Combining digital and standard fertilization methods to reduce N surplus in winter wheat

Argento F^{1,2}, Ringger C³, Anken T², Abt F⁴, Walter A¹, El Benni N² and Liebisch F^{1,3} ¹Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland ²Competitiveness and System Evaluation, Agroscope, Tänikon 1, 8356 Ettenhausen, Switzerland ³Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland ⁴ Swiss Future Farm, Education and Counselling Centre Arenenberg, 8268, Salenstein, Switzerland

- Inaccurate use of nitrogen (N) fertilizers in agriculture causes severe environmental problems.
- N available to the plant is affected by spatial variability and the timely synchronization between inputs and demand, which can be addressed via site-specific N management.
- This study tests a combination of digital and standard methods to provide decision-support for N fertilization in winter wheat in Switzerland.
- Hypothesis: site-specific and variable rate (VR) fertilization reduces N input compared to standard uniform application (ST) without affecting yield, thus increasing N use efficiency (NUE) and reducing N surplus.

Data collection: Spectral images and soil solution

- . Grain yields were in the range 5–8 t ha⁻¹.
- No sign. differences between VR and ST.
- N fertilizer reduced in the VR between 5 and 40% increasing NUE.

Creation of application map

Site-specific N application in the field

Distinct relationship

estimated plant N uptake

between remotely

200

¹⁵⁰ 100 (kg N ha⁻¹

0

-50

2019

4

300

200

N inputs (kg N ha⁻¹)

100

z

- Net revenues in VR 4% higher than in ST.
- Surplus N 32% lower in VR than in ST Balanced N supply
 - varied from 180 to 205 kg N ha-1

In conclusion, by monitoring and managing the N variability observed in crop and soil, the established methods offer solutions to reduce N surplus. Sensor-based monitoring can lead the way to these practices, aiming to maintain profitability quality, and reduce ecological impact.

4000

3000

2000

1000

0

ha_1

revenue (CHF

Net

References

[1] Argento F et al. (2021). Combined digital and standard methods to optimize nitrogen (N) management and reduce N surplus in winter wheat (T. aestivum) production. Diss. ETH No. 27550, 1-137.

[2] Argento F et al. (2021). Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. PrecAg, 22, 364-386

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs, Education and Research EAER Agroscope