un-
favorable growth conditions. In addition, investigating the growth of 
micro colonies on agar gives the advantage of predicting the effects that 
can influence the colonial growth dynamics on actual food matrices. 
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