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Abstract
A split-panel latent class stochastic frontier model is applied to account for technolog-
ical heterogeneity among Swiss dairy farms and to assess the potential performance
improvements through technology choice and change over 11 years. Three technol-
ogy classes with substantially different productivity levels are identified considering
the unobserved and observed farm characteristics. Technologies seem on average well
adapted to local natural production conditions with low potential for efficiency and
productivity increases. Few farms changed technology over time and either an inten-
sification or extensification strategy was observed. Policymakers must be aware of the
interlinkages between technology choices and the economic situation of farms.

Keywords: productivity, efficiency, latent class model, stochastic frontier, dairy farm

JEL classification: Q12, D24

1. Introduction

Agricultural policies in Europe aim to ensure appropriate income levels and
long-term economic viability of farms (European Court, 2016). In the Swiss
Federal Constitution, Article 104 states that the government supplements farm-
ers’ incomes with direct payments to achieve an appropriate remuneration for
the services provided, subject to proof of ecological performance. Article 5
of the Federal Act on Agriculture specifies ‘The measures in this Act aim
to ensure that farms run on a sustainable basis and which are economically
efficient can achieve incomes over a period of several years that are compa-
rable to incomes in other sectors in the same region’. Based on this policy
background, productivity and efficiency analysis is used to evaluate the perfor-
mance of farms and provide recommendations to policymakers, farm advisors
and farmers on how to reduce inefficiencies. Empirically, inefficiencies are
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represented by deviations of individual farm input and output observations
from the production possibility frontier of the best-practice farms.

One of the main challenges in empirical applications is to identify the ineffi-
ciencies resulting from non-optimal management and separate out deviations
due to differences in the production technology, i.e. heterogeneity between
production technology groups of farms. With respect to the interrelations
between agricultural policies and farmers’ input allocation decisions, exist-
ing research shows diverse effects of public subsidies on farm technical
efficiency (Minviel and Latruffe, 2017). For instance, farmers value ani-
mal welfare besides mere profits, which may result in seemingly inefficient
resource use allocation decisions (Hansson and Lagerkvist, 2015; Hansson,
Manevska-Tasevska and Asmild, 2020). Furthermore, the decision to partici-
pate in voluntary agri-environmental payment schemes can be driven by natu-
ral production conditions, resulting in different input and output levels between
adopters and non-adopters of voluntary agri-environmental programmes
(Finger and El Benni, 2013). To reduce the risk of claiming inefficient produc-
tion, we take voluntary agri-environmental and animal welfare direct payments
into account when specifying the output of farms. Furthermore, to differ-
entiate between production technologies in our farm performance analysis,
we account for different farm characteristics, including location and stabling
system. Switching patterns are analysed to identify potential improvements
in farm performance through adaptation to or adoption of more productive
technologies.

The existing literature addresses the issue of production heterogeneity by
classifying the sample ex ante into groups based on a priori knowledge or
informed assumptions about differences in technology. Frontier functions are
then estimated in the second step for the homogeneous groups of firms that
are assumed to share the same production technology. For instance, farms
are divided according to their output specialisation (e.g. Asmild, Baležentis
and Hougaard, 2016; Rasmussen, 2010; Renner, Glauben and Hockmann,
2014), location (e.g. Alem et al., 2019; Vigani and Dwyer, 2020), organic and
conventional production systems (Kumbhakar, Tsionas and Sipiläinen, 2009;
Lansink, Kyösti and Bäckman, 2002; Tzouvelekas, Pantzios and Fotopoulos,
2001) or by applying cluster analysis on several intensification characteristics
(Alvarez et al., 2008). However, besides the question of choosing the appropri-
ate grouping criteria, this approach does not allow researchers to identify how
many different technologies exist within the investigated sector. Moreover,
some relevant technological characteristics might not be observable in the sam-
ple. Thus, such a priori classifications using some exogenous sample criteria
conducted ex ante might be arbitrary, incomplete and lacking in convincing
statistical foundation. Furthermore, by applying the two-stage procedure, i.e.
grouping farms first and estimating frontier functions for each group, infor-
mation on the relationship between inputs and outputs from the second stage
(production technology estimation) is neglected in the ex ante classification.

Due to the increased use of panel data in efficiency analysis, different
models allowing the capturing of latent (unobserved) heterogeneity were
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developed within the framework of stochastic frontier analysis (see e.g.
Greene, 2005; Kumbhakar et al., 2020).1 Some applications in agriculture
have shown a strong impact of the chosen approach on efficiency estimates
(see e.g. Abdulai and Tietje, 2007; Balcombe et al., 2006; Kumbhakar, Lien
and Hardaker, 2014). However, one drawback of all these models for panel
data is that they treat the unobserved heterogeneity as a constant (either as a
fixed effect or as part of the error term). The remaining parameters of the esti-
mated production frontier function are usually considered being constant over
all firms. This assumption is too strict and might be inappropriate if the sam-
ple of farms is heterogeneous in terms of production-technology-determining
factors and conditions. In such a case, the estimated parameters of a single
production frontier are likely to be biased because it is highly unlikely that the
‘true’ technology is represented by a single technology for the whole sample
(Orea and Kumbhakar, 2004).

This article contributes to the existing agricultural economics literature
by applying a latent class stochastic frontier model (LCSFM) using a set
of farm characteristics including those clearly related to the participation
in an agri-environmental programme to separate the sample into multiple
technological classes and estimate the parameters of the individual frontier
functions (Alvarez and Del Corral, 2010; Alvarez and Arias, 2015; Baráth and
Fertő, 2015; Cillero et al., 2019; Kellermann and Salhofer, 2014; Sauer and
Morrison Paul, 2013). By using a simultaneous (one-step) approach, tech-
nological groups are determined not only according to different separating
criteria but also by considering production relationships reflected in the esti-
mated production frontiers. With this approach, each farm is assigned to a
particular technological group (latent class) according to the estimated class
membership probability. Moreover, using a novel split-panel specification of
the LCSFM (Alvarez and Arias, 2015), we relax the strict assumption of con-
stant production technology and allow farms to switch between latent classes
over time. This modification induces additional flexibility in the LCSFM,
which can be relevant when evaluating farms over a long period (our survey
covers 11 years of observations). Moreover, using this extension, we can thus
analyse the potential for further farm performance improvements in the Swiss
dairy sector, arising from adapting to more productive technologies. By con-
sidering heterogeneous technologies within the same sector and changes over
time, we contribute to the existing empirical analyses of the economic perfor-
mance of Swiss dairy farms (Bokusheva, Kumbhakar and Lehmann, 2012;
Ferjani, 2009; Hoop et al., 2014; Jan, Lips and Dumondel, 2010, 2012a;
Mamardashvili, Bokusheva and Schmid, 2014).

By comparing the maximum potential output level that each farm can
produce with the observed input bundle using the given technology and

1 Starting from the conventional fixed-effects and random-effects models developed by Pitt and
Lee (1981) and Schmidt and Sickles (1984) within stochastic frontier analysis, more recent
approaches attempt to separate persistent and time-varying inefficiency components from
firm-specific effects that capture the heterogeneity between individual firms (for a review see
e.g. Kumbhakar, Parmeter and Zelenyuk, 2020).
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the alternative technology, the following research questions are answered:
(i) Which group of farms applies what kind of technology more efficiently?
(ii) Which technology dominates the other in terms of a higher output level
that can be produced for a given set of inputs? (iii) In how far, to what extent
and with what consequences do single farms switch production technologies
over time? Based on these results, we draw policy-relevant conclusions on
the interlinkages between voluntary agri-environmental programmes and farm
performance.

The remaining article is structured as follows: In the next section
(Section 2), we explain why linkages between agri-environmental programmes
and production technologies need to be considered in performance analysis. In
Section 3, we outline the LCSFM and describe how the proposed split-panel
specification can be used to analyse efficiency, differences in productivity,
and switching patterns. In Section 4, we present the empirical model and the
data, followed by the presentation and discussion of the results in Section 5. In
Section 6, we provide a summary of the main findings including some policy
implications.

2. Interlinkages between agri-environmental programmes and
production technologies

Besides ensuring farmers’ incomes, agricultural policy pursues various objec-
tives linked to specific environmental goals, and measures have become
increasingly targeted and tailored over time. Direct payments play a deci-
sive role in incentivising certain types of farmers’ behaviour including the
provision of ecosystem services and animal welfare (Finger and El Benni,
2021).

In Switzerland and over the period considered in this study, the cross-
compliance-based direct payment scheme distinguished between general
direct payments and ecological direct payments2 that were paid off per hectare
agricultural land or per animal unit (El Benni and Lehmann, 2010; Mann,
2008). General direct payments replaced previous price and market support
measures that aimed to maintain farm incomes at appropriate levels, while at
the same time ensuring food supply, maintaining the landscape, and helping
to preserve the social structure in rural areas. These payments also include
payments compensating farmers for adverse production conditions in the hilly
and mountainous regions and are comparable to the area-based Less Favoured
Area Payments of the EU’s Common Agricultural Policy. About 98 per cent of
all Swiss farmers received general direct payments in the period 2003–2013.
Ecological direct payments compensated farmers who voluntarily, and in addi-
tion to the cross-compliance requirements, provided ecological compensation
areas, eco-quality such as the networking of biologically valuable habitats and

2 To allow for better readability and following the wording of Swiss agricultural policy, we use the
term ‘ecological direct payments’ to describe direct payments provided for agri-environmental
services and animal welfare measures.
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extensively produced crops. Furthermore, farmers could voluntarily partici-
pate in animal welfare programmes, e.g. by using animal-friendly stabling
systems and keeping livestock with regular outdoor exercise. These payments
made up about one-sixth of the total direct payment budget, with most of it
given to farmers implementing animal welfare measures and those providing
ecological compensation areas.

Even though direct payments may target different goals, they can affect
farms’ efficiency in various ways, which makes the investigation of possi-
ble interlinkages between subsidies and farm performance an empirical one
(Kumbhakar and Lien, 2010; Minviel and Latruffe, 2017; Zhu and Lansink,
2010). For instance, the provision of animal welfare may require additional
inputs such as the investment in free-stall housing required for direct pay-
ments under a specific programme to which Swiss farmers can subscribe
voluntarily. The provision of ecological services may require less labour as
compared to more intensive production methods such as in the case of the pro-
vision of extensive and low-intensity meadows that are targeted by another
voluntary agri-environmental programme. In case of voluntary direct pay-
ment programmes, farmers decide to produce these non-marketable goods
and receive an additional governmental payment, i.e. price, for these services.
Because the provision of these services requires the adaptation of input use,
the farms’ productivity and efficiency can be affected. Furthermore, the choice
for the provision of environmental services and animal welfare may lead to
inefficient resource allocation decisions, i.e. farms can be rationally ineffi-
cient (Bogetoft and Hougaard, 2003). More precisely, by producing according
to animal welfare standards farmers are not pushing their animals towards
their maximal productivity and, from an efficiency point of view, overcon-
sume certain production factors (Hansson, Manevska-Tasevska and Asmild,
2020; Henningsen et al., 2018; Lagerkvist et al., 2011). Furthermore, the
compliance with agri-environmental programmes also depends on the farm’s
location. Economic factors were found to play a key role in farmers’ decision to
self-select into voluntary agri-environmental programmes (Lastra-Bravo et al.,
2015; Pavlis et al., 2016). Moreover, programme compliance costs are nega-
tively correlated with production intensity, which, in turn, strongly depends
on the natural production conditions, with farmers located on marginal land
being more likely to adopt agri-environmental measures (e.g. Finger and El
Benni, 2013; Mack and Huber, 2017; Mack, Ritzel and Jan, 2020).

The self-selection into different direct payment programmes, together with
the highly different natural production conditions specific to the Alpine coun-
tries, leads to significant variation across dairy farming systems and production
technologies. When analysing productivity and efficiency of such a hetero-
geneous farming sector, particular attention must be paid to distinguishing
between the differentials in productivity resulting from using different pro-
duction technologies including resource allocation decisions related to envi-
ronmental and animal welfare programmes and those resulting from inefficient
management practices. Not considering voluntary direct payment programmes
and heterogeneity resulting from differences in local economic and natural
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conditions in efficiency and productivity analysis may produce misleading
results.

3. Methodology

3.1. The LCSFM for panel data

To account for heterogeneous production technologies, we apply an LCSFM
that combines a stochastic frontier approach with a latent class model, also
known as finite mixture model (Greene, 2005). It assumes that there is a finite
number of structures (classes) underlying the data, but the true distribution of
farms among latent classes in not known to the researcher. Following Orea
and Kumbhakar (2004) and Alvarez and Del Corral (2010), we reformulate
the standard stochastic production frontier (log-linear formulation) as follows:

lnyit = ln f(xit)|j + υit|j − uit|j (1)

where yit is the observed output of the farm i in period t and xit is the observed
vector of inputs. Following the standard practice in the frontier literature, υit is
defined as a normally distributed random termwith amean of zero and constant
varianceσ2

ν and uit is a half-normally distributed inefficiency term, added to the
production function to accommodate for technical inefficiency. The vertical
bar means that there are different models for each latent class j. The latent
class model estimator delivers different parameters for each of the identified
(latent) classes.3

After specification of the conditional likelihood function (LF) for each farm
i at time t belonging to class j, the LF for each farm i is obtained as a weighted
average of its likelihood functions for each group j, using the prior probabilities
of class j membership as weights (Alvarez and Del Corral, 2010):

LFi =
J∑

J=1

LFijPij. (2)

The prior probabilities of class membership Pij are parameterised by apply-
ing a multinomial logit specification:

Pij =
exp(δjqi)∑J
J=1 exp(δjqi)

(3)

where qi is a vector of separating variables, defined as farm-specific character-
istics that reflect differences in technologies by farms, and δj is the associated
vector of parameters to be estimated. In the multinomial logit model, one class
is chosen as a reference by setting all parameters δj for this class equal to zero.

3 Although LCSFM takes into account endogeneity of technological choice with respect to inef-
ficiency (Kumbhakar, Tsionas and Sipiläinen, 2009), it does not consider other sources of
endogeneity in inputs that might be present in our application.
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A positive sign for the coefficient δj indicates that the probability of member-
ship in the particular class increases with the increasing value of the specific
variable.

The estimated parameters can then be used to compute the conditional
posterior class probabilities for each farm:

Prij =
LFijPij∑J
J=1LFijPij

. (4)

Note that posterior probabilities of class membership depend not only on
separating variables but also on all the parameters of the stochastic frontier
function. Hence, if no separating variables are included in the model, the
classes are built using the goodness of fit for each estimated frontier (Orea
and Kumbhakar, 2004). As a result, each farm is assigned to a particular
class according to the estimated probabilities of class membership, consider-
ing the homogeneity among farms within a group in terms of technological
parameters. The advantage of the LCSFM is that both the technology and
the probability of particular group membership are estimated simultaneously
(in one step) and all observations in the sample are used to estimate the
underlying technology for each class (Orea and Kumbhakar, 2004).

Because the true number of latent classes cannot be estimated within the
model estimation itself, it must be determined by the researcher prior to the
estimation. Orea and Kumbhakar (2004) and Greene (2005) suggest using the
Akaike information criteria (AIC) and Bayesian information criteria (BIC)
with a penalty imposed to the number of parameters to assess the statisti-
cally preferred number of classes.4 The model with the lowest values of AIC
or BIC determines the optimum number of classes, given the sample, model
parameterisation and estimator chosen.

3.2. Modelling switching between classes

Most of the relevant literature applies the LCSFM with constant (time-
invariant) probabilities for the individual classmembership, which results from
the panel specification of these models (Cillero et al., 2019; Greene, 2005;
Kellermann and Salhofer, 2014; Kumbhakar and Tsionas, 2011). However,
it is very restrictive and not realistic to assume that a farm is not able to
adopt a new technology, especially when observing farms during a longer
period. Sauer andMorrison Paul (2013) abandoned this assumption by neglect-
ing the panel structure and considering each observation as a different farm.
They estimated the restricted pooled latent class model in the first step to
calculate the time-varying class probabilities, allowing farms to change the
production technology any time. However, neglecting the panel data structure

4 AIC and BIC are computed using the following formulas: C = −2 lnLF+ 2p, BIC = −2 lnLF+ p lnn,
where LF is the log-likelihood function of the model with a given number of latent classes, p is
the number of parameters and n is the number of observations.
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422 S. Renner et al.

might lead to biased estimates.5 Furthermore, some input and output outliers
might falsely be considered as changes of production technology (Agrell and
Brea-Solís, 2017). Alvarez and Arias (2015) applied a specification of the
LCSFM, allowing switching between technological classes by splitting the
original balanced panel into two periods. Estimating a single latent class model
for this split panel leads to a constant probability of class membership within
the two subperiods, which can however be different in the two subperiods for
the same farm.

We follow Alvarez and Arias (2015) and split the panel data set (in our case,
it is an unbalanced panel) prior to the estimation of the LCSFM. However, we
divide observations of each farm in the considered period into two (equal)
subperiods in the middle, instead of setting one common breakpoint for the
entire sample. Thus, each farm is treated as a different farm in the second
subperiod and can switch the class once during the survey period. For example,
a farm with 8 years of observation can belong to class 1 in the first 4 years and
change to class 2 in the last 4 years or stay in class 1 for the entire observed
period.

This modification induces additional flexibility in the LCSFM, which can
be relevant when evaluating farms over a long period (our survey covers
11 years of observations). Moreover, it provides an extension of the per-
formance evaluation by analysing the impacts of technology choice and
change.

3.3. Estimating efficiency and relative productivity from the LCSFM

In contrast to standard SFM with a common frontier function for every farm,
the LCSFM provides estimates for as many frontiers as the number of latent
classes identified. An output-oriented index of technical efficiency (TE) is cal-
culated as the ratio of the observed output yit to the maximum feasible output
according to the corresponding frontier of class j (reference technology) and
can be computed as follows:

TEit|j = exp
(
−uit|j

)
. (5)

We apply the standard approach and estimate technical efficiency with
respect to the most likely frontier (the one with the highest posterior proba-
bility of class membership).6 For interpretation, note that efficiency levels of
single farms can only meaningfully be compared with the class-specific refer-
ence technology but not across different technology classes. Thus, it may be
the case that a farm has a high efficiency level with reference to its own class

5 However, being aware of this likely bias, Sauer and Morrison Paul (2013) presented panel
estimates for the separated technologies as robustness checks.

6 An alternative approach would be to calculate a weighted average of efficiency levels with
respect to all the frontiers, using the posterior probabilities of the corresponding technological
class as weights. Orea and Kumbhakar (2004) argue that both methods lead to almost identical
results if the estimated posterior probabilities are high (i.e. uncertainty in the class assignment
is low).
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frontier, but the class frontier itself is located below the frontier of another
technological class. It is therefore possible to analyse efficiency differences
between farms belonging to the same technological class as well as productiv-
ity differences across technologies driven by factors that cannot be influenced
by the farm operator.

Productivity is analysed by comparing the predicted output of farms belong-
ing to a particular class (by using the estimated coefficients of the corre-
sponding production technology) with the predicted output calculated using
the technology parameters of the alternative class for given input quantities
(Alvarez and Del Corral, 2010; Sauer and Morrison Paul, 2013). However,
comparing only the average productivity differentials only means that one
technology is locally above the others. It is possible that two frontiers cross.

If the predicted output ratio (productivity ratio) is greater than one for all
farms of the class, we can conclude that they use the more productive tech-
nology. The number of farms in the class with the higher predicted output is
usually used in the literature to evaluate whether one technology dominates
the other (Alvarez and Del Corral, 2010; Alvarez and Arias, 2015).7 Note that
this measure is free of random noise and free of individual inefficiency, and it
controls for input usage (Kumbhakar, Tsionas and Sipiläinen, 2009).

The approach used in the current study to compare economic performance
of farms belonging to different technological groups is similar to the inter-firm
efficiency measurement proposed by Lansink et al. (2001) and the rela-
tive productivity measurement applied by Zhu and Milan Demeter (2012).
They measure performance relative to the best available technology in the
specific firm by defining the ‘best-practice frontier’ among the considered
groups of firms. Within a metafrontier framework, the ‘technology gap ratio’
(Battese, Prasada Rao and O’Donnell, 2004) and the ‘metatechnology ratio’
(O’Donnell, Rao and Battese, 2008) are similar concepts measuring the ratio
of the potential output of the frontier function for the jth group to the potential
output that is defined by the metafrontier function. In the present article, we
estimate these ratios with respect to the ‘most/more productive technology’
instead of the metafrontier.

Analogous to the efficiency with respect to the metafrontier function, we
can further calculate the overall efficiency of the farm by multiplying tech-
nical efficiency calculated based on the corresponding frontier function with
the productivity ratio related to the more productive technological class. Using
this measure, we can evaluate overall performance of farms and potential pro-
ductivity increase reflecting both management improvement and adoption of
the more productive technology.

7 Alvarez and Arias (2014) use the term ‘efficiency of technology’ to explain the differentials in
productivity levels of technological classes.
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4. Empirical approach and data

4.1. Sample

We use data of 1,513 dairy farms8 that participated in the yearly panel survey
of the Swiss Farm Accountancy Data Network (FADN) collected by Agro-
scope for the period from 2003 to 2013 (Hoop and Schmid, 2014). Only farms
with at least 4 years of observations are considered in order to properly esti-
mate the split-panel model specification. The unbalanced panel data set with a
total of 11,184 observations contains detailed farm-level information on pro-
duction and costs, complemented by additional data on labour input, land use
and livestock units.

Dairy farms in our sample have on average 20 cows and cultivate about 21
hectares of agricultural land. They are located in regions with different climatic
and topographic conditions: 40 per cent produce in mountain regions with
unfavourable production conditions,9 20 per cent in hilly and 40 per cent in
valley regions. Although the data set contains only farms specialised in dairy-
ing according to the Swiss FADN typology (Jan, Lips and Dumondel, 2012a),
highly specialised farms are rarely found in Switzerland. Farms are charac-
terised by considerable variation with respect to size, product mix, quality of
inputs, natural environment conditions and other attributes.

4.2. Output specification

Because the majority of Swiss dairy farms generate income from several activ-
ities, we use the aggregated output per farm rather than physical milk quantity
produced to estimate the production technology of Swiss dairy farms. For
instance, in our sample, milk and other dairy products make up a large share
(on average 75 per cent) of the average farm’s revenue from agricultural pro-
duction, but one-fifth of the farms in the data sample generate more than
40 per cent of their revenue from other agricultural commodities (including
other animal products and plant production). Moreover, because other activi-
ties, closely related to agriculture (e.g. subcontracting work, renting out land,
machinery or buildings), are important sources of farm income and require
additional input usage, the revenues from these services are considered as an
output. With regard to the consideration of direct payments in the production
function, we follow the argumentation in Section 2 and include subsidies from
the participation in voluntary ecological direct payment programmes in addi-
tion to the previously defined output set to approximate the ecological services
provided by the farm (see for a similar approach Jan, Lips and Dumondel,
2012a).

In summary, we define the aggregated output as the total farm revenue from
agricultural production, supplemented by revenues from activities closely

8 Farm is defined as specialised in dairy according to the Swiss FADN typology (Jan, Lips and
Dumondel, 2012a) based on the share of (dairy) cows in the entire cattle population.

9 Mountain region includes mountain agricultural zones 2, 3 and 4 as defined by the Swiss Federal
Office for Agriculture (FOAG, 2019).
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related to agriculture and by ecological direct payments. Deflation is per-
formed at the level of each single output (i.e. at every single revenue position)
that makes up the aggregate output to obtain the accurate volume measures
by considering the composition of products at the farm level.10 Correspond-
ing price indices for agricultural products and the consumer price index (used
to deflate revenues from non-agricultural activities and direct payments) are
provided by the Swiss Federal Statistical Office.

4.3. Input specification

We consider four essential inputs: land, labour, capital and materials. Land
input is defined as total utilised agricultural area, measured in hectares.11

Total labour input includes both family and hired labour involved in farm-
ing and farm-related activities and is measured in standardised working days
(SWDs).12 Capital is measured by the depreciation value of machines and
buildings, supplemented by the depreciation in the value of dairy livestock
(in Swiss francs). Depreciation is routinely used in production analysis as
proxy for the flow of capital services. However, instead of using depreciation
values reported in a firm’s financial statements (which might be influenced by
the income tax saving strategies), we use the depreciation value from the stan-
dardised ‘farm accounts’ obliged for the farms that participated in the Swiss
FADN survey. This system requires uniform straight-line depreciation rules
for all fixed assets. Therefore, the calculated depreciation value reflects the
quantity of capital each farm uses each year. Depreciation is deflated at the sin-
gle asset positions by the corresponding price indices for means of agricultural
production (for machines, buildings and equipment). The depreciation of live-
stock is calculated by dividing the annual average book value of dairy livestock
(which is evaluated at the corresponding guide price) by the average productive
lifetime of a dairy cow in Switzerland (3.2 years13). Materials defined as total
costs of intermediate inputs include purchased feed, fertiliser, seed, veterinary
costs and other material costs (in Swiss francs) and are deflated at the level
of each single cost position by the corresponding price indices for means of
agricultural production, originating from official Swiss agricultural statistics
(Swiss Federal Office of Agriculture and Swiss Farmers’ Association).

10 See Jan, Lips and Dumondel (2012a) for the detailed description and discussion of the applied
deflation method.

11 Because dairy farms use 94per cent of the total land for pasture, we do not consider differences in
land use. Land quality differences are partially considered by using region as separating variable
(see Section 4.4).

12 The effective working days and hours in farming are standardised with respect to a ‘normal’
10-hour working day.

13 The average productive time of dairy cows in Switzerland is calculated based on a culling rate
of 0.31 calculated by Gazzarin et al. (2005).
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4.4. Separating variables

Additional separating variables are considered for the LCSFM, allowing us
to determine the individual class probability and to improve the classifica-
tion of technology (Sauer and Morrison Paul, 2013). Empirical applications
of latent class models for different agricultural production systems most fre-
quently use indicators measuring the degree of intensification as part of the
vector of separating variables (Alvarez and Del Corral, 2010; Alvarez and
Arias, 2014; Kellermann and Salhofer, 2014; Orea, Pérez and Roibás, 2015;
Sauer and Morrison Paul, 2013). Because differences in climatic conditions
among regions may affect the choices made in relation to the use of avail-
able technologies, several studies use location as an additional covariate of the
class separating process (Alvarez and Del Corral, 2010; Cillero et al., 2019;
Kumbhakar, Tsionas and Sipiläinen, 2009). Some researchers include indi-
cators of the degree of specialisation or diversification of production (Cillero
et al., 2019; Sauer and Morrison Paul, 2013) or size of farm operations (Orea,
Pérez and Roibás, 2015).

The following four variables reflecting differences in dairying production
systems in Switzerland are available in the data set: (i) the livestock density,
defined as livestock units per hectare, as an indicator of production inten-
sity;14 (ii) a dummy variable indicating a location in the mountainous region
to consider differences in natural production conditions; (iii) a dummy vari-
able indicating whether a tie-up barn or free-stall housing system is used and
(iv) a dummy variable for silage-free production influencing both the input use
and the milk price received (and consequently the farm revenues).15 Free-stall
housing indicates the farms’ compliance with the animal welfare programme
to which Swiss farmers can voluntarily subscribe. Silage-free production indi-
cates that the farm produces milk for the production of raw milk cheese,
making up more than 40 per cent of the total Swiss milk production (Finger,
Listorti and Tonini, 2017).

Table 1 summarises the descriptive statistics of the variables considered for
the LCSFM specification, including one aggregated output, four inputs and
four separating variables. A significant change in average values over time and
a large degree of heterogeneity between farms (as indicated by the variables’
standard deviations) underline the need to consider heterogeneity within the
model for an appropriate estimation of productivity and efficiency across the
sample of dairy farms.

14 In this study, we use the definition of ‘livestock unit’ and ‘livestock density’ according to the
Eurostat glossary (https://ec.europa.eu/eurostat/statistics-explained).

15 We have tested whether some other variables (labour input per cow, share of subsidies and
off-farm share) deliver useful information in classifying the sample and found, based on different
test statistics (LF, AIC and BIC), that the model with the four selected separating variables was
the preferable specification.
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4.5. Empirical model

The stochastic production frontier function is estimated using the flexible
translog specification for one output and different inputs (normalised by their
geometric means):

lnyit = β0|j + βt|j t+
1

2
βtt|j t

2 +
K∑

k=1

βk|j lnxkit +
1

2

K∑
k=1

K∑
l=1

βkk|j lnxkit lnxlit

+
K∑

k=1

βkt|j lnxkitt (6)

where the β values are parameters to be estimated. We include the time
trend variable t and its interactions with inputs to capture (non-neutral) tech-
nical change. The stochastic part of the model is decomposed according to
equation (2) into a noise term υit and a time-varying inefficiency term uit.
The estimation of parameters is carried out using the econometric software
NLOGIT 6.0 (Greene, 2012).

5. Results and discussion

5.1. Identification of three production technology classes

Based on the estimated posterior class probabilities, three distinct technolog-
ical classes of dairy farms can be identified in Switzerland in the investigated
period: Class 1 ‘most productive class’, class 2 ‘average productive class’ and
class 3 ‘least productive class’. The LCSFM with three classes is preferred
over other specifications because of the lowest AIC and BIC values.16 Aver-
age values of posterior probabilities are quite high (0.948, 0.927 and 0.953 for
classes 1, 2 and 3, respectively), indicating that the estimated classification of
farms in the particular technological class is statistically robust. The estimates
for the prior probability function are shown in Table 2. All four separating vari-
ables have a significant impact on the probability of belonging to a certain class
(the ‘average productive class’ is the reference category) at farm level. Hence,
the considered farm characteristics provide useful information for classifying
the individual farms in the sample.

As a robustness check, we compared the model with and without sepa-
rating variables and found that 82 per cent of the farms are assigned to the
same classes, indicating that the most important information for technol-
ogy classification comes from the production relationships reflected in the
estimated production frontiers. Further sensitivity tests show that including
location and livestock density as covariates of the probability function also

16 The LCSFM with four classes failed to converge. Following Orea and Kumbhakar (2004), we
interpret this as evidence that a model with four classes is overspecified. We have tried out
many different specifications of our model and in each case we end up with three classes. If
we tried the simplest specification, the LCSFM estimation with four classes was possible, but
according to the selection criteria, it was not better than the model with three classes.
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Table 2. Coefficients and t-ratios of the latent class prior probability function

Class 1 ‘most productive’ Class 3 ‘least productive’

Coefficient t-ratio Coefficient t-ratio

Constant −1.74 −6.88*** 0.53 1.78*
Livestock density 1.29 8.79*** −2.04 −9.44***
Mountain region −1.35 −9.35*** 1.65 12.61***
Stall system −0.57 −4.82*** 0.75 4.75***
Silage-free production 0.63 5.89*** −0.56 −4.46***

Note: Class 2 ‘average productive class’ is the reference category. * and *** indicate statistical significance at the
10 per cent and 1 per cent levels, respectively.

contributes largely to the separation between production technologies. Adding
the stall system and silage-free production enhances the results by increasing
posterior probability but does not lead to huge changes in farms between pro-
ductivity classes. Thus, the self-selection into voluntary agri-environmental
programmes occurs to be strongly correlated to the natural production condi-
tions, and these conditions restrict the set of production technologies that are
available to farmers.

The results (Table 2) show that, comparedwith the average productive class,
farmers of the most productive class have higher livestock density, are less
likely located in the mountain regions, more likely have free-stall barns enti-
tling them to participate in the animal welfare programme and are more likely
to produce silage-free milk used for raw milk cheese production. In contrast,
farmers of the least productive class are more likely located in the mountain
regions, produce comparably extensively and are more likely to use tie-up
barns and to produce drinking milk as compared with average productive class
of farmers.

We present in Table 3 the first-order output elasticities at the samplemean of
each technological class. They reflect the contribution of inputs, scale elastic-
ities and technical change. Elasticities are also calculated at each data point to
check whether the estimated production functions are well-behaved according
to regularity conditions. It shows that partial production elasticities are positive
in all three classes at the sample mean and for almost all observations. Hence,
the monotonicity condition is violated only at a few data points.17 We do not
report the parameter estimates of the LCSFM due to space limitations and
limited interpretability of the coefficients (you can find them in Appendix).18

Some differences are observed with respect to the marginal contribution of
different inputs among the technological classes. Materials (including costs
of purchased feed and other intermediate inputs) are the most important input

17 We also checked the curvature of the estimated translog functions for each class, which were
quasi-concave at the sample mean (tolerance level = 0.01).

18 Note that the first-order coefficients of the LCSFM presented in the Appendix are calculated at
the geometric mean of the entire sample and therefore differ from the elasticities of the three
classes, since the latter are evaluated at their corresponding sample means, not at the mean of
the entire sample.

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/48/2/415/6126056 by guest on 09 M

arch 2021



430 S. Renner et al.

Ta
bl
e
3.

O
ut
pu

te
la
st
ic
iti
es
,t
ec
hn

ic
al

ch
an

ge
an

d
sc
al
e
el
as
tic

ity
ca
lc
ul
at
ed

at
th
e
sa
m
pl
e
m
ea
n
of

th
e
co

rr
es
po

nd
in
g
cl
as
s
an

d
sh

ar
e
of

po
si
tiv

e
ob

se
rv
at
io
ns

C
la
ss

1
‘m

os
tp

ro
du

ct
iv
e’

C
la
ss

2
‘a
ve

ra
ge

pr
od

uc
tiv

e’
C
la
ss

3
‘l
ea
st

pr
od

uc
tiv

e’

E
st
im

at
e

O
bs

.>
0

E
st
im

at
e

O
bs

.>
0

E
st
im

at
e

O
bs

.>
0

L
an

d
0.
17

9
(0
.0
10

)
98

%
0.
22

2
(0
.0
11

)
97

%
0.
21

8
(0
.0
13

)
99

%
L
ab

ou
r

0.
09

9
(0
.0
10

)
99

%
0.
09

9
(0
.0
09

)
10

0%
0.
11

4
(0
.0
12

)
10

0%
C
ap

ita
l

0.
23

3
(0
.0
12

)
10

0%
0.
21

8
(0
.0
13

)
10

0%
0.
24

0
(0
.0
15

)
10

0%
M

at
er
ia
ls

0.
53

9
(0
.0
12

)
10

0%
0.
53

5
(0
.0
13

)
10

0%
0.
54

8
(0
.0
13

)
10

0%
Te

ch
ni
ca
lc

ha
ng

e
0.
00

2
(0
.0
01

)
65

%
−
0.
00

3
(0
.0
01

)
24

%
−
0.
00

8
(0
.0
01

)
7%

Sc
al
e
el
as
tic

ity
1.
05

0
(0
.0
11

)
1.
07

5
(0
.0
11

)
1.
12

0
(0
.0
13

)

N
ot
e:

St
an

da
rd

er
ro
rs

in
pa

re
nt
he

se
s.

O
ut
pu

te
la
st
ic
iti
es

w
ith

re
sp

ec
tt
o
al
lf
ou

r
in
pu

ts
ar
e
si
gn

ifi
ca
nt
ly

di
ff
er
en

tf
ro
m

ze
ro

at
th
e
0.
01

si
gn

ifi
ca
nc

e
le
ve

li
n
al
lt
hr
ee

cl
as
se
s;

m
ea
n
sc
al
e
el
as
tic

iti
es

in
al
lt
hr
ee

cl
as
se
s
ar
e
si
gn

ifi
ca
nt
ly

di
ff
er
en

tf
ro
m

on
e.

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/48/2/415/6126056 by guest on 09 M

arch 2021



Why considering technological heterogeneity is important? 431

for all three production technologies with very little differences in elasticities
between classes.19 This finding is in line with other studies (e.g. Cillero et al.,
2019; Kellermann and Salhofer, 2014). More precisely, a 1 per cent increase
in the use of materials leads on average to a 0.5 per cent increase in output,
irrespective of the technology used. For the most productive class 1 farms,
output is relatively less responsive to land as compared with the other two
classes. Farms in the least productive class 3 obtain the largest returns to land
when compared with the other two classes.

Some differences can be observedwith respect to returns to scale, calculated
as the sum of the output elasticities with respect to all four inputs (Table 3;
Figure 1). Farms in all three classes operate on average under increasing
returns to scale, meaning that they should still be able to improve economic
performance by adjusting their size. Themost productive farms in class 1 could
increase their output by 1.05 per cent, the average productive farms in class 2
even by 1.075 per cent and the least productive farms in class 3 even by 1.12 per
cent based on a 1 per cent increase in all inputs. This result is not surprising
considering the small-structured Swiss dairy production (see Table 1).

Technical change is found to be small for the production technology of the
most productive class and even slightly negative for the average and least pro-
ductive class, whereby it is not significantly different from zero. Alvarez and
Del Corral (2010) also found low levels of technical change of between 0.004
for extensive and 0.013 for intensive dairy farms in Spain, and Kumbakhar
et al. (2009) found negative technical change for Finnish dairy farms, which
they related to changes in price and subsidy levels and weather conditions.
Furthermore, the estimated technical change might be underestimated because
only economic resources and outputs are considered in the estimation of the
production technology (Jan, Lips and Dumondel, 2010; Jan et al., 2012b). The
role of non-monetary (agri-environmental) outputs is only partially captured
by including the ecological direct payment subsidies as part of the farm output.

Table 4 provides descriptive statistics for some characteristics of the farms
assigned to the three technological classes based on the estimated probabilities
of individual class membership. Considering the results from Table 4 in com-
bination with estimated elasticities from Table 3, we can examine differences
between the identified groups of farms.

The most productive class 1 comprises significantly larger farms
(in terms of both output and number of cows) using a more intensive tech-
nology (in terms of livestock density) with high milk yield (6,756 kg milk
per cow) and a comparably high labour productivity (420 CHF/day). Produc-
tion intensities (livestock units per hectare) are already high and can hardly be
increased without a growth in farm size (i.e. hectares land cultivated) because
cross-compliance obligations restrict production intensities. Thus, for farmers
in this class, land is likely the restricting factor to further increase output levels,
and structural change would be needed to allow for further farm growth.

19 Due to convergence problems in the estimation procedure, it was not possible to dividematerials
further into individual components.
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Fig. 1. Kernel density of scale elasticities by classes.

Table 4. Mean farm characteristics of identified technological classes

Class 1 Class 2 Class 3
‘most productive’ ‘average productive’ ‘least productive’

Observations 3,601 4,673 2,910
Output (CHF) 212,372 148,987 97,096
Milk production (CHF) 128,962 88,264 54,917
Labour per cow (SWD) 22.5 27.6 34.7
Livestock per ha (LU
per hectare)

1.6 1.4 1.1

Located in mountain
region

0.11 0.38 0.82

Cows 24.7 19.7 14.7
Land (hectare) 20.9 21.6 21.9
Milk yield (kg per cow
and year)

6,756 6,238 5,669

Labour productivity
(CHF per SWD)

420 298 203

Subsidies’ share in total
revenue

0.22 0.31 0.44

Share of off-farm
income in total family
income

0.19 0.28 0.38

Note: Sample means of the presented variables are significantly different between classes at the 0.01 significance level
with the exception of land. CHF, Swiss franc; LU, livestock unit; SWD, standardised working day.

The least productive class 3 producers, in contrast, have smaller herds (they
have on average 15 cows) and produce extensively with almost only half of the
livestock density and low milk yields in comparison with the most productive
class 1 farmers but use more labour-intensive technologies. Most of the farms
in this class (82 per cent) are located in the mountain regions, their farmers
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Table 5. Average predicted output levels (ŷ) in Swiss francs and corresponding productivity
ratios calculated for dairy farms in identified classes using different production technologies

Class 1 Class 2 Class 3
‘most productive’ ‘average productive’ ‘least productive’

ŷ1 (using technology 1) 216,286 184,284 156,315
ŷ2 (using technology 2) 192,277 162,142 136,873
ŷ3 (using technology 3) 167,270 139,544 117,222
Productivity ratio ŷj/ŷ1 1.00 0.88 0.75
Productivity ratio ŷj/ŷ2 1.12 1.00 0.86
Productivity ratio ŷj/ŷ3 1.29 1.16 1.00

earn a considerable share of income (one-third) off the farm and governmental
subsidies are an important income source. Labour productivity is very low in
the least productive class 3, generating less than half the levels of productivity
(CHF per annual working unit) as compared with class 1 farmers.

Average productive class 2 producers can be described as being in between
both other classes with respect to the characteristics shown in Table 4.
However, farm size in hectares shows to be similar across all farm groups.

5.2. Productivity levels of technology classes

To examine the productivity differences between technological classes, we
calculate the predicted output of each farm based on different production tech-
nologies identified (using the estimated parameters of the three identified latent
class models). The predicted values based on the production frontier of the
least productive class 3 are lower for all observations in the sample compared
with the production frontiers of the other two classes. On the other hand, the
production frontier of the most productive class 1 is located above that of the
average productive class 2 for almost all farms (with an exception of 0.4 per
cent of observations from class 2 with higher predicted output values). Thus,
we can consider the technology of class 1 as the ‘most productive technology’.

Means of predicted output values (ŷj) for the farms in the classes are
reported in Table 5. The productivity ratios in the lower part of the Table 5
show, for the farms in each class, how far the average predicted output is from
the potential output level they could realise if they used the alternative tech-
nology instead of the technology they currently used technology. These results
reveal considerable differences in the productivity levels between the three
latent technologies.

Farms in the most productive class 1 can achieve the highest productivity
level with the actually implemented technology (technology 1). The average
productivity ratio of these farms with respect to the other frontiers is 1.12 and
1.29, which means that they can produce at considerably higher output levels
as compared with potential output from using the two alternative technologies.
On the other side, if farms from the average or least productive classes 2 and 3
adopted the most productive technology 1, they could potentially produce on
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Fig. 2. Kernel density of productivity ratios of farms from the less productive classes 2 and 3 with
respect to the more productive reference technology.

average 12 per cent and 25 per cent more output, respectively (as indicated by
average productivity ratios of 0.88 and 0.75 for these less productive classes).
The gains for farms in the least productive class 3 from a switch to the average
productive class 2 technology would induce a 14 per cent increase in output
(productivity ratio of 0.86).

In addition to the average values, Figure 2 presents the distribution of pro-
ductivity differentials of the farms from the average class 2 with respect to the
most productive class 1 (solid black line) and from the least productive class
3 with respect to the average and the most productive classes 2 and 1 (solid
and dotted grey lines). Even though the results of our study suggest a substan-
tial potential for productivity improvements (20–40 per cent output increase
for farms of the technologically least productive class 3 due to adoption of the
most productive class 1 technology), it should be kept in mind that switch-
ing to a more productive technology might not be possible for all farms in
reality. Whereas in some cases extensive investments can be the restrictive fac-
tor, technology use is also restricted by natural production conditions that can
hardly be influenced by farmers. For instance, least productive class 3 farms
are mostly located in mountainous regions where an increase in productivity
levels is often not possible because of low availability of grass quantity and
quality; thus, the farmers face restricted possibilities for production intensifi-
cation. A more detailed discussion on change of the technological class can be
found in Section 5.4.

Hence, when comparing the performance of farms, it is of outmost impor-
tance to consider the differences in productivity resulting from differences
in technologies used. Otherwise, productivity differences across farms could
wrongly be interpreted as inefficiency resulting from poor management skills
(see Section 5.3) even though they are the result of technology choices adapted
to local agri-environmental conditions.
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Table 6. Average technical efficiency levels calculated for dairy farms in identified classes
with reference to different production frontiers

Class 1 Class 2 Class 3
‘most productive’ ‘average productive’ ‘least productive’

Efficiency based on
common frontiera

0.83 0.65 0.50

Efficiency based on
own class frontier

0.98 0.96 0.88

Efficiency based on
class 1 frontierb

– 0.80 0.61

Efficiency based on
class 2 frontierb

– – 0.73

aEfficiency relative to the common frontier is calculated using a random-effects stochastic frontier model.
bTechnical efficiency with reference to the own class frontier multiplied with the productivity ratio of the current
technology to the more productive technology.

5.3. Technical efficiency

For further performance analysis, we estimate the technical efficiency of each
farm with reference to different frontiers (common frontier, own class fron-
tier and ‘best-practice frontier’) and present average values by latent class in
Table 6. As shown in the previous section, the production frontier of class 1
is located above the other two production frontiers. Thus, it can be considered
as the ‘most productive’ technology analogue to the concept of ‘metafrontier’
or ‘best-practice frontier’ definitions from the efficiency literature. Using this
concept, we can additionally calculate efficiency for each farm with reference
to the maximum possible output that can be achieved by efficient use of given
inputs and producing with the most productive technology. It is calculated by
multiplying the technical efficiency with reference to the own frontier with the
productivity ratio of the current technology to the more productive technology,
using the results presented in Section 5.2.

First, our results show that technical efficiency is much lower if we do not
consider technological heterogeneity between farms and assume that all farms
show a common production frontier. According to this calculation, farms from
the least productive class 3 could double their output by using the current input
levels. However, results of the LCSFM estimation confirm that dairy farms in
our sample use different production technologies. As shown in Section 5.2,
the frontier of the least productive class 3 is located below the other fron-
tiers, which means that these farms are not able to reach the output levels
of the common frontier. Hence, it is not reasonable to estimate efficiency
with respect to a single common frontier, from the vantage point of economic
theory.

The efficiency scores estimated with respect to the individual frontiers of
the corresponding latent technological class are higher. It is an expected result
because farms belonging to one class are more homogeneous and thus pro-
duce closer to their own production frontier (Alvarez and Del Corral, 2010).
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Table 7. Number and share of dairy farms switching the latent class

Number of farms Share of farms

To To To To To To
class 1 class 2 class 3 class 1 class 2 class 3

From ‘most productive’ class 1 390 72 3 26% 5% 0%
From ‘average productive’ class 2 107 471 61 7% 31% 4%
From ‘least productive’ class 3 0 89 320 0% 6% 21%

At current levels of input use and assuming fully efficient use of these inputs,
farms in the average productive class 2 could obtain on average a 4 per cent
increase in output levels with their current production technology. If they were
able to switch to the most productive technology 1, they could even reach
a 20 per cent increase in output level. This finding means that technological
restriction (and not necessarily lack ofmanagement skills) is themajor limiting
factor of economic performance enhancement. Farms in the least productive
class 3 could produce 12 per cent more with their current technology and could
obtain a 27 per cent increase after switching to the average productive class 2
technology and even a 39 per cent increase if they were able to adopt the most
productive class 1 technology. In the next section, we show how many farms
were able to change the class according to our results.

5.4. Switching patterns

The split-panel specification of the LCSFM allows us to analyse the switch-
ing patterns of farms, i.e. the change of the production technology over time.
In our formulation, we allow each farm to adopt a new technology once dur-
ing the period. First, we analyse how many farms change the technology and
how many remain in the same technological class during the entire data period
considered. Second, we analyse differences in some characteristics of farms
depending on the adaptation decision.

As shown in Table 7, most dairy farms (78 per cent) do not change the
production technology in the period considered. Twenty-six per cent remain
in the most productive class 1 throughout the entire period. If farms make a
change, they more likely switch to a more productive technology. However,
only every fourth farm in the average and least productive classes 2 and 3
has adopted a new technology during the investigated period. The finding that
(almost) no farm has switched between the least and most productive classes 3
and 1 suggests that the observed technology use is quite well adapted to local
environment-related conditions and that the least productive class 3 farms are
hardly able to switch to the production technology used by the most productive
class 1 farms.

In Table 8, we compare the performance of farms in terms of technical
efficiency before and after switching the technological class. If we compare
the management ability of farms belonging to the average productive class 2
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Table 8. Comparison of average technical efficiency levels between farms with different
switching patterns

1 1→2 2 2→1 2→3 3 3→2

Subperiod 1 (before switching) 0.983 0.981 0.959 0.969 0.947 0.870 0.922
Subperiod 2 (after switching) 0.983 0.913 0.959 0.981 0.913 0.870 0.947

Note: ‘1’ refers to the farms staying in the most productive class 1; ‘1→2’ refers to the farms switching from the most
productive class 1 to the average productive class 2, and so forth.

in subperiod 1 (before switching), we observe higher average technical effi-
ciency levels of farms that were able to change to the most productive class 1
(0.969) as compared with the farms that stayed in the average productive class
2 (0.959) or switched to the least productive class 3 (0.947). A more marked
difference can be found between the mean technical efficiency of farms in the
least productive class 3. Farms changing to the average productive class 2 are

Table 9. Relative change in mean values of selected farm characteristics from subperiod 1
to subperiod 2 (in %) by groups of farms with different switching patterns

1 1→2 2 2→1 2→3 3 3→2

Agricultural income
(CHF)

5.0 −14.4 −3.4 18.5 −34.9 −9.0 21.6

Working income per
family labour unita

8.0 −17.3 0.4 31.5 −40.8 −3.5 28.9

Output (CHF) 8.6 −1.8 6.4 14.6 −5.4 2.3 18.1
Milk production
(CHF)

15.3 6.5 11.3 27.4 −0.4 8.2 23.4

Labour per cow
(SWD)

−7.0 −3.1 −4.6 −8.2 5.7 −2.2 −4.4

Livestock per hectare
(LU per hectare)

3.8 −5.5 2.8 7.3 −2.1 0.4 6.2

Cows 10.2 5.8 7.8 14.4 −0.2 4.9 8.5
Land (hectare) 3.1 6.1 3.0 1.8 1.3 3.2 1.8
Subsidies’ share in
total revenueb

12.6 20.8 9.5 3.3 16.6 5.5 −1.3

Milk yield (kg per
cow and year)

1.3 0.8 1.2 4.4 −0.5 0.7 6.7

Labour productivity
(CHF per SWD)

5.8 −3.7 4.6 10.5 −10.8 0.0 13.5

Off-farm sharec 10.5 95.4 19.2 12.9 42.2 24.9 −1.3

aWorking income per family labour unit is calculated as agricultural income after remuneration of the equity invested
by the family and divided by the number of non-remunerated full-time working family members (family labour units).
bPortion of the total direct payments in the total farm revenue.
cPortion of wage employment, self-employment, remittances and other income such as capital earnings and pensions
in total family income.
LU, livestock unit; SWD, standardised working day.
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able to produce 5 per cent more output with given inputs using class 3 tech-
nology before switching (0.922) as compared with the farms staying in class 3
(0.870). Moreover, they also achieve a quite high efficiency level (0.947) with
respect to the new benchmark after adopting the new technology.

As shown in Table 9, farms that stay in the most productive class 1 substan-
tially increase production, labour productivity and income. In contrast, farms
that stay in the average productive class 2 and especially farms that stay in least
productive class 3 are not able to increase production and productivity levels to
such an extent that income can be increased (or at least maintained) through-
out the period considered. Remarkable is the increasing share of subsidies with
respect to total revenues especially for those farms that switch to a technology
with lower productivity (i.e. from the most to the average productive class 1 to
class 2 and from the average to the least productive class 2 to class 3). Also, the
share of off-farm income increases substantially when farms switch to a less
productive class. Across all classes, changes in output and productivity levels
are smallest for farmers staying in the least productive class 3 throughout the
entire period considered.

The 196 farms that switch to a more productive technology over time
(columns ‘2→1’ and ‘3→2’) are able to substantially increase outputs, income
levels and labour productivity, while the share of subsidies remains stable
(for farmers switching from technology 2 to 1) or even decreases (for farmers
switching from technology 3 to 2). These farms produce more intensively over
time.

The 133 farms that switch to a lower output technology over time (columns
‘1→2’ and ‘2→3’) increase the share of subsidies in total revenue by more
than 15 per cent on average. Incomes and outputs decrease substantially.
Labour productivity also decreases, and the share of off-farm income in
total revenue increases. Production intensities measured by livestock density
slightly decrease but measured by milk yields remain rather stable.

The results presented here are descriptive in nature, and causal relationships
between the level of governmental support and class membership can thus not
be deduced. Nevertheless, it appears that government support and off-farm
income play an important role in Swiss farmers’ decision-making, a relation-
ship that is taken up in the agricultural household model and is supported by
various empirical studies (see e.g. Brick, 2005). The descriptive statistic shown
in Table 9 furthermore indicate a production-technology-driven division in the
farming population that might at least partly be explained by local natural pro-
duction conditions that can hardly be influenced by the management of the
farm.

6. Conclusions

When analysing farm performance, it is important to distinguish between
productivity differentials resulting from the use of different production tech-
nologies and those that are due to inefficient management practices. Using an
LCSFM approach for a panel data set of Swiss dairy farms between 2003 and
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2013, we analysed the potential effect of several farm characteristics, includ-
ing the compliance with the requirements of a voluntary agri-environmental
programme, to differentiate between heterogeneous production technologies.
Furthermore, by using a novel split-panel approach, we allowed farms to
switch the technology class once during the observed period, allowing us to
analyse technology choice and change.

Our results show that technological restrictions are the major limiting factor
of economic performance enhancement, as opposed to an often assumed lack
of management skills. Three distinct production technologies were identified
among the Swiss sample of dairy farms. Dairy farms belonging to the most
productive technological class 1 are more likely located in the valley or hilly
regions, produce more intensively in terms of livestock density, more likely
choose silage-free milk production and more likely use free-stall systems and
are thus eligible for voluntary animal welfare direct payments. Farms of the
least productive technology class 3 are more likely located in the mountain
regions, produce less intensively and more likely use tie-up barns and produce
for the drinking milk market. Although the most important information for
technology classification comes from the production relationships reflected in
the estimated production frontiers (i.e. unobserved factors), farm location and
livestock density contribute additionally to the separation between production
technologies.

Even though the results suggest substantial productivity gains when switch-
ing from one to the next productive technology, only a few farmers with
relatively low technical inefficiency levels were able to realise such technol-
ogy changes. Technology switching patterns over time show that most dairy
farms stay in their technology class during the entire period, and no farm using
a least productive class 3 technology switched to the most productive class 1
technology. Thus, technologies used in the different classes seem to be well
adapted to local natural production conditions. However, note that the cho-
sen split-panel approach only allows for one switch in the period considered,
which is supposed to be reasonably flexible and realistic in the farming con-
text over the considered period of 11 years. The current farm performance
analysis could be extended to check for potential improvements of specific
inputs or outputs by combing the LCSFM with a multidirectional approach
(Asmild et al., 2003; Labajova et al., 2016). Applying the novel approach by
Hansson, Manevska-Tasevska and Asmild (2020), we could further test for
the existence of rational inefficiency among Swiss dairy farms. Furthermore,
our study could be extended by incorporating determinants of inefficiency into
the LCSFM and applying some sophisticated modifications dealing with endo-
geneity issues (Amsler, Prokhorov and Schmidt, 2016; Kumbhakar, Parmeter
and Zelenyuk, 2020; Latruffe et al., 2017).

The descriptive analysis of the observed technology switching patterns do
not allow claiming causal relationships in the development paths in Swiss dairy
farming but may provide first insights for further analysis. Our results indi-
cate two distinctive development paths for Swiss dairy farms: (i) a substantial
increase in intensification and output levels (intensification strategy) and (ii) a
reduction of farm inputs and outputs and decreasing importance of agriculture
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for household income (extensification strategy). The few farms that were able
to adopt a more productive technology are characterised by relatively small
shares of subsidies and off-farm income and by producing less inefficiently
than the remaining farms in their class. In contrast, farms switching to a less
productive technology, being less efficient and more dependent on direct pay-
ments as compared with the other farms from their previous class, show an
even higher share of subsidies and off-farm income afterwards. Thus, besides
natural production conditions, governmental support and off-farm incomemay
play an important role in the technology choice of farmers and should be anal-
ysed in more detail in future research. Technology choice, in turn, is intimately
linked to the economic situation of farms, and policymakers must be aware of
these interrelations.

When designing measures to increase productivity and efficiency of Swiss
dairy farms, policymakers should keep in mind that there are substantial differ-
ences in the productivity levels of different technologies across the respective
farm population. These differences should not be interpreted as inefficien-
cies resulting from poor management skills. In fact, within their technology
classes, Swiss dairy farms already produce quite efficiently on average with
given current technologies. Considering the class averages, the output levels
could only be increased by 2–12 per cent due to more efficient input use and
by 20–27 per cent due to adoption of the more productive technology. Farm
size growth would allow farmers to further increase productivity as shown by
positive scale elasticities. Nevertheless, non-tradeable direct payments paid
per hectare (being an increasingly important income source) result in land as
an immobile input factor in Switzerland, which may suppress technological
improvements in the whole dairy sector and prevent improvements in farm
performance. The results of this study furthermore show that the participation
in voluntary agri-environmental schemes is strongly correlated to the natural
production conditions. On the one hand, this linkage means that voluntary pro-
grammes are not similarly attractive for all farms and adoption and diffusion
of e.g. animal welfare measures across the whole sector is limited by natural
production conditions. On the other hand, the results also indicate that vol-
untary agri-environmental programmes do not necessarily lead to low farm
performance. In contrast, Swiss dairy farmers using free-stall systems and
thus being eligible for agri-environmental payments are the most productive
farmers as compared with farmers using tie-up barns in the mountain regions.
Allowing farmers to self-select into agri-environmental measures seems to be
a good mechanism with respect to income-related and thus productivity- and
efficiency-related goals of agricultural policy. However, if environmental and
animal welfare improvements are the main objectives, existing measures and
subsidy levels need to be adapted to local natural production conditions to be
attractive for farmers from an economical point of view.

Future research could explore in more detail the contribution of different
voluntary agri-environmental programmes to the heterogeneity in produc-
tion technologies because not all programmes need to be correlated to the
same natural production conditions. Furthermore, and in view of the fact that
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e.g. animal welfare provide non-use values to farmers, the interrelations
between non-use values and direct payment programmes should be considered
in future research. Information on the interlinkages between the participation
in voluntary programmes, natural production conditions and farm performance
can allow for a more attractive policy programme design. Identifying possible
causal relationships between subsidies or off-farm income (or both) and the
technology choice of farmers is also of interest for future research.
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