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Abstract. Dryland ecosystems are the habitat supporting
2 billion people on Earth, and they strongly impact the
global terrestrial carbon sink. Vegetation growth in drylands
is mainly controlled by water availability with strong intra-
seasonal variability. Timely availability of information at
such scales (e.g., from days to weeks) is essential for early
warning of potential catastrophic impacts of emerging cli-
mate extremes on crops and natural vegetation. However, the
large-scale monitoring of intra-seasonal vegetation dynam-
ics has been very challenging for drylands. Satellite solar-
induced chlorophyll fluorescence (SIF) has emerged as a
promising tool to characterize the spatiotemporal dynam-
ics of photosynthetic carbon uptake and has the potential to
detect intra-seasonal vegetation growth dynamics. However,
few studies have evaluated its capability of detecting fast-
changing intra-seasonal vegetation dynamics and advantages
over traditional approaches in drylands based on vegetation
indices (VIs). To fill this knowledge gap, this study utilized
the vast dryland ecosystems in the Horn of Africa (HoA) as a
testbed to characterize their intra-seasonal dynamics inferred
from satellite SIF. The HoA is an ideal testbed because its
dryland ecosystems have highly dynamic responses to short-
term environmental changes. The satellite-data-based analy-
sis was corroborated with a unique in situ SIF dataset col-

lected in Kenya – so far, the only ground SIF time series
collected on the continent of Africa. We found that SIF from
the TROPOspheric Monitoring Instrument (TROPOMI) with
daily revisit frequency identified highly dynamic week-to-
week variations in both shrublands and grasslands; such
rapidly changing vegetation dynamics corresponded to the
up- and downregulation by the fluctuations in environmen-
tal variables (e.g., air temperature, vapor pressure deficit,
soil moisture). However, neither reconstructed SIF products
nor near-infrared reflectance of terrestrial vegetation (NIRv)
from the Moderate Resolution Imaging Spectroradiometer
(MODIS), which is widely used in the literature, was able
to capture such fast-changing intra-seasonal variations. The
same findings hold at the site scale, where we found that
only TROPOMI SIF revealed two separate within-season
growth cycles in response to extreme soil moisture and rain-
fall amount and duration, consistent with in situ SIF measure-
ments. This study generates novel insights on the monitoring
of dryland vegetation dynamics and the evaluation of their
climate sensitivities, enabling the development of predictive
and scalable understanding of how dryland ecosystems may
respond to future climate change and informing the future
design of effective vegetation monitoring systems for dry-
land vegetation.
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1 Introduction

Drylands account for about 41 % of the total terrestrial land
surface and play a critical role in maintaining ecological
functions and services, regulating global carbon cycles, and
contributing to socio-economic wellbeing (Prăvălie, 2016;
Poulter et al., 2014; Ahlström et al., 2015; Piao et al., 2020;
Yao et al., 2020). In particular, drylands have expanded glob-
ally in recent decades (Lian et al., 2021) and are projected to
continue expanding in the future (Huang et al., 2015). There-
fore, it is of critical importance to understand how dryland
ecosystems respond to ongoing and future climate change for
the sake of human welfare (Huang et al., 2017; Smith et al.,
2018; Zhang et al., 2020a, 2022; Wang et al., 2022a).

Vegetation growth in drylands is mainly controlled by wa-
ter availability with strong intra-seasonal variability. Moni-
toring vegetation dynamics at the intra-seasonal scale (e.g.,
from days to weeks) is critical for understanding climate im-
pacts on carbon dynamics, detecting plant early stress, and
informing climate risk management (Otkin et al., 2018; Qing
et al., 2022; Gerhards et al., 2019), as dryland ecosystems
exhibit hyper-complex and rapid physiological/phenological
dynamics at short timescales (Adams et al., 2021; Wang et
al., 2022a). To do this, the timely availability of informa-
tion at such scales is crucial. However, for multiple reasons,
intra-seasonal dynamics can be more challenging to moni-
tor than trends at longer timescales, such as inter-seasonal or
inter-annual variations. Firstly, the former characterizes vari-
ations that are mainly driven by changes in vegetation func-
tion (i.e., leaf physiology, such as photosystem redox states,
nonphotochemical quenching, and electron transport rate, all
of which affect the efficiency of light use) (Gu et al., 2019;
Han et al., 2022; Sun et al., 2023a), while the latter charac-
terizes variations that are largely driven by changes in veg-
etation structure (e.g., leaf area, leaf angle, or pigment con-
tent, all of which affect light absorption and scattering) (Li
et al., 2024). Secondly, the time window is shorter for the
former than for the latter, with less observation sampling for
accurate depiction of temporal dynamics. Consequently, de-
tecting fast-changing intra-seasonal vegetation dynamics for
early warning purposes requires high-frequency observations
that are sensitive to dryland functional changes.

Greenness-based vegetation indices (VIs), such as the
Normalized Difference Vegetation Index (Tucker, 1979) and
near-infrared reflectance of terrestrial vegetation (NIRv;
Badgley et al., 2017), from Earth observation (EO) satellites,
have been used for vegetation monitoring for decades (Qu et
al., 2019; Lawal et al., 2021; Ouma et al., 2022; Fava et al.,
2021). For example, NIRvP, the product of NIRv and photo-
synthetically active radiation (PAR), was found to be a robust
structural proxy for photosynthesis (Dechant et al., 2022). In
the last decade, solar-induced chlorophyll fluorescence (SIF)
has emerged as a promising proxy for inferring photosyn-
thetic dynamics from canopy to global scales (Porcar-Castell
et al., 2014; Sun et al., 2023a, b). SIF has unique mechanis-

tic advantages, as it is emitted from the core of the photo-
synthetic machinery and therefore contains additional func-
tional information (e.g., light use efficiency) beyond struc-
tural information (e.g., light absorption) that is usually car-
ried by VIs. In addition, since SIF signal comes only from
active vegetation, it is less susceptible to the brightness of
soil background, unlike reflectance-based VIs (Huete et al.,
2002). These characteristics make SIF a unique observa-
tional signal for inferring photosynthetic dynamics for dry-
land ecosystems. For example, SIF has demonstrated a su-
perior capability in accurately depicting dryland ecosystem
phenology (Wang et al., 2019) and in capturing seasonal vari-
ations (Wang et al., 2022c) and inter-annual variations (Smith
et al., 2018) in in situ gross primary production (GPP). Fur-
thermore, it has facilitated many applications in drought de-
tection and ecosystem restoration in drylands (Robinson et
al., 2019; Mengistu et al., 2021; Constenla-Villoslada et al.,
2022). However, most of such evaluations were conducted at
the seasonal scale or beyond, and very few have been focused
on short timescales, e.g., intra-seasonal. We hypothesize that
SIF may present more complex intra-seasonal dynamics due
to functional changes in response to short-term environmen-
tal fluctuations, while NIRv remains relatively constant, as
there are minimal structural changes at a temporal scale of
several days to weeks, especially during the peak growing
season.

To test this hypothesis, we utilized dryland ecosystems in
the Horn of Africa (HoA; Fig. 1a) as a testbed to evaluate
the capacity of satellite SIF and NIRv in capturing the intra-
seasonal vegetation dynamics of drylands. The HoA has ex-
perienced frequent droughts and excessive rainfall (Williams
et al., 2012; Lyon and Dewitt, 2012; Funk et al., 2015;
Ngoma et al., 2021) and has suffered strong vulnerability
to climate change (Trisos et al., 2022). The highly dynamic
vegetation growth in response to volatile environmental con-
ditions puts millions of pastoralists and smallholder farmers
at risk (Matanó et al., 2022) and exacerbates the persistent
food insecurity challenges in this region (Pricope et al., 2013;
Beal et al., 2023), calling for accurate and prompt vegeta-
tion monitoring and early warning systems (Merbold et al.,
2021). In particular, in this study, we focused on the period
from October 2019 to February 2020, when excessive rainfall
occurred on the HoA (Fig. 1e), leading to anomalous veg-
etation dynamics that are challenging to depict accurately
with satellite measurements. We employed multiple high-
temporal-resolution satellite SIF products, including origi-
nal SIF retrievals from the TROPOspheric Monitoring In-
strument (TROPOMI; with unprecedented daily revisit fre-
quency for satellite SIF retrieval; Köhler et al., 2018; Guan-
ter et al., 2021), several machine-learning-reconstructed SIF
products (at a temporal resolution of 4 to 16 d), and NIRv
from the Moderate Resolution Imaging Spectroradiometer
(MODIS; at daily resolution), along with a unique ground
SIF dataset measured at an environmental research infras-
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tructure site located in Kenya – so far, the only in situ SIF
time series reported on the continent of Africa.

This paper is structured as follows: Sect. 2 introduces the
region of interest and datasets employed in this study. Sec-
tion 3 evaluates different satellite SIF products with in situ
SIF time series (Sect. 3.1) and investigates the intra-seasonal
vegetation dynamics under excessive precipitation at site and
regional levels (in Sect. 3.2 and 3.3, respectively). Section 4
discusses possible reasons and implications for discrepancies
among different datasets. Section 5 summarizes the conclu-
sions.

2 Study region and datasets

2.1 The HoA drylands

The HoA region is located in eastern Africa, including So-
malia, Ethiopia, Kenya, Eritrea, and Djibouti, with most area
covered by drylands (Fig. 1a). From the eastern coast to the
inner highlands, there is a general gradient of increasing wa-
ter availability (Fig. 1d), which drives a land cover shift from
barren areas to shrublands and to grasslands (Fig. 1b), with
a corresponding variation in vegetation greenness (Fig. 1c).
The HoA is signatured by a short rainy season (SR sea-
son; usually from October to the following January, with
variations depending on the location) and a long rainy sea-
son (LR season; usually from March to June), with two dry
seasons in between (Fig. 1h). Vegetation thrives during the
rainy seasons and wanes during the dry seasons (Fig. 1f, g).
During the short rainy season in 2019 (i.e., October 2019–
January 2020), the HoA experienced anomalously high pre-
cipitation compared to normal years (Fig. 1e). Altogether,
50 % of the total area had precipitation 2 standard devia-
tions (>2σ ) higher than normal years, mostly in the central
and southern HoA drylands, and another 39 % of the area
had precipitation 1–2 standard deviations (1–2σ ) higher than
normal years. In this study, we selected three sub-domains of
interest to investigate the intra-seasonal vegetation dynam-
ics under excessive precipitation: Region 1 (including east-
ern Ethiopia and central Somalia, dominated by shrublands),
Region 2 (including southern Somalia, dominated by grass-
lands), and Region 3 (i.e., Kenya, dominated by grasslands)
(Fig. 1b). These three sub-domains were selected because,
within each sub-domain, (1) the land cover type is relatively
homogeneous and (2) the precipitation pattern and vegetation
response are relatively consistent (Sect. 3.3).

2.2 Description of in situ SIF collection: site
characteristics, instrumentation, and SIF retrieval
algorithms

Site description. The Kapiti Research Station and Wildlife
Conservancy (called Kapiti from now on for simplicity) is
a research facility owned and managed by the International
Livestock Research Institute (ILRI) located in Machakos

County, southern Kenya (Fig. 1a). Kapiti, largely charac-
terized by flat or gently sloped topography, covers approx-
imately 13 000 ha and is located at about 1650 m above mean
sea level (Dowling et al., 2022; Carbonell et al., 2021). Kapiti
is dominated by semi-arid vegetation, including grasses,
shrubs, and isolated trees (Fig. 1f, g). The climate is semi-
arid with an average annual precipitation of approximately
500 mm distributed among two main rainy seasons (Fig. 1h).
However, the mean annual precipitation and the seasonal dis-
tribution of precipitation are highly variable, with frequent
droughts or excess rain episodes.

In situ instrument. In situ SIF data used in this study
were collected from a tower positioned in a flat area of
the Kapiti site dominated by open grasslands (1.6144° S,
37.1338° E; Fig. 1a). SIF was measured using the fluores-
cence box (FloX; JB Hyperspectral Devices GmbH, Ger-
many), an automatic hyperspectral device for the continu-
ous observation of SIF and reflectance. The FloX system
consists of two internal spectrometers (Ocean Insight, USA)
contained in a temperature-controlled case. The first spec-
trometer (i.e., QEPro) covers the spectral range 650–800 nm
with a full width at half maximum (FWHM) of 0.3 nm and
is specifically designed for the retrieval of SIF. The second
spectrometer (i.e., FLAME) covers a broader spectral range
(400–950 nm) with an FWHM of 1.5 nm and is intended for
the observation of reflectance. Each spectrometer measures
the downwelling irradiance with an up-looking cosine optic
and the upwelling radiance with a down-looking bare opti-
cal fiber (25° field of view). The down-looking fibers were
placed nadir-looking at a height of 4.5 m above the ground,
which corresponds to a footprint of ca. 1.9 m diameter. The
system was installed at the Kapiti research site on 25 Septem-
ber 2019 and measured continuously until 31 August 2021.

Processing of in situ SIF. The FloX raw data were pro-
cessed using a dedicated R script (R Core Team, 2022) devel-
oped by the manufacturer (v. 20.7). The processing included
the conversion from raw data to radiance using the calibra-
tion files of the spectrometers, the retrieval of SIF, the calcu-
lation of apparent reflectance, and the computation of quality
flags. SIF was retrieved at the O2-A absorption band (i.e.,
760 nm) using both the improved Fraunhofer Line Depth
(iFLD) method (Alonso et al., 2008) and the Spectral Fitting
Method (SFM) (Cogliati et al., 2015), denoted as FloXiFLD
SIF and FloXSFM SIF. For the iFLD method, we used the
bands at 756.04 and 760.05 nm outside and within the ab-
sorption band, respectively, while, for the SFM, we used a
fitting window of 750.12–779.90 nm. A multiplicative wave-
length conversion factor of 1.72 from Yang et al. (2015) was
applied to the retrieved SIF values to allow comparison with
satellite SIF datasets derived at 740 nm. The data from both
the QEPro and FLAME spectrometers were then filtered to
discard low-quality measurements. The filtering criteria were
defined as follows: (a) solar zenith angle (SZA) less than 70°,
(b) incoming solar radiation variation (i.e., percent difference
between the irradiance measurement before and after each
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Figure 1. (a) Spatial extent of the HoA (orange) and drylands (light yellow), defined as areas where the ratio of precipitation and potential
evapotranspiration, i.e., aridity index (AI), is less than 0.65 (Sorensen, 2007). The location of the FloX tower is marked as a green dot.
(b) MODIS land cover map (Friedl and Sulla-Menashe 2022) of the HoA in 2019. The land cover categories are grasslands (GRA), shrub-
lands (SHR), barren areas (BAR), savannas (SAV), and others. The three dashed white squares mark the three sub-domains of interest in
our regional analysis. (c, d) Spatial maps of the multi-year mean (2011–2020) of near-infrared reflectance of vegetation (NIRv) and annual
precipitation (Precip), respectively. (e) Spatial map of the standardized anomaly of precipitation during the SR season in 2019 (from Octo-
ber 2019 to January 2020) relative to the multi-year SR season mean (2011–2020) in the unit of standard deviation σ . (f, g) Pictures of the
grasslands at Kapiti where the FloX tower is located, captured before (28 September 2019) and during (26 October 2019) the SR season,
respectively. (h) Time series of precipitation at Kapiti during 2019–2020 (dashed) and 2020–2021 (dotted), when in situ SIF was collected,
compared to the multi-year mean (2011–2020; solid). The shading denotes 1 standard deviation of monthly precipitation during 2011 and
2020. The lengths of the SR and LR seasons are marked on the x axis in light blue.

target measurement) less than 1 %, (c) dynamic range of the
spectrometer between 60 % and 90 %, and (d) clearness in-
dex (i.e., the ratio between actual and potential solar irradi-
ance; Chang et al., 2020) between 0.9 and 1.1.

2.3 Satellite vegetation datasets

– TROPOMI SIF. The TROPOMI instrument on board
the Sentinel-5 Precursor (S-5P) satellite was launched
in October 2017, with an equatorial overpass time at
13:30 local solar time. It has a spatial resolution of
3.5× 7.5 km2 (3.5× 5.5 km2 since August 2019), with
a wide swath (∼ 2600 km) that enables daily global cov-
erage (Köhler et al., 2018; Guanter et al., 2021). There
are three TROPOMI SIF datasets available: one pro-
vided by the California Institute of Technology (Cal-
tech), with a fitting window of 743–758 nm (Köhler et

al., 2018), and the other two provided by the European
Space Agency (ESA), with fitting windows of 735–758
and 743–758 nm (Guanter et al., 2021). All datasets
are retrieved using the singular value decomposition
(SVD) approach. We employed two different thresh-
olds of cloud fraction (CF) for SIF intercomparison and
intra-seasonal vegetation dynamics analysis, following
Guanter et al. (2021): we selected Level 2 SIF retrievals
with CF less than 0.2 when we compared TROPOMI
SIF with in situ SIF (Sect. 3.1) to minimize the cloud in-
fluence on the retrieved SIF; we applied a less strict rule
(CF less than 0.8) when we used TROPOMI SIF to eval-
uate vegetation dynamics (Sect. 3.2 and 3.3) in order to
enable a good temporal sampling. Level 2 SIF retrievals
with an SZA larger than 70° were excluded. All se-
lected Level 2 SIF retrievals were first converted to daily
corrected SIF based on the SZA (Frankenberg et al.,
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2011) and then regridded to 0.15° pixels using a grid-
ding tool (https://github.com/cfranken/gridding, last ac-
cess: 27 May 2020). The spatial resolution of 0.15° was
selected to include enough soundings for spatial aggre-
gation to reduce measurement noise while maintaining
overall representativeness of the area around the tower
(Fig. S1).

– Reconstructed SIF products. CSIF (version 2; Zhang et
al., 2018), GOSIF (version 2; Li and Xiao, 2019), and
SIF_oco2_005 (updated version based on OCO-2 v10r
retrievals; Yu et al., 2019) are reconstructed based on
SIF retrievals from OCO-2. OCO-2, launched in 2014,
provides SIF retrievals at a resolution of 1.3× 2.25 km2

with a 16 d revisit cycle and an equatorial overpass time
at 13:30 local solar time (Sun et al., 2018). One of
the limitations of OCO-2 SIF retrievals is the incom-
plete global coverage, with large spatial gaps between
satellite tracks. The overall strategy for generating these
reconstructed SIF products is similar: (1) establishing
statistical relationships between available OCO-2 SIF
measurements and ancillary variables (e.g., surface re-
flectance, vegetation indices, meteorological forcings)
using machine learning algorithms (e.g., neural net-
works, cubic regression tree model) and (2) applying
the relationship to ancillary variables with global cov-
erage to fill the gaps where OCO-2 retrievals are not
available. These three products differ in the choice of
machine learning approaches and ancillary variables
that were used to generate them. They are provided
at a spatial resolution of 0.05° and a temporal resolu-
tion of 4, 8, and 16 d, respectively. The three OCO-2-
based SIF products (evaluated at 757 nm) were mul-
tiplied with a wavelength correction factor of 1.69 to
match with TROPOMI SIF (evaluated at 740 nm). In ad-
dition, we also employed RTSIF, a recent reconstructed
SIF dataset based on TROPOMI SIF (Chen et al., 2022).
As TROPOMI SIF has only been available since 2018,
Chen et al. (2022) similarly utilized a machine learning
algorithm and ancillary datasets to reconstruct a long-
term SIF record during 2001–2020 at 0.05° and 8 d res-
olution.

– SIF yield. SIF yield carries information on plant phys-
iological/functional variations in response to environ-
mental changes (Sun et al., 2015; Yoshida et al., 2015;
Yang et al., 2015; Miao et al., 2018; Magney et al.,
2019; Sun et al., 2023a). In this study, to tease out
the plant functional variations from structural variations
contained in the remotely sensed SIF signal, we de-
rived SIF yield=SIF/PAR/NIRv, following Dechant et
al. (2020).

– MODIS NIRv. NIRv used in this study was calculated
from the MODIS MCD43A4 (version 6.1) Nadir Bidi-
rectional Reflectance Distribution Function (BRDF)-

Adjusted Reflectance (NBAR) dataset (Schaaf and
Wang, 2021), provided at daily and 500 m resolution.
To maintain a good sample size for vegetation dynam-
ics analysis, we kept the data with quality flags as 0 (full
BRDF inversions) or 1 (magnitude inversion), following
Wang et al. (2018).

2.4 Climate variables

Precipitation data were obtained from the Climate Hazards
group Infrared Precipitation with Stations (CHIRPS; version
2.0) (Funk et al., 2015). CHIRPS covers 50° S–50° N from
1981 to present at 0.05° and daily resolution and is gener-
ated by incorporating cold cloud duration (CCD) from satel-
lite observations and ground data from rain gauges (Funk et
al., 2015). CHIRPS precipitation estimates have shown great
agreement with ground data in Africa (Dinku et al., 2018;
Ayehu et al., 2018; Ageet et al., 2022; Ngoma et al., 2021).

Soil moisture (SM) was from ESA-CCI (v06.1) by the
European Space Agency (ESA) Climate Change Initiative
(CCI) program, offered at 0.25° daily resolution from 1978
to 2020 (Preimesberger et al., 2021). It was generated by har-
monizing the soil moisture estimates (typically at a depth of
0–5 cm) from multiple active and passive satellite microwave
sensors (Dorigo et al., 2017; Gruber et al., 2019). In this
study, we employed an updated version from Preimesberger
et al. (2021).

Air temperature (Tair), water vapor pressure deficit (VPD),
and PAR, at the OCO-2 and TROPOMI nominal overpass
time at the Equator (i.e., 13:30 local solar time), were ex-
tracted from the Global Modeling and Assimilation Office
(GMAO) Modern-Era Retrospective analysis for Research
and Applications version 2 (MERRA-2) reanalysis (hourly,
long 0.625°× lat 0.5°) (GMAO, 2015a, b).

2.5 Spatial and temporal matching criteria

We employed multiple spatial and temporal matching cri-
teria for the intercomparison among different SIF datasets
(Sect. 3.1) and for the analysis of intra-seasonal vegetation
dynamics (Sect. 3.2 and 3.3). The principle is as follows:
for the SIF intercomparison against in situ SIF, we aimed
to ensure the best spatial/temporal consistency between in
situ SIF and each satellite SIF dataset to be evaluated; for
the intra-seasonal analysis, we attempted to ensure the spa-
tial/temporal consistency among all the datasets (including
SIF and other ancillary variables) so that all the variables re-
fer to the same spatial domains and time intervals.

2.5.1 Spatial and temporal matching criteria for SIF
intercomparison

– Spatial matching. For comparison with in situ SIF mea-
surements, TROPOMI was regridded to a 0.15° pixel
(as explained in Sect. 2.3) centered at the tower loca-
tion. For the reconstructed SIF products, we extracted
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the value of the 0.05° pixel where the tower is located
to minimize the difference in spatial scales.

– Temporal matching. For the paired comparison between
in situ SIF and TROPOMI, we selected the quality-
filtered in situ SIF observations (Sect. 2.2) collected
within a time window of ±30 min with respect to the
overpass time of each TROPOMI observation. The se-
lected measurements were averaged after applying the
daily correction factor based on the SZA, which was
also applied to the TROPOMI SIF. The TROPOMI ob-
servations for which no in situ SIF observations were
available in the ±30 min time window were discarded.
In total, 64 data pairs were used for comparison.

For the paired comparison between in situ SIF and the
reconstructed SIF products, we extracted the quality-
filtered in situ SIF within a ±30 min time window cen-
tered at the OCO-2 and TROPOMI nominal overpass
time at the Equator (i.e., 13:30 local solar time); applied
the daily correction factor; and then averaged the mea-
surements across 4, 8, or 16 d periods to match with the
temporal resolution of the reconstructed products. In to-
tal, 67, 84, 40, and 55 data pairs were used for com-
parison for CSIF, GOSIF, SIF_oco2_005, and RTSIF,
respectively.

2.5.2 Spatial and temporal matching criteria for
intra-seasonal analysis

To ensure consistency among all datasets, we aggregated
or resampled all datasets (e.g., in situ SIF, TROPOMI SIF,
MODIS NIRv, and climate variables) to the same 0.15°
and 8 d resolutions. The 0.15° pixels were set so that the
boundary of the 0.15° pixel around the tower was aligned
with the 3× 3 0.05° pixels of GOSIF and RTSIF closest
to the tower. Therefore, this is slightly different from the
0.15° pixel for TROPOMI SIF described in Sect. 2.5.1. The
8 d resolution was selected (1) to reduce the measurement
noise of TROPOMI SIF and in situ SIF while preserving
the fine-scale intra-seasonal temporal variations and (2) to
match the coarser temporal resolution of GOSIF and RT-
SIF. For the analysis of intra-seasonal dynamics at Kapiti
(Sect. 3.1), we selected the quality-filtered in situ SIF ob-
servations (Sect. 2.2) collected within a time window of
±30 min with respect to the overpass time of TROPOMI and
applied a daily correction factor based on the SZA to convert
them into daily values. The daily values were then aggregated
to the same 8 d intervals.

3 Results

3.1 Evaluation of satellite SIF datasets with in situ SIF

Leveraging the in situ SIF time series at Kapiti, we evalu-
ated the fidelity of various satellite-based SIF datasets dur-

ing 2 consecutive years (i.e., from September 2019 to Au-
gust 2021) when in situ SIF was collected (Figs. 2, S2). In
situ SIF showed strong inter-annual variations, with a much
stronger signal in the first year compared to the second year,
driven by the difference in precipitation between the 2 years
(Fig. 1h). It also exhibited pronounced intra-annual varia-
tions, such as growth peaks during SR seasons (e.g., Novem-
ber 2019–January 2020, December 2020) and LR seasons
(e.g., May 2020, June 2021) and a dry season with intermit-
tent precipitation (February–March 2021; Fig. 1h) (Fig. 2a).
The satellite-based SIF datasets showed different degrees of
consistency with in situ SIF. The temporal dynamics of in situ
SIF were well captured by TROPOMI SIF (Fig. 2a), showing
high agreement with FloX SIFiFLD (r = 0.71–0.83; Fig. 2c–
e) and slightly reduced agreement with FloX SIFSFM (r =
0.64–0.76; Fig. S2c–e). Instead, the reconstructed SIF prod-
ucts (i.e., CSIF, GOSIF, SIF_oco2_005, RTSIF), although
highly consistent among each other, showed a greater dis-
crepancy with in situ SIF compared to TROPOMI (Fig. 2b).
The reconstructed SIF products showed less frequent intra-
seasonal variations, and their magnitudes in variation are
sometimes inaccurate (e.g., the drop in December 2019 and
the peak in February–March 2021), leading to lower correla-
tion with FloX SIFiFLD compared to TROPOMI (r = 0.58–
0.62; Fig. 2f–i). Their correlation with FloX SIFSFM became
insignificant (Fig. S2f–i), likely because the SFM approach
with a wide fitting window is more sensitive to atmospheric
contamination (Chang et al., 2020). This is probably magni-
fied when the data are aggregated over time windows of sev-
eral days, such as in the comparison against the reconstructed
SIF products. Note that some negative values appear in FloX
SIF and TROPOMI SIF, especially during the time periods
with weak SIF signals, as a result of measurement and re-
trieval noise (Guanter et al., 2021). These negative values are
retained in the evaluation to avoid an artificial positive bias
in spatial and temporal aggregation.

In the following analysis of intra-seasonal vegetation dy-
namics, we only selected a subset of SIF datasets. We se-
lected FloX SIFiFLD because of its lower data noise com-
pared to FloX SIFSFM, TROPOMI SIF from ESA (fitting
window 743–758 nm) because of its higher consistency with
in situ SIF compared to the other two TROPOMI SIF datasets
(Figs. 2d, S2d), GOSIF as a representative of the three OCO-
2-based reconstructed SIF products given the overall consis-
tency among them, and RTSIF as a TROPOMI-based recon-
structed SIF product.

3.2 Intra-seasonal dynamics at Kapiti

We evaluated the capability of satellite SIF and NIRv in char-
acterizing the intra-seasonal vegetation dynamics at Kapiti
from October 2019 to February 2020 (i.e., the SR season
and the subsequent dry season) (Fig. 3), where/when in situ
data (including SIF) are available to help verify and interpret
the intra-seasonal dynamics. This period was chosen because
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Figure 2. (a, b) Time series of FloX SIFiFLD and satellite SIF at 740 nm from October 2019 to September 2021. (c–e) Scatterplots between
FloX SIFiFLD and TROPOMI SIF from ESA (fitting window 735–758 and 743–758 nm) and Caltech, respectively. (f–i) Scatterplots between
FloX SIFiFLD and CSIF, GOSIF, SIF_oco2_005, and RTSIF, respectively. All SIF values are daily corrected. The dotted line marks the 1 : 1
line.

excessive precipitation occurred during this SR season (i.e.,
799 mm relative to the 2011–2020 average of 343± 170 mm;
Fig. 1h), leading to complex vegetation dynamics that can be
challenging to be accurately characterized by satellite mea-
surements. These challenges arise mainly from limited tem-
poral frequency and/or spatial resolution of satellite data that
can easily miss fast-changing vegetation functions. There-
fore, our chosen period is unique in evaluating the efficacy
of satellite measurements in capturing such complex dynam-
ics.

We found that there was a rapid growth revealed in all
SIF datasets in response to precipitation and soil moisture
increase in October 2019 (Fig. 3a, b). NIRv showed a simi-
lar increase during this period. However, divergence among

different SIF and NIRv datasets started to emerge in early
November 2019 and persisted through February 2020. The
reconstructed SIF products (i.e., RTSIF, GOSIF) and MODIS
NIRv remained relatively stable from November 2019 to
mid-January 2020 before a subsequent gradual decline. In
contrast, TROPOMI SIF exhibited distinct dynamics dur-
ing this period, with double peaks in mid-November 2019
and late January 2020, and a sharp reduction (by 52 %
relative to the first peak) in between. This double-peak
pattern in TROPOMI SIF held, regardless of sources of
TROPOMI data, fitting windows used for SIF retrievals, or
quality-filtering criteria (e.g., SZA, CF, and retrieval error)
(Fig. S3a–d). The double-peak pattern was not an artifact of
variations in escape probability or sun-viewing geometry but
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was a result of the true SIF emission (Zhang et al., 2020b,
Fig. S3e).

In situ SIF confirmed these distinct intra-seasonal dy-
namics depicted by TROPOMI SIF, with similar magnitude
(61 %) and duration of the mid-season dip (Fig. 3b). As the
product of NIRv and incoming PAR (i.e., NIRvP; Dechant
et al., 2022) has recently been promoted as a strong proxy
for photosynthesis, we further computed NIRvP with in situ
NIRv and PAR. However, we found that it only accounted
for a limited extent of mid-season reduction (22 %, relative
to the maximum in mid-November) (Fig. S4). This finding
suggests that (1) the suppression of PAR during the exces-
sively rainy period was not the cause of the observed SIF
reduction and that (2) NIRv itself is insufficient to timeously
capture the rapid and complex intra-seasonal dynamics.

To better demonstrate the intra-seasonal temporal dynam-
ics, we further calculated the temporal change rate for each
dataset (i.e., temporal changes between two consecutive time
steps that are 8 d apart), to present the rate of temporal
fluctuations (Fig. 3c). It was evident that both in situ SIF
and TROPOMI SIF showed strong intra-seasonal variations,
while the reconstructed SIF products and MODIS NIRv pre-
sented minimal intra-seasonal variations.

What are the underlying processes driving such fast-
changing intra-seasonal dynamics revealed by in situ and
TROPOMI SIF? The strong mid-season reduction in SIF
likely resulted from functional changes in vegetation photo-
synthetic activities, driven by grass phenology due to persis-
tent rainfall (Reyer et al., 2013; Zeppel et al., 2014) (Fig. 3a).
The onset of the herbaceous vegetation growth occurred
in October 2019, triggered by abundant precipitation and
soil moisture; the growth peaked in early November 2019,
as alluded to by the PhenoCam images collected at Kapiti
(Fig. S5a). The grass progressed to the reproductive stage
during early and mid-December (Fig., S5b; Cheng et al.,
2020; Zhang et al., 2023), resulting in a gradual decrease in
the photosynthetic activity, possibly because of nutrient re-
mobilization and carbohydrate sink limitation (Tejera-Nieves
et al., 2023). At the same time, the persistence of soil mois-
ture facilitated the onset of a new growth cycle, likely with a
species composition shift (Muthoka et al., 2022; Shaw et al.,
2022), which reached its second peak in early February 2020
(Fig. S5c). However, such complex intra-seasonal dynamics
cannot be captured by NIRv or the reconstructed SIF (see
Sect. 4 for a more thorough discussion).

3.3 Intra-seasonal dynamics for the entire HoA
drylands

Does the stronger sensitivity of TROPOMI SIF (compared
to the reconstructed SIF and NIRv) in characterizing fast-
changing intra-seasonal dynamics hold across HoA drylands,
beyond the single site at Kapiti? To answer this question, we
conducted in-depth regional analysis for the entire HoA dry-
lands from October 2019 to February 2020, when excessive

precipitation occurred in most of the region (Fig. 1e). Given
the outstanding spatial heterogeneity of biome types, precip-
itation patterns, and vegetation responses in the HoA, we se-
lected three sub-domains for analysis (Fig. 1b) to ensure that,
within each sub-domain, (1) the land cover type is relatively
homogeneous and (2) the intra-seasonal variations in precipi-
tation and subsequent vegetation growth were relatively con-
sistent (Figs. S6, S7). For example, Region 1 and Region 2
(in central and southeastern HoA, dominated by shrublands
and grasslands, respectively) started their rainy season in
early October, which stimulated fast vegetation growth. The
vegetation activity peaked around early November and grad-
ually decreased after December, when there was little precip-
itation. In contrast, in Region 3 (in southern HoA, dominated
by grasslands), precipitation occurred later (e.g., mainly dur-
ing late October and early December). Correspondingly, the
vegetation phenology was shifted, with a peak around early
December.

While all the satellite SIF and NIRv datasets tracked the
seasonal variations in the three sub-domains well, we found
that TROPOMI SIF revealed more intra-seasonal variations
during the growing seasons compared to the reconstructed
SIF (i.e., RTSIF and GOSIF) and MODIS NIRv. In addition,
TROPOMI SIF also showed higher values during the peak
growing season and lower values during the dry season (i.e.,
February).

To investigate the intra-seasonal variations revealed by
TROPOMI SIF, we zoomed in to a shorter time window
for each of the sub-domains (i.e., dashed boxes in Fig. 4).
For each time window, TROPOMI SIF showed a faster
and stronger increase from a similar starting point, com-
pared to the reconstructed SIF and MODIS NIRv. As a re-
sult, TROPOMI SIF showed a much stronger vegetation
signal (i.e., higher values) during the peak growing sea-
son: 1 November in the central area of Region 1 (Fig. 5),
1 November in the coastal area of Region 2 (Fig. S8), and
25 November in the central and southern area of Region
3 (Fig. S10). After reaching a peak or close-to-peak value,
TROPOMI SIF showed a decline during all three selected
windows: a region-wide reduction for Region 1 and 2 on
9 November and a reduction in the central and southern area
of Region 3 on 3 December. These reductions in TROPOMI
SIF were quickly recovered within 1 week. For Region 1 and
Region 3, there was another subsequent region-wide sharp
reduction, on 25 November and 19 December respectively,
before the vegetation activity gradually ceased. Figures 6,
S9, S11 depict the temporal change rate in different SIF
and NIRv datasets. While TROPOMI revealed strong intra-
seasonal variations during the peak growing season, the re-
constructed SIF and MODIS NIRv remained nearly invari-
ant.

To identify drivers underlying the intra-seasonal variations
observed in TROPOMI SIF, we further investigated meteoro-
logical variables from MERRA-2 and ESA-CCI SM (Fig. 7).
We found that the reductions in TROPOMI SIF (e.g., Re-
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Figure 3. (a) Temporal variation in daily precipitation and 8 d average SM at Kapiti between October 2019 and February 2020. The multi-
year average of SM during 2011–2020 is plotted as a dashed blue line for reference. (b) Temporal variation in vegetation signals at Kapiti
from various SIF and NIRv datasets. NIRv was multiplied with a factor of 2.25 to match the magnitude range of SIF for visual clarity.
(c) Temporal change rate in SIF (1SIF) or NIRv (1NIRv), calculated as the change in the current 8 d period relative to the previous 8 d
period. The horizontal dashed line denotes no change in SIF or NIRv. The vertical dashed lines roughly divide the study period into four
segments based on the sign of 1SIF of in situ and TROPOMI SIF (mostly consistent with each other, as marked along the x axis). The x
axis labels represent the starting date of each 8 d interval.

gion 1 on 9 and 25 November, Region 2 on 9 November,
and Region 3 on 3 and 19 December) mostly coincided with
increased Tair and VPD and with decreased SM. On the
other hand, the subsequent recoveries (e.g., Region 1 and 2
on 17 November and Region 3 on 11 December) all corre-
sponded to decreased Tair and VPD and to increased SM.
Such relationships between TROPOMI SIF and meteorolog-
ical variations suggest that the intra-seasonal variations ob-
served in TROPOMI SIF may represent the real vegetation
status and are less likely artifacts of data noise. Again, the
reconstructed SIF and MODIS NIRv, on the contrary, failed
to capture such fast-changing intra-seasonal vegetation dy-

namics driven by environmental fluctuations (Fig. S12). With
variations in PAR mostly showing opposite changes to varia-
tions in TROPOMI SIF (e.g., Fig. 7a), NIRvP could not cap-
ture such intra-seasonal variations either.

Furthermore, we found that the SIF yield calculated from
TROPOMI SIF (i.e., SIF yield=SIF/PAR/NIRv, following
Dechant et al., 2020) has an even higher consistency with
the short-term fluctuations in Tair, VPD, and SM (Fig. 7).
This further suggests that the intra-seasonal variations in
TROPOMI SIF are largely driven by the functional changes
regulated by environmental conditions. Interestingly, while
TROPOMI SIF showed a slight increasing trend in Region
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Figure 4. Temporal variations in various SIF and NIRv datasets for the three sub-domains (Fig. 1b) in the HoA drylands from October 2019
to February 2020. NIRv was multiplied with a factor of 2.25 to match the magnitude range of SIF for visual clarity. The date labels represent
the starting date of each 8 d interval. The dashed boxes mark the periods when TROPOMI SIF revealed strong intra-seasonal variations.

Figure 5. Intra-seasonal variations in (a) TROPOMI SIF, (b) RTSIF, (c) GOSIF, and (d) MODIS NIRv in the shrublands of Region 1 during
8 October and 25 November 2019. The date labels represent the starting date of each 8 d period.

2 during 16 October and 1 November, TROPOMI SIF yield
showed a large decreasing trend which corresponded to an in-
creasing trend in Tair and VPD and a decreasing trend in SM
(Fig. 7b). While TROPOMI SIF continued to increase as a
result of increasing PAR, the grasslands in Region 2 already
suffered functional depression due to thermal and/or water
stress. Similarly, in Region 1 on 24 October, TROPOMI SIF
also showed a slight increase due to an increase in PAR,
while TROPOMI SIF yield showed a reduction related to in-
creased Tair and VPD and to decreased SM (Fig. 7a). This
underscores the unique and valuable functional information
contained in TROPOMI SIF for stress early detection and
preparedness. In addition, during the second timestamp of
all three selected windows (i.e., 16 October for Region 1 and
2 and 25 November for Region 3), when TROPOMI SIF had
a strong increase, TROPOMI SIF yield also increased under
favorable conditions (e.g., relatively lower Tair and VPD and
higher SM). This might explain the stronger vegetation sig-
nals observed in TROPOMI SIF compared to other datasets
(with less increase in SIF yield; Fig. S12) during the peak
growing season (Fig. 4). The environmental effect on vege-
tation function is further demonstrated by the strong corre-

lation between SIF yield derived from TROPOMI and me-
teorological variables, especially Tair and VPD (Fig. 7d–f).
This highlights the unique capability of TROPOMI SIF for
vegetation monitoring and ultimately carbon budget quantifi-
cation.

4 Discussion

4.1 Dryland intra-seasonal vegetation dynamics under
excessive precipitation

Dryland ecosystems are characterized by highly variable
vegetation dynamics in response to environmental drivers at
short timescales. Monitoring and understanding their behav-
ior under different environmental conditions is critical for
predicting the fate of the global terrestrial carbon sink and
for supporting the livelihood of billions of people who live
therein. In this study, we revealed the fast-changing intra-
seasonal vegetation dynamics of HoA drylands under exces-
sive precipitation, utilizing several high-temporal-resolution
SIF and VI datasets, especially TROPOMI SIF with unprece-
dented daily revisit frequency for satellite SIF retrieval. As
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Figure 6. Temporal change rate in (a) TROPOMI SIF, (b) RTSIF, (c) GOSIF, and (d) MODIS NIRv in the shrublands of Region 1 during
16 October and 25 November 2019. The date labels represent the starting date of each 8 d period.

Figure 7. (a–c) Intra-seasonal variations in TROPOMI SIF, TROPOMI SIF yield, Tair, VPD, SM, and PAR for the three sub-domains during
the selected time windows (Fig. 4). The y axes for Tair and VPD are reversed for visual clarity. The x-axis labels represent the starting date of
each 8 d interval. (d–f) Scatterplots between TROPOMI SIF yield and Tair (pink circle), VPD (brown square), and SM (blue triangle) for the
three sub-domains during the selected time windows. The dashed lines represent fitted linear regression lines, with correlation coefficients
(R) noted in the upper left of each panel.

revealed by TROPIMI SIF, we found interesting temporal dy-
namics of dryland vegetation under excessive precipitation at
both site and regional levels. At the Kapiti site, there was not
only a more pronounced vegetation signal (Fig. 2), but also
complex phenological and physiological changes happening.
In response to extreme soil moisture and rainfall amount and
duration, two separate growth cycles occurred within a sin-

gle rainy season, accompanied by a reduction in SIF (pos-
sibly also productivity) during the transition period between
the two growth cycles (Fig. 3). Turner et al. (2020) also re-
ported a double-peak SIF signal within one single growing
season, due to the different phenology of grasses and ever-
green forests, which MODIS VIs failed to capture. At the re-
gional scale, TROPOMI SIF showed highly dynamic week-
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to-week variations (Figs. 4–6) functionally up- and down-
regulated by environment fluctuations (e.g., Tair, VPD, and
SM; Fig. 7) for all three selected sub-domains with distinct
land cover types, precipitation variations, and vegetation re-
sponses. Such short-term plant stresses and recoveries sug-
gested strong environmental constraints (e.g., thermal and/or
water stress) on dryland ecosystem functions, even during
a rainy season with anomalously high precipitation. Such
vegetation dynamics were not able to be unraveled by other
datasets (e.g., MODIS NIRv). The findings in this study may
alter our knowledge about the monitoring of dryland ecosys-
tems and their phenological and physiological responses to
a changing climate under future projections, which inspires
further investigation.

4.2 Advantages of SIF over VIs in revealing
intra-seasonal dynamics

Satellite SIF has emerged as a promising proxy for inferring
spatiotemporal dynamics of photosynthetic activities from
canopy to global scales. Numerous studies have compared
the capability of SIF and VIs in characterizing the tempo-
ral dynamics of GPP at seasonal or inter-annual scales. SIF
has unique mechanistic advantages, as it is emitted from the
core of the photosynthetic machinery and therefore contains
additional functional information beyond the structural in-
formation usually carried by VIs. On the other hand, SIF has
its practical limitations (e.g., comparatively coarser spatial
and temporal resolutions and higher measurement/retrieval
noise) relative to the greenness-based VIs that are much eas-
ier to retrieve. The general consensus from previous stud-
ies is that satellite SIF has an overall similar performance
to greenness-based VIs at seasonal cycles and beyond. This
is especially the case for crops and deciduous forests where
seasonal variations in structure (e.g., leaf area index and pig-
ment content) are dominant (Dechant et al., 2020; Yang et
al., 2015). In ecosystems where functional changes (e.g., leaf
physiology) play a more impactful role compared to struc-
tural changes (e.g., evergreen conifers), more pronounced ad-
vantages have been found in SIF over greenness-based VIs in
inferring GPP seasonal dynamics (Magney et al., 2019; Pier-
rat et al., 2022).

While previous studies have mostly been focused on evalu-
ation at the seasonal scale and beyond, this study highlighted
the differences on shorter timescales, e.g., intra-seasonal. To
achieve this, we took advantage of TROPOMI SIF (with
daily revisit frequency) and employed HoA drylands (with
highly dynamic vegetation changes in response to the envi-
ronment) as a testbed. We found that only TROPOMI SIF
revealed fast-changing phenological and physiological vari-
ations at both site and regional levels, while MODIS NIRv
failed to capture them, despite the fact that the latter is pro-
vided at high temporal resolution. This is mainly because,
at a temporal scale of several days to weeks, especially dur-
ing the peak growing season, the functional changes (as con-

tained in SIF) in response to short-term environmental fluc-
tuations are dominant compared to structural changes (as
represented by NIRv), as greenness remains relatively con-
stant (Daumard et al., 2010; Martini et al., 2022). This is
in analogy to the case of evergreen conifers at the seasonal
scale (Magney et al., 2019; Pierrat et al., 2022). Such differ-
ences suggest that SIF contains unique mechanistic value in
estimating carbon sequestration, monitoring vegetation sta-
tus, detecting early plant stress, and understanding climate–
vegetation interactions at short timescales.

A recent study by Wang et al. (2022c) evaluated the abil-
ity of satellite SIF and NIRv in capturing the seasonal vari-
ation in GPP in dryland ecosystems and found that NIRv
performed better than SIF for low-productivity sites, likely
because of the low signal-to-noise ratio of SIF retrievals.
This does not necessarily contradict the findings of our study.
Firstly, Wang et al. (2022c) examined the performance of SIF
and NIRv at the seasonal scale over about 2 years, when SIF
may have only marginal advantages in inferring function-
related variations that are overwhelmed by structure-related
variations. In contrast, our study focused on intra-seasonal
variations, when functional changes have a stronger impact.
Secondly, our evaluation is conducted on a relatively wet pe-
riod when vegetation signals are strong; therefore the data
noise has less influence on the retrieved vegetation signals.

4.3 Deficiencies of reconstructed SIF products

The native satellite SIF retrievals have long suffered coarse
spatial and/or temporal resolutions, large data noise, and
short time spans. It is hoped that the reconstructed SIF prod-
ucts that are derived from the native SIF retrievals could
overcome these practical limitations, improving the capabil-
ity of satellite SIF in depicting vegetation dynamics across
scales. Indeed, there have been many efforts in the past years
in developing such products (e.g., Duveiller and Cescatti,
2016; Zhang et al., 2018; Li and Xiao, 2019; Yu et al.,
2019; Wen et al., 2020; Ma et al., 2020, 2022; Chen et
al., 2022; Wang et al., 2022b). However, this study found
that these reconstructed SIF products (i.e., based on OCO-
2 or TROPOMI) resembled the spatiotemporal patterns of
MODIS NIRv and were unable to characterize the complex
fast-changing intra-seasonal dynamics (that were success-
fully captured by TROPOMI SIF), although these products
were provided at fine temporal resolution (e.g., 4 d for CSIF).

This may be explained by two aspects of generating these
reconstructed SIF products. Firstly, the native SIF retrievals
used for SIF reconstruction must contain the signals of fast-
changing intra-seasonal vegetation dynamics. However, the
native SIF retrievals from OCO-2 (with a 16 d revisit cycle)
most likely miss these fast-changing signals, especially dur-
ing the rainy seasons, when clouds may exacerbate the is-
sue. In contrast, the native SIF retrievals from TROPOMI
(with daily revisit frequency) can track the complex intra-
seasonal vegetation dynamics. This highlights the demand
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for native SIF retrievals with high temporal resolutions, e.g.,
several upcoming geostationary missions, such as Tropo-
spheric Emissions: Monitoring of Pollution (TEMPO) and
the Copernicus Sentinel-4, which may greatly facilitate cap-
turing vegetation dynamics at fine temporal scales and un-
derstanding climate–vegetation interactions.

Secondly, the SIF reconstruction must faithfully preserve
the spatiotemporal variations in native SIF. The procedure of
SIF reconstruction is essentially a mapping from the ancil-
lary datasets to SIF with calibrated relationships (Sect. 2.3).
Most of the SIF reconstruction studies calibrated the re-
lationships based on evaluation across all timestamps and
all pixels, when/where the structural changes overwhelm-
ingly dominate the variations; therefore whether the impor-
tant functional information is preserved is not effectively
evaluated. For example, the SIF yield calculated from RT-
SIF and GOSIF is largely dampened compared to that from
TROPOMI SIF, which leads to flatter intra-seasonal varia-
tions in RTSIF and GOSIF and therefore to much weaker
environmental sensitivities (Fig. S12) and lower consistency
with in situ SIF (Fig. 2). This is, however, not contradicted
with the high consistency between RTSIF and TROPOMI
(e.g.,R2

= 0.907, regression slope= 1.001, reported in Chen
et al., 2022), probably as a result of both correlating with
absorbed PAR. To preserve the functional information of
the native SIF retrievals in the reconstructed SIF, one gen-
eral idea is to impose a stronger constraint from the na-
tive SIF during the SIF reconstruction. For example, Wen
et al. (2020) demonstrated that, by stratifying the mod-
els in time and space, the reconstructed SIF could be bet-
ter constrained by spatiotemporal variations in the native
SIF and therefore be capable of capturing the functional
changes. Another possible approach is to calculate the differ-
ences between the reconstructed SIF and the native SIF and
to redistribute the prediction residuals to the reconstructed
SIF. Recently, Ma et al. (2022) utilized such an approach
to reconstruct high-resolution SIF from the Global Ozone
Monitoring Experiment-2 (GOME-2). With the redistribu-
tion of prediction residuals, the reconstructed SIF showed a
greater consistency with the native GOME-2 SIF. However,
such approaches can only be applied to timestamps/regions
when/where the native SIF retrievals are available. It could
be challenging to make such adjustments for the extrapolated
SIF when/where the native SIF retrievals do not exist (e.g.,
TROPOMI before 2018, spatial gaps for OCO-2).

4.4 Limitations and future work

Nonetheless, there are still several limitations in this study,
which warrants future work. Firstly, while this study utilized
the HoA dryland ecosystems as a testbed to evaluate the ca-
pability of different satellite SIF and VI products in captur-
ing intra-seasonal dynamics, such comparison could be fur-
ther conducted for other dryland regions or other vegetation
types towards a more comprehensive evaluation. Secondly,

limited by the scarcity of in situ data, the intra-seasonal vari-
ations in SIF inferred in this study were not directly linked to
ecosystem productivity. Such evaluation could be conducted
in regions with more in situ data, e.g., flux tower measure-
ments, as a complementary assessment. Thirdly, while this
study evaluated the intra-seasonal variations inferred from
different products in a qualitative way, further quantitative
analysis can be done in future work, e.g., quantifying the cli-
mate sensitivities of vegetation carbon dynamics.

5 Conclusions

Accurately monitoring the fast-changing vegetation dynam-
ics of dryland ecosystems has been critical for understanding
their climate sensitivities and informing climate risk manage-
ment. In this study, we evaluated the advantages of SIF over
greenness-based VIs in characterizing intra-seasonal (i.e.,
from days to weeks) vegetation dynamics, utilizing dryland
ecosystems (e.g., shrublands and grasslands) in the Horn of
Africa (HoA) as a testbed. At both site and regional levels,
we found that TROPOMI SIF revealed fast-changing phe-
nological and physiological variations at the intra-seasonal
scale, while MODIS NIRv and several reconstructed SIF
products did not. Specifically, at the site level, our results
showed that TROPOMI SIF revealed two separate within-
season growth cycles in response to extreme soil moisture
and rainfall amount and duration, which was corroborated
by in situ SIF measurements and PhenoCam images. At
the regional level, TROPOMI SIF and SIF yield exhibited
highly dynamic week-to-week variations in both shrublands
and grasslands, driven by environmental fluctuations (e.g.,
Tair, VPD, SM). MODIS NIRv could not capture such fast-
changing intra-seasonal variations but remained relatively
stable during the same period. Interestingly, the machine-
learning-reconstructed SIF products were unable to charac-
terize such intra-seasonal dynamics either, despite their ap-
proximately weekly temporal resolutions, rooted in insuf-
ficient temporal granularity of their original SIF retrievals
and inadequate constraints from native SIF retrievals dur-
ing the reconstruction. Our results indicate that SIF car-
ries mechanistic advantages over NIRv in monitoring fast-
changing intra-seasonal dynamics for dryland ecosystems
but that high-temporal-resolution SIF is essential for cap-
turing such complicated patterns. This study generates novel
and important insights for developing effective real-time veg-
etation monitoring systems to understand carbon dynamics
and inform climate risk management.

Code and data availability. In situ SIF data are available
upon request to micol.rossini@unimib.it. TROPOMI_ESA
can be accessed at https://doi.org/10.5270/esa-s5p_
innovation-sif-20180501_20210320-v2.1-202104 (NOVEL-
TIS et al., 2021). TROPOMI_Caltech can be accessed at
ftp://fluo.gps.caltech.edu (Köhler, 2023). RTSIF can be accessed
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at https://doi.org/10.6084/m9.figshare.19336346.v2 (Chen, 2022).
CSIF can be accessed at https://doi.org/10.17605/OSF.IO/8XQY6
(Zhang, 2022). GOSIF can be accessed at http://data.globalecology.
unh.edu/data/GOSIF_v2 (Li and Xiao, 2022). SIF_oco2_005
can be accessed at https://doi.org/10.3334/ORNLDAAC/1863
(Yu et al., 2021). MODIS MCD43A4 can be accessed at
https://doi.org/10.5067/MODIS/MCD43A4.061 (Schaaf and
Wang, 2021). CHIRPS precipitation data can be downloaded
at https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (Funk et al.,
2014). ESA-CCI soil moisture data can be accessed at https://
catalogue.ceda.ac.uk/uuid/43d73291472444e6b9c2d2420dbad7d6/
(Dorigo et al., 2021). MERRA-2 reanalysis can be accessed at
https://doi.org/10.5067/VJAFPLI1CSIV, https://doi.org/10.5067/
L0T5GEG1NYFA (GMAO, 2015a, b). MODIS LC can be accessed
at https://doi.org/10.5067/MODIS/MCD12C1.061 (Friedl and
Sulla-Menashe, 2022). Code for analyses and figures is available at
https://github.com/JiamingWen/Kapiti_intraseasonal (last access:
11 April 2025; DOI: https://doi.org/10.5281/zenodo.15200357,
Wen, 2025).
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