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ABSTRACT 

Remote sensing holds vast potential for precision and smart 

farming and for field phenotyping applications. We present a 

small, but high-quality dataset consisting of ground truth, 

handheld spectrometer (proximal) and drone (remote 

sensing) data gathered in one of the world’s oldest long-term 

field experiments (>70 yrs). The proximal and the remote 

sensing approaches showed comparable performance. 

Medium to strong correlations with the ground truth 

parameters were shown. Long-term field experiments are a 

valuable source for sensor calibration, calibration and 

validation of remote sensing products and applications. Vice 

versa, remote sensing methods and technology can support, 

improve and enhance data acquisition in field trials, 

particularly in long-term experiments. 

 

Index Terms— Proximal sensing, remote sensing, high 

throughput phenotyping, drones, field experimental trials 

 

1. INTRODUCTION 
 

Remote sensing techniques are increasingly used in the 

framework of precision agriculture [1] and for agricultural 

research [2,3]. The research work can be divided in two 

domains focusing on 1) spatial and environmental monitoring 

and on 2) plot-based experimentation through high 

throughput phenotyping (HTP). Although the presented paper 

will focus on the latter, the underlying principles and obtained 

results are also relevant and applicable to the first. 

The concept of HTP was mainly initiated by the breeding 

community [4], because of their demand to efficiently assess 

large field trials with hundreds to thousands of different plots 

[5]. Today, phenotyping of field trials is increasingly applied 

to other research purposes in agriculture including plant 

protection and fertilization trials [1]. The large variety of 

applications implies the high value of the methodology.  

In this work we present the use of ground-based 

(proximal) and drone-based (remote) hyperspectral sensing 

as a tool to evaluate plant biomass and nitrogen (N) status in 

a long term fertilizer trial comparing mineral and organic 

nutrient sources with respect to sustainable management of 

the soil resources and agronomic productivity. The idea is to 

partly replace laborious and costly manual in-field sampling 

with fast and non-destructive sensing methods. The 

feasibility of both investigated sensing approaches and 

instruments for this purpose will be discussed. 

 

2. METHODS 

 

2.1. Experiment and crop cultivation 

 

For this study we used the historic (long-term) field trial 

‘Zurich Organic Fertilization experiment’ (ZOFE), which 

was established in 1949 and is located at Agroscope in Zürich 

(47°25‘36“ N, 8°31‘08“ E, 420 masl).  

The soil has an average density of 1.6 g cm-3 and is a 

carbonate-free Luvisol. Soil properties in the 0–20 cm layer 

at the start of the trial were 14% clay, 27% silt, and 57% sand; 

organic C content was 1.3% and soil pH 6.5. Mean annual 

temperature and precipitation of the location is 9°C and 1040 

mm, respectively [6]. The experiment was conducted from 

the beginning of July to August 2020 in grain maize (Corn). 

Crop management was performed according to local practice 

with a seeding date in late April.  

 

 
Figure 1: Aerial image of the experiment with indicated plot 

(x-axis) and block arrangement (y-axis). 



The trial consisted of 12 different fertilization treatments 

systematically replicated in five blocks (Figure 1) with plots 

of 5*7 m. The mineral and organic fertilizers were applied in 

single or combined use including a zero control (no 

fertilization) and a mineral full mineral fertilization control 

(Table 1). The original purpose of the trial was to identify 

sustainable fertilizer strategies to secure soil organic matter 

and agricultural productivity [6].  
 

Table 1: Treatments and their respective N, P and K inputs. 

Nr. Treatment Nutrient input (min/org) 

[kg ha-1] 
  N P K 

1 Zero control 0/0 0/0 0/0 

2 Manure 0/86 0/27 0/117 

3 Sewage sludge 0/174 0/163 0/9 

4 Compost 0/93 0/21 0/106 

5 Manure +PK 0/87 45/27 195/117 

6 Sewage sludge +PK 0/174 45/163 195/10 

7 Compost +PK 0/93 45/21 195/106 

8 Peat +PK 0/0 45/0 195/1 

9 N0P2K2 0/0 45/0 195/0 

10 N2P1K1 100/0 22/0 98/0 

11 N2P2K2 100/0 45/0 195/0 

12 N2P2K2Mg / 

mineral control 

100/0 45/0 195/0 

 

2.2. Ground truth data collection 

 

Plant biomass was measured on the 16th July 2020 as the 

standing above ground dry matter biomass (DM). For the 

plant N status determination, the N concentration (Nconc) in 

DM was measured and plant N uptake (NUP) was calculated 

as NUP = DM*Nconc. Additional crop traits such as phenology 

stage, plant count per m2, germination rate and plant height 

were obtained regularly (data not shown). 
 

2.3. Proximal and remote sensing methodology 

 

The proximal and remote sensing measurement approaches 

were conducted throughout the experimental campaign. The 

data shown in this paper originate from measurements on the 

7th and 8th July 2020, one week before biomass harvest. The 

proximal and remote sensed parameters involved two spectral 

indices: The Normalized Difference Vegetation index 

(NDVI) and the Normalized Difference Red Edge index 

(NDRE) as well as canopy cover (CC). The two spectral 

indices were calculated as NDVI=(NIR-R)/(NIR+R) and 

NDRE=(NIR-RE)/(NIR+RE) as used in [1] for both sensing 

approaches. 
For the proximal sensing approach, canopy reflectance 

was measured using a portable field Spectroradiometer 

(PSR+3500, Spectral Evolution, USA). The used 

wavelengths for spectral index calculation were R=660 nm, 

RE=735 nm and NIR=790 nm. To determine CC, a mobile 

phone’s camera (iPhone 6s, Apple Inc., USA) was used in 

combination with the ‘EasyPCC’ algorithm [7].  
For the remote sensed approach, a modified drone (Tarot 

T960 Hexacopter, China) equipped with the Iris VNIR 

hyperspectral camera system (Gamaya, SA, Lausanne, 

Switzerland) was used. The Camera was operated with a new 

internal calibration compared to previous studies [8] and the 

imagery was calibrated by ground reflectance panels during 

post processing. Plot-based reflectance values based on the 

full plot sizes were extracted from the orthophoto using QGIS 

(version 3.10.11). CC was determined using a threshold of 

NDVI ≥ 0.5 to differentiate between soil and vegetation. The 

spectral indices were calculated using the broadband 

channels (18 nm bandwidth) at center wavelengths R=660 

nm, RE=735 nm and NIR =790 nm.  
The applicability of the two sensing approaches was 

evaluated by means of an ANOVA of the plot-based values. 

The proximal and the remote sensing approaches were 

compared by correlation and regression analysis between the 

ground truth and the sensed parameters, respectively. 
 

3. RESULTS 

3.1. Ground truth data 

 

For DM and NUP, highly significant differences between the 

treatments were observed while there was no effect on 

germination rate affecting plant count per m-2 (Table 2). Thus, 

the treatment differences observable by proximal and remote 

sensing were mainly caused by differences in biomass and 

greenness. 

 

Table 2: Two-way ANOVA for three investigated maize traits 

plant density, dry matter (DM) and nitrogen uptake (NUP). 

Significance: *** = p < 0.001, ** = p < 0.01, * = p < 0.05 

Crop trait Treatment  Replicate 

Plant count (# m-2) 0.511 0.425 

DM (kg m-2) 3.43e-09 *** 0.609 

Nup (g m-2) 2.3e-08 *** 0.924 

 

For DM, and NUP, the zero control exhibited the overall 

lowest values while the mineral control showed relatively 

high values. The two control groups exhibited the least intra-

treatment variance across the treatments. No significant 

differences were found in Nconc for the two control groups. 

Acute N limitation indicated by Nconc < 2% was found for 

treatment 8 (Peat +PK). The organic treatments showed larger 

in-group variances with treatment three showing values close 

to the zero control, caused by severe potassium limitation. 

The combined organic and mineral treatments also exhibited 

a high in-group variance compared to the other treatments. 

The highest biomass production (DM) was found in the 



combined treatments with the overall highest DM observed 

in treatment seven. 

In general, Nconc and NUP showed increasing values with 

increasing nutrient application levels (Table 1). Lowest Nconc 

were detected in five different fertilizer treatments (1, 3, 8, 9 

and 10) independent of their composition (mineral, organic or 

combined). Highest concentrations were found for 

fertilization with sewage sludge, manure + PK and N2P2K2. 

 

 
Figure 2: Dry matter (A), nitrogen concentration (B) and 

nitrogen uptake (C) for the 12 fertilizer treatments (Table 1) 

at harvest on the 16th July 2020. Different letters indicate 

significant differences between fertilizer treatments based on 

a one-way ANOVA Tukey HSD test (p < 0.05). 

 

3.2. Proximal and remote sensed traits 

 

Proximal and remote sensed NDVI, NDRE and CC showed 

very similar patterns across the 12 treatments following the 

same pattern as DM and NUP. The proximal approach 

however, exhibited slightly higher in-group variance than the 

remote sensing approach.  

 
Figure 3 NDVI (A,B), NDRE (C,D) and canopy cover (E,F) 

measured on the 7th of July 2020 of the 12 fertilizer treatments 

(Table 1) using a proximal (B, D, F) and remote (A, C, E) 

sensed approach. Different letters refer to significant 

differences between fertilizer treatments based on the one-

way ANOVA Tukey HSD (p < 0.05). 

 

The zero control group showed the lowest values and the 

highest values were observed for the combined and the 

mineral treatment groups. However, these two groups were 

not significantly different. The organic treatments also 

showed high in-group variance, similar to the DM (Figure 

2A). Overall, the NDVI values compared well to the DM, and 

to a lesser extent to the NUP, values. The NDRE however, 

followed the NUP more closely than the NDVI (Figure 2).  



 

The linear regression models showed that the evaluated 

proximal and remote sensed parameters explain large parts of 

the variation observed in the trial caused by the different 

fertilizer treatments (Table 3). The NDRE had higher 

coefficients of determination than NDVI and CC which are 

in a similar range, indicating that these traits might be 

redundant. The remote sensed parameters exhibited higher 

correlations than the proximal sensed ones. Combined with 

the lower correlation with NUP, this indicated that the 

parameters NDVI, NDRE and CC reflect mostly plant 

biomass, and to a lesser degree canopy N status. 

 

Table 3: Coefficients of determination (adjusted R2) from 

linear regression of dry matter (DM) and N uptake (NUP) with 

NDVI, NDRE and Canopy Cover (CC).  

Method Trait  DM [kg m-2] NUP [g N m-2] 

Remote NDVI 0.73 0.54 

NDRE 0.78 0.60 

CC 0.73 0.55 

Proximal NDVI 0.62 0.44 

NDRE 0.69 0.56 

CC 0.61 0.37 

 

3.3. Relationship of proximal and remote sensing data 

 

A comparison of proximal and remote sensed parameters over 

two to three different measurement dates showed generally 

very high linear correlations between the two sensing 

approaches (Figure 4). The respective slopes and intercepts 

indicated that the relations are more or less close to the 1:1 

line. For NDVI and NDRE, no saturation effect was 

observed, likely due to the large inter row spaces typical for 

corn crops.  

 

4. DISCUSSION 

 

The large overall variation in ground truth values (e.g. crop 

traits) observed in this experiment (Figure 2) is ideal for 

calibration and validation experiments because the range is 

much larger than the range found in most real-field situations 

[9]. Therefore, historical field trials such as the ZOFE trial 

are particularly valuable for calibration and validation 

experiments of new sensors and sensing platforms, but also 

for algorithms for crop trait retrieval.  

Proximal and drone based hyperspectral measurements, 

two of the most applied methods for field phenotyping [10], 

were successfully applied in this study. The observed patterns 

in treatment differences were similar to the treatments found 

in the ground truth data, which was obtained by manual 

sampling and subsequent physical and chemical analysis. 

However, they were not exactly alike, pointing to the fact of 

different measurement methodologies. The sensing methods 

in this paper were limited to a nadir view. The fact that 

statistical analysis (ANOVA) of the sensed parameters 

showed similar treatment effects at similar significance levels 

indicates that ground truth measurements can partly be 

replaced by remote sensing technology and therefore may 

support higher temporal data acquisition.  

 

Figure 4 Linear regressions between remote and proximal 

sensed vegetation indices as well as canopy cover measured 

at three time points (23.06.2020, 30.10.2020 and 

07.07.2020). Adjusted R-square, intercept, slope and P-value 

of the linear model are displayed. 

 

The strong relationship of the sensed parameters with 

DM and NUP indicates that the sensed parameters NDVI, 

NDRE and CC can be used to infer the crop traits canopy 

biomass and N status. Nevertheless, a robust calibration curve 

for these traits needs to be established and maintained with 



frequent subsamples for quality control (e.g. ongoing 

measurements for constantly updated calibration curve), if 

the data is to be used for quantification of DM and NUP. For 

application in real-world farming scenarios, algorithms that 

have been established in such a way need further on-farm 

validation.  

Seeing that both the proximal and the remote sensing 

approach can support data acquisition in field experiments, 

the decision which to apply can be forwarded to the 

availability of technology. The fact that multiple crop traits 

can be measured with one or few tools in fast sequence is a 

significant advantage compared to traditional field 

monitoring by taking physical samples and/or measurements. 

Additionally, the higher measurement frequency may enable 

better understanding of soil biochemical processes and soil-

plant interaction and subsequently allow for better 

synchronization of fertilization with soil nutrient availability 

and plant nutrient demand. 

However, proximal sensing methods often still involve 

manual labor in the field or with a ground-based carrier (such 

as tractors) and thus may pose the risk of interference with 

the experiment and the underlying soil through soil 

compaction. Therefore, we consider drone based or similar 

remote sensing technology as superior for high throughput 

phenotyping in field trials. 

 

5. CONCLUSION 

 

The presented study shows the power of proximal and remote 

sensing methods for HTP in experimental field trials 

especially with respect to nutrient input treatments. Vice 

versa the study reflects the high value of historical field trials 

to calibrate and validate sensor technology and algorithms to 

retrieve crop properties such as crop productivity and N status 

under field conditions. Therefore, proximal and remote 

sensing represent valuable tools to evaluate and support 

sustainable agricultural management and replace laborious 

and costly manual fieldwork. 
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