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Predicting the daily DM intake (DMI) of lactating dairy cows is an essential criterion for formulating diets 
according to requirements, which limits the application of safety margins in economically and environ-
mentally sensitive nutrients, such as energy, protein, and phosphorus. An accurate estimation of nutrient 
excretion, which is necessary for good practice in crop fertilisation, is also highly dependent on DMI pre-
dictions. The study aimed to assess the accuracy and precision of the Swiss model developed in 1994 by 
Agroscope (2021), the North American model by National Research Council (NRC, 2001) and its update 
from National Academies of Sciences, Engineering, and Medicine (NASEM, 2021), the French model by 
Institut national de recherche agronomiques (INRA, 2018), the German model by Gesellschaft für 
Ernährungsphysiologie (GfE, 2023), and the Australian model by Commonwealth Scientific and 
Industrial Research Organization (CSIRO, 2007). The evaluation was based on routine Agroscope dairy 
herd data recorded between November 2015 and March 2021. The sample consisted of 138 primiparous 
(12.4 ± 9.7 weeks of lactation (WOL), 28.4 ± 5.5 kg/d milk yield (MY), 614 ± 57 kg BW) and 135 multi-
parous (16.3 ± 11.2 WOL, 32.8 ± 7.6 kg/d MY, 701 ± 63 kg BW) lactating Holstein cows, resulting in 
413 partial lactations. Milk and diet composition were available on a monthly basis, and DMI, MY, and 
BW were collected on a daily basis. The models were assessed for RMSE of prediction, including its 
decomposition into error of central tendency (ECT), error of regression, and error due to disturbance. 
Moreover, the models were evaluated using the concordance correlation coefficient (CCC) analysis. 
Globally, DMI was overestimated by NRC and NASEM and underestimated by INRA and GfE. The accuracy 
of DMI prediction using the RMSE of prediction metric ranged from 2.50 to 4.37 kg/d in primiparous and 
from 3.02 to 4.98 kg/d in multiparous cows. In both cow groups, the highest precision values were 
obtained, with the Agroscope (ECT = 0.001 and 0.01%, respectively) model. The highest CCC was exhibited 
by the Agroscope model in primiparous cows (0.53) and by the INRA model in multiparous cows (0.70). 
Finally, the 30-year old Agroscope model emerged as the most accurate and precise in predicting DMI in 
lactating dairy cows fed a diet consisting of 90–95% of a mixed basal diet (dry and ensiled herbage and 
corn silage) and of 5–10% concentrates (DM basis). 

© 2025 The Author(s). Published by Elsevier B.V. on behalf of The animal Consortium. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
Implications 

Assessing models for predicting DM intake in lactating dairy 
cows is essential to formulating diets and minimising the excess 
use of economically and environmentally sensitive nutrients. 
Numerous prediction models are available, leading to the question 
of which is most suitable for the metric. A comparison of the mea-
sured data and prediction models shows that their accuracy is, in 
most cases, acceptable, with a relative error between 10 and 20%, 
but improvements that aim for an error of less than 10% (less than 
1.8 kg DM/d) are necessary. The findings confirm that the 30-year-
old Agroscope equation remains most suitable for lactating cows 
fed forage-based diets. 

Introduction 

There are several motivations for developing equations to pre-
dict DM intake (DMI). The main one is probably its role in diet for-
mulation to determine the necessary nutrient concentration to 
cover the nutrient requirements of a cow or a group of cows 
according to numerous production parameters. For example, the
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Table 1 
Descriptive statistics of the chemical composition and nutritive values of diets fed to 
lactating dairy cows. 

Characteristics Mean SD CV, % 

Dietary concentrate, % DMI 9.0 7.54 84.2 
DM, g/kg 531 117.9 22.2 
NELf, MJ/kg DM 6.3 0.53 8.5 
NEL, MJ/kg DM 6.3 0.42 6.7 
PDIE, g/kg DM 92.8 9.87 10.6 
PDIN, g/kg DM 98.0 13.84 14.1 
CP, g/kg DM 149.3 21.65 14.5 
Crude fibre, g/kg DM 184.1 18.63 10.1 
NDF, g/kg DM 365.9 45.51 12.4 
ADF, g/kg DM 201.8 32.58 16.1 

Abbreviations: DMI = DM intake; NELf = Net energy for lactation in the forage-based 
diet; NEL = Net energy for lactation in the diet; PDIE = Protein digestible in the small 
intestine when rumen fermentable energy is limiting; PDIN = Protein digestible in 
the small intestine when rumen fermentable nitrogen is limiting.
production of large quantities of milk in high-yielding dairy cows 
requires vast amounts of energy (Allen, 2000), and 82% of the vari-
ation in milk yield (MY) is related to DMI (Huhtanen and 
Nousiainen, 2012). Other motivations are economical, as a realistic 
prediction of DMI allows cost-effective diet optimisation (Fuentes-
Pila, 1996; Huhtanen et al., 2011) and environmental benefits, such 
as the limitation of methane emissions, a greenhouse gas depen-
dent on DM and fibre intake (Niu et al., 2018). Finally, DMI plays 
an essential role in the estimation of nutrient excretion through 
a mass balance approach (excretion = intake – retention), a value 
necessary in crop fertilisation planning, and the estimation of 
potential in ammonia emissions dependent on urinary N 
(Schrade et al., 2023). 

Numerous models have been developed to predict the DMI of 
dairy cows (e.g. de Souza et al., 2019; Gruber et al., 2004; Shah 
and Murphy, 2006). Such models have been adopted by institutes 
providing requirements and recommendations for dairy cow nutri-
tion. The developed models can be classified according to their 
approach by solely considering animal characteristics, as done by 
the american national research council (NRC, 2001), the australian 
commonwealth scientific and industrial research organization 
(CSIRO, 2009), american national academies of sciences, engineer-
ing, and medicine (NASEM, 2021), and Agroscope (2021),  or  by
considering both animal and dietary characteristics, as done by 
the German Gesellschaft für Ernährungsphysiologie (GfE, 2023) 
or the french institut national de recherche en agronomie (INRA, 
2018) model. 

Models predicting DMI are usually developed based on data-
sets obtained in specific conditions of production and reflecting 
regional practices. Therefore, assessing these models is crucial 
for validating the accuracy and precision of estimated values 
across diverse environmental conditions, genotypes, and manage-
ment practices other than those for which they were developed 
(Souza et al., 2016). Moreover, evaluating DMI models using inde-
pendent data can reveal the robustness of existing models and 
lead to a deeper understanding of the chosen parameter effects 
on DMI prediction (Fuentes-Pila, 1996; Jensen et al., 2015). Eval-
uating DMI models allows for the analysis of their strengths and 
weaknesses and eventual detection of knowledge gaps, as well as 
the impact of different datasets on predicting DMI, parameters 
used in the modelling approach, specific animal productive char-
acteristic parameters (e.g. MY), and diet characteristic parameters 
(e.g. NDF) on the model performance. Several evaluations of DMI 
models in lactating dairy cows have been published. Faverdin 
et al. (1992) compared different models to predict DMI (multiple 
regression models, physical or energy limiting sensitive models, 
diet bulkiness, and concentrate substitution rate models) and 
concluded that no system was capable of correctly describing 
all the major factors of variation in DMI. Fuentes-Pila et al. 
(2003) evaluated models that include both dietary and animal 
parameters and concluded that they capture better the effects 
of increasing forage proportion in the total mixed ration by pro-
viding more accurate predictions of DMI. Clement et al. (2014) 
assessed an equation that included behavioural parameters (ru-
mination time) to predict DMI and concluded that there was no 
gain in precision or accuracy using this approach. Krizsan et al. 
(2014) studied the specific impact of MY on the prediction of 
DMI and concluded that it better reflects the Scandinavian cow’s 
productive potential when formulating diets aiming to sustain a 
given MY compared to energy corrected MY. Jensen et al. 
(2015) evaluated the model robustness of predicting DMI using 
all the above-mentioned modelling approaches in Scandinavian 
productive conditions to investigate the differences in DMI within 
and between different studies. They concluded that all models 
overpredicted DMI at high intakes and underpredicted DMI at 
low intakes. 
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The existing models for DMI estimation have previously under-
gone evaluation subsequent to their development process and had 
been evaluated with different breeds and management systems. 
Several studies (Krizsan et al., 2014; Clement et al., 2014; Jensen 
et al., 2015; Faverdin et al., 2017) on model development and eval-
uation were conducted using datasets with a concentrated propor-
tion ranging from 25 to 42% in the total DMI. Therefore, there is 
currently a knowledge gap in evaluating the performance of these 
models using independent datasets, especially in the case of diets 
with high forage proportions, which are largely present in certain 
regions and countries, such as Switzerland. The objective of this 
study was to assess the precision and accuracy of six models pre-
dicting DMI in lactating dairy cows, utilising routinely collected 
data from the Agroscope herd in Posieux, Switzerland. In addition, 
the objective was to compare two evaluation methods: 1. RMSE of 
prediction (including its decomposition) and 2. the concordance 
correlation coefficients analysis of precision and accuracy, to assess 
the model fitness. Preliminary results from this study were previ-
ously communicated in Mehaba et al. (2022). 

Material and methods 

Dataset description 

The dataset used for the model evaluation originated from the 
lactating dairy herd (Red Holstein and Holstein-Friesian), with a 
mean lactation yield (308 days) of 7 928 ± 1 106 kg for primiparous 
and 9 377 ± 1 206 kg for multiparous at Agroscope in Posieux, 
Switzerland. It contained values (between 1 and 308 days in milk) 
dating from 2015 to 2021, each year from November to March, the 
months when the cows were housed (cubicle housing) without any 
access to pasture. The animal information data, such as date of 
birth, lactation number, and calving date, were provided by the 
database from the associated breeding organisation (Holstein 
Switzerland, Posieux, Switzerland). The cows had ad libitum access 
to a mixed basal diet consisting of forages being hay and silage 
from mixed herbage swards and from alfalfa and whole-plant corn 
silage. The data for intake of the basal diet were provided from 
automatic records by access-controlled weighing bunks (Insentec 
RIC system, Hokofarm Group, Marknesse, Netherlands), allowing 
for individual recordings of intake at each visit. The intake data 
for the restrictively fed compound feed and mineral feed were pro-
vided by the automatic free access compound feed distributor 
(Hokofarm Group, Marknesse, Netherlands) at each visit. The nutri-
ent content data of the on-site produced basal diets, concentrates, 
and mineral feeds were provided from the formulated recipes, 
which, for the basal diets, were based on the analysed nutrient
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contents of each feedstuff batch (Table 1). The data for MY were 
provided from the automatic records obtained in the milking par-
lour, twice a day (0500 and 1600 h), and the data for BW were pro-
vided from an access-controlled walk-through scale (Hokofarm 
Group, Marknesse, Netherlands) following each milking (Table 2). 
Milk composition data were provided from the official milk con-
trols occurring every 2–3 weeks for each individual cow.

Model description 

Six models predicting the DMI evolution of lactating dairy cows 
were applied to each daily measured DMI in the dataset containing 
all required parameters, as summarised in Table 3. 

Agroscope (2021): The Swiss model provides equations devel-
oped in 1994 to predict DMI for primiparous and multiparous cows 
(Table S1). The equations are multiple regression models that 
include week of lactation (WOL) as animal and energy-corrected 
milk as productive parameters, calculated according to the equa-
tion reported in Table S1. The model is based on a dataset including 
599 partial lactations (25.2% primiparous, 74.8% multiparous) from 
Holstein, Swiss Fleckvieh, and Brown Swiss cows housed in a tied 
stall and recorded between 1985 and 1993. The basal diets used 
consisted of various conserved herbages with or without corn 
silage offered separately and ad libitum, and the amounts of pro-
vided concentrates were adjusted every week according to the 
individual previous weekly MY. 

NRC (2001): The former US model valid until its update in 2021 
(NASEM, 2021) consists of a multiple regression equation that 
includes metabolic BW0.75 , fat corrected MY as animal and produc-
tive parameters and an adjustment for WOL (Table S2). The model 
is based on a dataset including 17 087 WOL (34.9% primiparous, 
65.1% multiparous) from Holstein cows, originating from publica-
tions in the Journal of Dairy Science (1988–1998) and data from 
Ohio State University and the University of Minnesota. 

GfE (2023): The German model provides a multiple regression 
mixed model that includes two equations depending on feeding 
practices. The GfE model has an additive approach that sums up 
individually calculated values for the effects of BW, MY, DMI con-
centrate intake, and dietary metabolisable energy concentration, 
resulting in a predicted DMI. These equations originate from 
Gruber et al. (2004), and the used factor for net energy for lactation 
(NEL) was converted to metabolisable energy, and its impact was 
reduced. One equation is provided for a total mixed ration feeding 
Table 2 
Animal and dietary parameters required to estimate DM intake in lactating dairy 
cows by the evaluated models. 

Animal 
productive 

Models Animal descriptive Diet 

Agroscope, 2021 WOL ECM yield 
NRC, 2001 BW, WOL FCM yield 
CSIRO, 2007 A, Z, CF M 
INRA, 2018 BW, BCS, WOL, 

WOG, Age 
MY PDI, UFL, 

UEf,  UE  c 
BW, BCS, Parity, 
DIM 

NASEM, 2021 MilkE yield 

GfE, 2023 BW, Parity, DIM MY MEf, DMIc 

Abbreviations: WOL = Week of lactation; ECM = Energy corrected milk; FCM = Fat 
corrected milk; MY = Milk yield; M = correction for lactating animals; MilkE = Milk 
energy content; Parity = Lactation number (GfE) or binary variable with 0 for 
primiparous, 1 for multiparous cows (NASEM); DIM = Days in milk; A =Standard 
mature reference weight; Z = The relative size the mature reference weight; CF = 
Condition factor compared to parturition; BCS = Body condition score; WOG = Week 
of gestation; Age = Age in months; MEf = Metabolisable energy content of the basal 
diet; DMIc = Concentrate offered in kg/d; PDI = Digestible protein in the small 
intestine; UFL = Forage unit for milk production; UEf = Average of forage fill units; 
UEc = Average of concentrate fill unit. 
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system that includes concentrate proportion in %, and one equation 
is provided for a basal diet with an individual supply of concentrate 
feeds in kg per day. The equation based on the concentrate effect 
expressed in kg/day was chosen and includes day in milk (defined 
as WOL / 7), parity, BW, breed, and MY as productive parameters, 
the dietary concentrate quantity, and the metabolisable energy 
content of basal diet as diet parameters (Table S3). The model 
was developed using a dataset consisting of 77 experiments from 
10 German, Austrian, and Swiss research institutions (Gruber 
et al., 2004). The Swiss data were based on published experiments 
from Agroscope (1995–2002) and from the Eidgenössische Tech-
nische Hochschule Zürich (ETHZ, 1995–2001). The dataset com-
prises data from 2151 Simmental, Brown Swiss, and Holstein 
cows representing 31 865 WOL (27.2% primiparous, 72.8% multi-
parous). The basal diets used consisted of various fresh and con-
served herbages with or without corn silage offered mixed or 
separately and ad libitum, and the concentrates were offered 
restrictively according to individual MY. The GfE model did not 
provide information about the data quality used in the adaptation 
of the impact of dietary NEL content on DMI of the equations by 
Gruber et al. (2004). 

CSIRO (2007): This Australian model was developed for growing 
sheep and beef cattle, with adaptations and corrections for dairy 
cattle. The equation is an empirical formula that includes standard 
mature reference BW, BW relative to the mature reference one, 
body condition score relative to the one at parturition, day in milk, 
days to the peak potential intake (animal parameters), and the 
ratio of actual MY to potential MY at peak of lactation (productive 
parameters) (Table S4). No information was provided about the 
data used to develop the equation. 

INRA (2018): The French model provides an equation system 
that includes the interaction between a dietary (diet bulkiness), 
an animal (intake capacity), and a production parameter (produc-
tive indexes). Diet bulkiness is based on a fill unit, which is defined 
for each feedstuff. The intake capacity is expressed according to 
BW, potential MY for primiparous or multiparous cows, body con-
dition score with adjustment indexes for WOL, week of gestation, 
age, and dietary protein concentration (Table S5). The intake 
capacity is intricately connected to the physical, chemical, and 
structural characteristics of the feeds, endowing them with specific 
digestibility traits and determining the time spent in the digestive 
tract (Faverdin et al., 2011). The proportional content of concen-
trates is also considered through the substitution rate between 
the basal diet and concentrate. The indexes corrected the intake 
capacity for lactation, gestation, and growth effects based on a time 
variable (i.e. WOL, week of gestation, and age). Each equation was 
validated separately, but the developmental performance of the 
model (i.e. performance of the model during its development 
phase) as a whole was not reported by INRA (2018). 

NASEM (2021): The current US model provides two equations 
for predicting DMI. The first equation (Table S6) includes parame-
ters related to parity, milk energy content, BW, and body condition 
score, which is an empirical equation provided by de Souza et al. 
(2019). The second equation focuses mainly on the physical rumen 
filling effect of the diet (NDF and ADF content) and MY. The model 
is based on a dataset including 31 635 WOL (46.5% primiparous, 
53.5 multiparous) from Holstein cows collected from 2007 to 2016. 

Dataset adaptation and calculations 

Given the diverse modelling approaches and nutritional sys-
tems employed in the assessed models and the available data from 
the dataset, certain parameters were calculated according to the 
data in the dataset or were defined to allow calculation of DMI pre-
diction and thus a model evaluation and comparison.
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Table 3 
Descriptive statistics of animal characteristics, DM intake, milk yield and composition in lactating dairy cows. 

Characteristics Primiparous Multiparous 

Mean SD CV, % Mean SD CV, % 

Lactation, number 1.0 0.00 0.0 3.3 1.50 44.4 
Age, months 31.0 4.06 13.1 62.8 20.73 33.0 
WOL 12.0 8.87 73.9 15.3 9.88 68.8 
BW, kg 612 57.0 9 700 62.7 9 
DMI, kg/d 18.5 3.03 16.4 22.5 3.54 15.7 
DMIf, kg/d 16.7 2.90 17.3 20.6 3.31 16.1 
MY, kg/d 28.6 5.38 18.8 33.3 7.10 21.3 
Energy corrected MY, kg/d 30.3 5.33 17.6 36.3 7.46 22.2 
Milk fat, % 4.5 0.53 11.7 4.7 0.51 10.8 
Milk protein, % 3.4 0.33 9.6 3.5 0.25 7.2 
Milk lactose, % 4.8 0.18 3.8 4.7 0.13 2.7 
Milk urea N, mg/dl 9.2 1.89 20.6 9.5 1.53 16.2 

Abbreviations: WOL = Week of lactation; DMI = DM intake of the diet; DMIf = DM intake of the forage-based diet; MY = Milk yield. 
Productive parameters: The daily energy corrected (Agroscope, 
2021; NASEM, 2021) and fat corrected (NRC, 2001) MY were calcu-
lated according to the equations in Supplementary Tables S1, S2, 
and S6, respectively, using the MY and monthly analysis of milk 
fat, protein, urea, and lactose contents. The values based on the 
monthly milk analysis were considered constant for each day until 
the next availablemilk analysis. The potentialMY at the peak of lac-
tation (INRA, 2018) was calculated according to Table S5, based on 
the sum of the mean daily MY from the dataset (7 738 kg/year for 
primiparousand9470kg/year formultiparous) dividedby308days. 

Animal parameters: The body condition score (INRA, 2018; 
NASEM, 2021) was defined as 3.5 for the complete dataset. The 
standard mature reference BW (CSIRO, 2007) was defined accord-
ing to the mean of the measured daily BW of multiparous cows 
over the third lactation, between 70 and 150 days in milk, resulting 
in 723 kg. This value was applied to the entire dataset. The BW rel-
ative to the standard mature reference BW was calculated on a 
daily basis and was, according to CSIRO (2007), defined as 1 when 
the value was superior to 1. The relative days to peak of lactation 
(CSIRO, 2007) were defined at 49 days (parameter c), correspond-
ing to the maximum mean MY (34.9 kg/d and 45.2 kg for multi-
parous and primiparous cows, respectively) in the dataset. 

Diet parameters: The fill unit (INRA, 2018) was calculated for 
each diet. The substitution rate, captured as the reduction in DMI 
of the basal diet (or forage) compared to concentrate intake, was 
defined at 0.55 (INRA, 2018; Table S5) as the dietary proportion 
of concentrates in the dataset was 9.1% (DM basis), which is rela-
tively low compared to the maximal recommended 30% according 
to INRA (2018). The dietary metabolisable energy content was con-
sidered equal to NEL/0.635 (GfE, 2023). Moreover, the concentrate 
distribution was adjusted every week according to the individual 
previous weekly MY. 

The descriptive statistics of the model input parameters for 
primiparous and multiparous cows in the dataset are presented 
in Table 4. 

Statistical analysis 

Data were analysed using R Statistical Software (v4.1.2; R-Core-
Team, Vienna, Austria). The evaluation of prediction accuracy in 
the DMI models was conducted using the MSE and its RMSE of pre-
diction approaches, as outlined in Jensen et al. (2015). 

RMSE 
n 

i 1 

Oi Pi 
2 

n 

Where: Oi is the observed DMI for animal i, and Pi is the predicted 
DMI for animal i, and n is the number of pairs of O and P being com-
pared and used for the model evaluation. 
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RMSE was decomposed into three types of errors (Bibby and 
Toutenberg, 1977): the errors attributable to central tendency 
(ECT), regression (ER), and disturbance (ED), relative to the MSE 
of prediction. The ECT describes the error due to the difference 
between the observed and predicted means of DMI. The ER is the 
error of unequal variation, measuring the deviation of the least 
square regression coefficient from 1; if the variance of the pre-
dicted DMI is the same as the variance of the observed DMI, then 
the ER is 0. Finally, the ED expresses the error due to disturbance, 
which is the variation in observed not accounted for by a least 
square regression of observed on predicted (Fuentes-Pila, 1996). 
ECT and ER are systematic errors and unwanted. The ED represents 
the part of the MSE that cannot be removed by linear correction of 
the prediction, and a desirable ED should account for most RMSE 
(Bibby and Toutenberg, 1977). The RMSE calculations were imple-
mented using the goodness.of.fit function in the ZeBook package 
(v1.1; Brun et al., 2018). In addition, the decomposition of the 
MSPE across animals, as described above, can be recovered from 
a simple linear regression of the difference between observed 
and predicted on the difference between predicted and its mean 
using the lme4 package (v1.1–35.1; Bates et al., 2023) as follows: 

Oi Pi b0 b1 Pi P 1 Animal ei 

where s the intercept, average deviation from the average pre-
diction;  Oi is the observed DMI on day i; Pi is the predicted DMI 

on day i; is the mean predicted DMI; 1|Animal is the animal-
specific random intercept; and is the residual error term. The 
RMSE result was interpreted according to Fuentes-Pila (1996) as 
satisfactory when < 10%, as acceptable when between 10 and 20%, 
and as unsatisfactory predictions when > 20% of mean DMI. 

b0 i 

Pi 

ei 

The concordance correlation coefficient (CCC) was calculated 
using the epi.ccc function in the epiR package (v0.9-99, 
Stevenson et al., 2022) and is defined by the following equation: 

CCC 
2rxy 

r2 
x r2 

y ly lx 
2 

where s the variance of the observed DMI being compared, r 
the variance of the predicted DMI y is the SD in both observed 
and predicted DMI is the mean observed DMI, a ly is the 
mean predicted DMI. The CCC combines measures of both precision 
and accuracy to determine how far the observed data deviate from 
the line of perfect concordance (Tedeschi, 2006), being a line at 45° 
on a square scatter plot, with values close to 1 indicating agreement 
between observed and predicted (Lin, 1989). 

r2 
x i

2 
y is 

, rx 

, lx nd 

Similar to the RMSE of prediction, the CCC can be decomposed 
to estimate a scale or slope shift (ʋ), location bias (l) relative to 
scale shift, and a bias correction factor (Cb) where values closer



− − − −

− − − −

− − − −

N. Mehaba, S. Schrade, L. Eggerschwiler et al. Animal 19 (2025) 101535

Table 4 
Descriptive statistics of input parameters used in models predicting DM intake of lactating dairy cows. 

Equation Primiparous Multiparous 

Mean SD CV, % Mean SD CV, % 

NRC, 2001 
Fat corrected MY, kg/d 30.7 5.38 17.5 36.8 7.71 20.9 
BW0.75 , kg 123 8.6 7.0 136 9.2 6.7 

CSIRO, 2007 
Relative size to mature BW 0.85 0.08 9.0 0.95 0.06 6.4 
Relative condition 1.00 0.09 9.3 1.00 0.09 9.0 
Condition factor 1.03 0.04 3.6 1.03 0.04 3.6 
Correction relative d to lactation peak, M 1.85 1.32 71.3 2.25 1.41 62.7 
Correction BCS at parturition, L 0.98 1.15 
Current to potential MY ratio, D 0.82 0.15 18.8 0.74 0.16 21.3 
Correction for lactating animal, m 1.36 0.15 10.8 1.35 0.17 12.5 

INRA, 2018 
Gestation, week 7.83 7.84 100.1 8.68 7.62 87.8 
Potential MY, kg/d 30.59 4.37 14.3 30.39 5.06 16.7 
BCS 3.50 3.50 
Diet energy content, UFL3 0.86 0.06 7.3 0.85 0.05 6.3 
Diet PDI4 , g/kg 92.53 11.39 12.3 91.48 11.05 12.1 
Diet fill unit, forage 1.06 0.19 18.3 0.95 0.16 16.9 
Diet fill unit, concentrate 0.58 0.11 18.3 0.52 0.09 16.9 
Effect of lactation 0.93 0.10 10.7 0.96 0.06 6.7 
Effect of gestation 1.00 0.001 0.1 1.00 0.001 0.1 
Effect of maturity 0.90 0.03 3.3 0.98 0.02 1.7 
Effect of dietary protein 1.01 0.02 2.1 1.01 0.02 2.3 

NASEM, 2021 
Energy corrected MY, Mcal/d 23.00 4.04 17.6 27.54 5.66 20.5 
BCS 3.50 3.50 

GfE, 2023 
Effect of days in milk −1.81 1.31 72.6 −1.40 1.21 86.9 
Effect of BW 0.014 0.002 12.3 0.01 0.002 13.1 
Effect of MY 0.29 0.07 24.8 0.31 0.08 26.1 
Effect of concentrate intake 0.08 0.01 18.1 0.09 0.02 19.1 
Concentrate offered, kg/d 1.8 1.56 86.7 2.0 1.79 89.5 

Abbreviations: MY = Milk yield; BCS = Body condition score; UFL = Milk forage unit expressed as net energy for lactation/7.36 (Agroscope, 2021); PDI = Digestible protein in 
the small intestine, considering the minimal PDI value between energy or nitrogen being limiting for rumen fermentation. 
to 0 indicate less bias for v and l and values close to 1 indicate lit-
tle to no deviation of the best fit line from the 45° line. Interpreta-
tion of CCC was based on criteria defined by Hinkle et al. (2003) as 
follows: negligible = 0.0–0.3, low = 0.3–0.5, moderate = 0.5–0.7, 
high = 0.7–0.9, and very high = 0.9–1.0. The scale shift (ʋ) indicates 
that the variability in the predicted values is similar to the variabil-
ity in the observed values, and the location shift (l) indicates that, 
on average, there is no systematic difference. 

To assess the effects of predictive variables on the difference 
between predicted and observed DMI (i.e. residual DMI), a selec-
tion of variables conducive to model comparison was made. Subse-
quently, a regression against residuals was performed, revealing a 
residual DMI explained by its correlation with MY, dietary NDF, 
dietary CP, and BW. The relationships were examined using linear 
mixed-effects models, incorporating a random effect for individual 
animals as follows: 

ResDMIij b0 b1 Xk 1 Amial ei 

where ResDMIij is the observed residual DMI for ith animal on the jth 

day; is the intercept, average values of the predictor variable 
(MY, NDF, CP, etc.); Xk is the predictor variable used to assess its 
effects on residuals; 1|Animal is the animal-specific random inter-
cept; and s the residual error term. 

b0 

ei i 

Results 

Accuracy of the predicted DM intake 

The overall accuracy and precision estimates of the DMI, based 
on 29 280 daily observations, are shown in Table 5 and Fig. 1 and 
5

Fig. 2. The DMI of primiparous cows (observed mean of 18.45 kg/d) 
was overestimated by a mean bias ranging from 1.69 to 2.16 kg 
DM/d which represents a relative bias of 9.2–11.7% in the GfE, 
NASEM, NRC, and CSIRO models. It was underestimated by 
3.86 kg/d (20.9%) in the INRA model and was equally predicted 
in the Agroscope model. According to RMSE and CCC, the predic-
tions were considered to have unsatisfactory precision with low 
or negligible fit, except in the GfE and NASEM models, which con-
sidered them acceptable with low fit, and in the Agroscope model, 
which considered them acceptable with moderate fit. The error of 
prediction was mainly explained by the ED and 20–40% ECT, except 
in the INRA, GfE, and Agroscope models, in which the ECT was 78, 
33%, and negligible, respectively. The ER also explained 10–20% of 
the prediction error in the NASEM, GfE, and Agroscope models. The 
Agroscope, NRC, GfE, and CSIRO models underestimated low DMI 
and overestimated high DMI (Fig. 1). The INRA model underesti-
mated equally high and low DMI. On the contrary, the NASEM 
model overestimated equally high and low DMI. 

The DMI of multiparous cows (observed mean of 22.53 kg/d) 
was overestimated by a mean bias ranging from 0.86 to 2.69 kg 
DM/d, representing 3.8–11.9% of the observed mean DMI in the 
NRC and NASEM models. It was underestimated by 2.38 kg 
(10.6%), 2.69 kg (11.9%), and 3.63 kg (16.1%) in the CSIRO, INRA, 
and GfE models, respectively, and was equally predicted in the 
Agroscope model. According to RMSE and CCC, the predictions 
reported acceptable precision with low or negligible fit, except 
in the CSIRO and GfE models, which showed unsatisfactory pre-
cision and low fit. The error of prediction was mainly explained 
by ED and 20–50% ECT, except in the INRA and Agroscope mod-
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Table 5 
Accuracy, error decomposition and concordance analysis of models predicting DM intake in lactating dairy cows. 

Models Mean DMI, kg/d n RMSE Error distribution CCC ʋ l Cb 

Observed Predicted kg DMI/d % ECT, % ER, % ED, % 

Primiparous 
Agroscope, 2021 18.45 18.44 10 912 2.50 13.5 0.001 17.23 82.77 0.53 0.66 −0.001 0.92 
NRC, 2001 18.45 20.61 10 912 3.78 20.5 32.57 1.95 65.48 0.46 1.18 0.66 0.81 
CSIRO, 2007 18.45 20.43 10 912 4.14 22.5 22.82 2.71 74.47 0.08 0.78 0.74 0.76 
INRA, 2018 18.45 14.60 10 912 4.37 23.7 77.68 1.09 21.23 0.47 1.15 −1.19 0.58 
NASEM, 2021 18.45 20.42 10 912 3.19 17.3 38.19 11.70 50.10 0.39 0.64 0.81 0.70 
GfE, 2023 18.45 16.87 10 912 2.87 15.6 30.20 14.78 55.01 0.46 0.64 −0.66 0.76 

Multiparous 
Agroscope, 2021 22.53 22.56 18 368 3.02 13.4 0.01 19.95 80.05 0.47 0.62 0.01 0.90 
NRC, 2001 22.53 24.56 18 368 4.23 18.8 22.77 0.01 77.23 0.39 1.01 0.56 0.86 
CSIRO, 2007 22.53 20.16 18 368 4.65 20.6 26.18 3.52 70.29 0.15 0.75 −0.77 0.75 
INRA, 2018 22.53 19.84 18 368 3.23 14.3 69.45 0.76 29.79 0.70 1.08 −0.73 0.79 
NASEM, 2021 22.53 23.40 18 368 3.17 14.1 7.44 11.19 81.37 0.48 0.70 0.29 0.90 
GfE, 2023 22.53 18.90 18 368 4.98 22.1 53.44 11.60 34.95 0.15 0.52 −1.42 0.45 

Abbreviations: DMI = DM intake; ECT = Error due to central tendency as proportion of mean square error; ER = Error due to regression as proportion of mean square error; ED 
= Error due to disturbance as proportion of mean square error; CCC = Concordance correlation coefficient; ʋ = location shift relative to the scale (squared difference of the 
means relative to the product of two SDs); l = measure the scale shift (ratio of two SDs); Cb = Bias correction factor (accuracy). 

Fig. 1. Centralised residual plots of DM intake (DMI) in lactating primiparous cows predicted by (a) Agroscope, (b) NRC, (c) CSIRO, (d) INRA, (e) NASEM, (f) GfE. Dots represent 
individual values. Deviation of the regression line from intercept 0 indicates overall under- or overestimation. The slope reflects the error of regression (ER); the closer to zero, 
the smaller the ER, indicating equal accuracy at low or high DMI.
els, where this error was 70% and negligible, respectively. The ER
also explained 10–20% of the prediction error in the NASEM, GfE,
and Agroscope models. The Agroscope, NRC, GfE, CSIRO, and
6

NASEM models underestimated low DMI and overestimated high 
DMI, whereas the INRA model underestimated equally high and 
low DMI (Fig. 1). 
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Fig. 2. Centralised residual plots of DM intake (DMI) in lactating multiparous cows predicted by (a) Agroscope, (b) NRC, (c) CSIRO, (d) INRA, (e) NASEM, (f) GfE. Dots represent 
individual values. Deviation of the regression line from intercept 0 indicates overall under- or overestimation. The slope reflects the error of regression (ER); the closer to zero, 
the smaller the ER, indicating equal accuracy at low or high DMI. 
Effects of the main predictive parameters on residual DM intake 

The relationship between the residual DMI and the common 
predictive variables among the six models evaluated is shown in 
Table 6. Overall, independent of lactation number and from each 
individual model, the residual DMI slope was negatively related 
to MY, BW, and dietary NDF and positively related to dietary CP. 
A negative and positive residual DMI slope was interpreted as an 
increasing overestimation and underestimation, respectively, of 
DMI with the increased unit of predictive parameters. The daily 
DMI was increasingly overestimated with increasing MY (P < 
0.001) by 0.01–0.16 kg DMI/kg MY in all models and both groups 
of parities, except that it was the contrary in the GfE (primiparous 
and multiparous), NASEM (primiparous), and INRA (multiparous) 
models (P < 0.001) and that there was no effect in the NRC (multi-
parous) model. The daily DMI was increasingly overestimated with 
increasing BW (P < 0.001) by 0.3–2.7 kg DMI/100 kg BW, except 
that it was the contrary in the CSIRO model and for multiparous 
cows in the INRA model (P < 0.001). The daily DMI was increasingly 
overestimated with increasing dietary NDF (P < 0.001) from 0.8 to 
3.2 kg DMI/100 g per kg DM of NDF and with decreasing dietary CP 
(P < 0.001) from 0.2 to 2.2 kg DMI/100 g per kg DM of protein, 
except in the INRA model, where it was the inverse for dietary 
CP (P < 0.05). 
7

Discussion 

Accuracy and precision of DM intake prediction models 

The equation developmental performance of the models by 
Agroscope, CSIRO, and INRA was not reported; thus, a comparison 
with the present results was not possible. The reported develop-
mental performance by the NRC, GfE, and NASEM models was 
10.7, 2.8, and 12.6% kg/d lower on average than the respective 
RMSE values of the present study. Previous model evaluations also 
reported lower accuracies, with relative RMSE values of 8.9% for 
the NRC model (Jensen et al., 2015), 11.5% for the NRC model 
(Krizsan et al., 2014), and 14.3 and 12.1% for the NRC and NASEM 
models, respectively (de Souza et al., 2019). Lower accuracy can be 
expected when applying existing DMI models to independent data-
sets (Fuentes-Pila, 1996; Roseler et al., 1997a). 

Management and environmental effects 

The environmental conditions in which the data were collected 
have an important impact on the developed DMI equation. The 
location, as an environmental factor that affects the DMI of lactat-
ing cows, was attributed to differences in livestock management, 
feed presentation, or environment (Collier et al., 2006). Further-
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Table 6 
Effect of milk yield, BW and dietary parameters on model residuals for DM intake in lactating dairy cows1 . 

Models MY2 BW3 NDF4 CP5 

Primiparous 
Agroscope, 2021 −0.040*** −0.4*** −1.6*** 0.5*** 
NRC, 2001 −0.159*** −2.7*** −2.7*** 0.4*** 
CSIRO, 2007 −0.019*** 0.7*** −1.1*** 0.9*** 
INRA, 2018 −0.066*** −0.3*** −1.0*** −0.2* 
NASEM, 2021 0.054*** −1.1*** −1.0*** 1.2*** 
GfE, 2023 0.140*** −1.1*** −1.6*** 1.1*** 

Multiparous 
Agroscope, 2021 −0.081*** −0.8*** −2.1*** 1.2*** 
NRC, 2001 −0.006 −1.3*** −3.2*** 2.2*** 
CSIRO, 2007 −0.011*** 1.3*** −1.9*** 1.1*** 
INRA, 2018 0.056*** 0.6*** −0.8*** −0.6*** 
NASEM, 2021 −0.070*** −2.2*** −2.1*** 1.9*** 
GfE, 2023 0.166*** −0.3*** −2.8*** 1.3*** 

Abbreviation: MY = Milk yield. 
Values (slope of observed – predicted) are significant at *P < 0.05 and ***P < 0.001. 

1 Change in residual (slope of observed – predicted, P-value) DM intake kg/d per unit change of the predictive variable. 
2 per kg MY/d. 
3 per 100 kg BW. 
4 per 100 g NDF/kg DM. 
5 per 100 g CP/kg DM. 
more, among the management factors, differences between the 
studies in feeding time or access to feed, also influenced by prepar-
tum management, were mentioned for lactating cows (Huhtanen 
et al., 2011). Housing type (tie stalls vs. loose housing), tempera-
ture and photoperiod are environmental factors that affect DMI 
prediction (Ingvartsen et al., 1995; Mertens, 1987). It could be 
speculated that the differences in the accuracy and precision 
between the studied equations could partially be related to envi-
ronmental and management effects, as none of them accounted 
for such parameters, but rather used different equations for differ-
ent conditions. For example, the data set used in this study was 
collected by Agroscope as was the original data set used to develop 
the equations in the’80-’90, published in Agroscope (2021). How-
ever, conditions were different: Cows were tied vs. in loose hous-
ing, breed was multiple vs. 100% Holstein and energy−corrected 
MY was lower (7 776 vs. 9 470 kg/year for multiparous). Moreover, 
the basal diets were provided as separate feedstuffs vs. mixed, the 
dietary concentrate proportion was higher (19.8 vs. 8.7% DM) and 
the NEL content of the basal diet was lower (5.9 vs. 6.3 MJ/kg DM). 
The higher energy content probably reflects the progression made 
in herbage harvesting capacity (more surface conserved in less 
time and thus less dependent on weather conditions) and tech-
nique (use of conditioner and prewilting process for grass silage 
production). 

The GfE proposed an equation for a total mixed ration or for a 
basal diet with individual feeding of concentrates, which was used 
in the present study. Agroscope proposed corrections based on feed 
access time and the use of specific feedstuffs, such as sugar beet 
pulp, when not mixing the basal diet, corrections that were not 
applied in this study, as cows had ad libitum access to a mixed basal 
diet. NRC considered that the effect of environmental temperature 
is encompassed in the MY parameter (i.e. a lowered MY will reflect 
the reduction in DMI). However, all equations had an expression of 
MY (fat or energy corrected) as a proxy parameter for environmen-
tal impact, highlighting the need for specific predictive variables to 
account for environmental effects on DMI. This is especially true 
under the climate change conditions that livestock production is 
experiencing. 

Animal and dietary effects 

The equations evaluated contained various levels of detail on 
animal and diet parameters. Among the equations evaluated, four 
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contain only animal parameters (Agroscope, NRC, CISRO, and 
NASEM) and two contain, in addition to animal parameters, dietary 
parameters (GfE and INRA). 

DMI models that included dietary parameters in addition to ani-
mal parameters offered no clear advantages or disadvantages, as 
these equations were not classified regarding the accuracy of pre-
diction and goodness of fit in any particular way from the equa-
tions not including dietary parameters. This contradicts 
Ingvartsen’s (1994) and NRC’s (2001) observations that models 
entirely based on animal variables are not able to encompass the 
complexity of the factors affecting DMI in dairy cows. It can be 
argued that, in this study, the diets were mostly similar to each 
other, reducing the variability or representativeness needed to 
catch the broad effects of dietary parameters on the predictions 
(Cavallini et al., 2023). However, other studies reported similar 
variability of dietary parameters (e.g. CV of dietary NDF of 18.3% 
Fuentes-Pila et al., 2003; 12.0% in Krizsan et al., 2014; or 5.9% 
Jensen et al., 2015), validating the variability observed in this study 
in catching the effects of dietary effects on DMI predictions. 

The animal parameter of MY, expressed as such or corrected 
according to milk nutrient contents, was included in all models 
as representing a major driver to predict DMI in lactating animals 
(Huhtanen and Nousiainen, 2012), with MY coefficients in the 
equations that vary from 0.11 to 0.37 kg DMI/kg MY. The overpre-
diction of DMI with increasing MY and the negative relation 
between residual DMI and MY (0.01–0.16 kg DMI/kg MY), as found 
in the Agroscope, NRC, and CSIRO models, may be interpreted as an 
overemphasis on the MY parameter (Jensen et al., 2015). These 
results are in accordance with those of Huhtanen et al. (2011) 
and Jensen et al. (2015), who observed an overprediction of DMI 
with increasing MY in the NRC model, which includes animal 
parameters. However, the GfE model, which includes both animal 
and dietary parameters, underestimated DMI, suggesting different 
outcomes. In this study, no clear performance pattern between 
equations using MY or standardised MY expression was observed. 
This contrasts with the findings of Krizsan et al. (2014), who 
reported an improved prediction of DMI using standardised MY 
with a similar SD for energy corrected MY and MY. 

Similar to the use of the breed parameter (GfE, 2023), the animal 
parameter of BW can be used in DMI prediction equations (Jensen 
et al., 2015). Within breed, changes in individual BW accounted 
for 5–10% of the variation associated with DMI, and BW was posi-
tively correlated with DMI (Roseler et al., 1997b), as confirmed by



N. Mehaba, S. Schrade, L. Eggerschwiler et al. Animal 19 (2025) 101535
the findings of the present study, in which BW was mostly nega-
tively correlated to the residual DMI. The MY is an important driver 
of DMI (NRC, 2001), and our comparison of the impact of MY and 
BW on DMI showed that BW had a lower impact on residual DMI. 
However, an increase in BW reduced residual DMI and improved 
the DMI prediction; therefore, including it in the DMI prediction 
models could reduce the intake prediction error associated with 
BW change (Huhtanen et al., 2010). The decrease in residual DMI 
(from 0.3 to 2.7 kg DMI/ 100 kg BW, except in the CSIRO model) 
with increasing BW is comparable with previously reported nega-
tive correlations (Jensen et al., 2015). The positive relationship in 
the CSIRO model is probably explained by the fact that this model 
was initially developed for growing meat-producing animals, in 
which BW gain is necessarily a pivotal predictive variable of DMI. 
The Agroscope was the only model that did not include BW as a 
parameter, and our results show that BW had a low impact on 
the residual DMI when applying that model. 

The animal parameter of parity distinguished between primi-
parous and multiparous cows in the Agroscope, GfE, and NASEM 
models. Overall, the model error for DMI prediction was higher 
in multiparous cows than in primiparous cows, as observed in pre-
vious studies (Neal et al., 1984; Roseler et al., 1997a). These differ-
ences were attributed to lower variability in BW and MY for 
primiparous cows than for multiparous cows (Neal et al., 1984; 
Roseler et al., 1997a), which could not be confirmed in the present 
dataset, as the CV in MY, energy corrected MY, and BW was similar 
between primiparous and multiparous cows. 

The dietary parameters of fibre content, such as NDF, could rep-
resent the rumen fill effect and thus adequately capture the 
dynamic nature of the intake regulation system (Mertens, 1987). 
The dietary NDF affected residual DMI in all models, exhibited as 
increasingly overpredicted DMI (values ranging from 0.8 to 
3.2 kg DMI/100 g per kg DM). A more complex expression than 
dietary NDF, such as that applied by the INRA model, can also pre-
sent certain limits. Faverdin et al. (1992) stated that the INRA 
equation using the in vivo method to determine the fill values of 
feedstuffs is impractical for determining fill values for new feeds 
or feeds obtained in particular climatic conditions, leading to inac-
curacies in their fill value estimation and adding uncertainty to the 
prediction of DMI. 

The effects of the dietary parameter of CP content on DMI esti-
mation accuracy and precision are variable and likely from a com-
bination of physical and metabolic mechanisms (Allen, 2000). The 
underprediction of DMI with increasing dietary CP is in accordance 
with the value reported by Allen (2000) (0.6 kg DMI/100 g CP per 
kg DM), except in the NRC, CSIRO, and GfE models for multiparous 
cows, in which the effect was above 1 kg DMI/100 g CP per kg DM. 
This underprediction was found even though the diets used con-
tained lower CP concentrations (149.3 ± 21.65 g/kg DM) than the 
DMI-depressing threshold of >177 g CP/kg DM reported by 
Katongole and Yan (2020). 

The concentrate proportion is a dietary parameter that could 
affect the substitution rate and, therefore, the overall DMI 
(Jensen et al., 2015). If the models were based on a high proportion 
of concentrates, such as up to 30% of the DM (Faverdin et al., 1992), 
the DMI estimation may become imprecise in diets with a low pro-
portion of concentrates, such as in the present dataset (9.0% DM). 
There is probably a relationship between the dietary concentrate 
proportion and the dietary NDF and CP contents, leading to similar 
findings for these dietary parameters. 

Modelling evaluation approach effects 

The type of model, whether empirical or mechanistic, may play 
a role in the precision and accuracy of DMI prediction. Empirical 
models derived from observed data are data−dependent; when 
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tested with different datasets, their precision and accuracy of pre-
diction worsen (Jacob et al., 2023). It is also known that mechanis-
tic models provide insight into the underlying mechanisms and can 
predict behaviour in unobserved conditions based on theoretical 
understanding, leading to unaltered model performance when 
evaluated under different conditions (Jacob et al., 2023). However, 
in this study, we found no clear difference in the precision of mech-
anistic (INRA and CSIRO) and empirical (Agroscope, NRC, GfE, and 
NASEM) equation performance based on RMSE and CCC. 

The method used to evaluate the accuracy of a model to predict 
DMI, such as RMSE or CCC, may also play a role. RMSE is probably 
the most common and reliable estimate for measuring the predic-
tive accuracy of a model (Tedeschi, 2006). However, it does not 
provide any information about model precision (Mitchell and 
Sheehy, 1997), which is covered by the error decomposition for-
mulated by Bibby and Toutenburg (1977), given the ECT precision 
measure. Comparing the two evaluation methods (RMSE vs. CCC), 
we observed a decreased sensitivity and inconsistency of CCC, as 
a 74.1% difference in RMSE between the best (Agroscope, 13.5%) 
and worst (INRA, 23.7%) performing equation translated to a very 
low CCC change of 12.8% (Agroscope, 0.53 and INRA, 0.47). Classi-
fying the models’ precision according to RMSE was more consistent 
with the bias observed in primiparous and multiparous cows com-
pared to a classification according to CCC. For example, the INRA 
model was least precise in primiparous cows according to RMSE 
of prediction but second-best according to CCC. However, the bias 
value (−3.85 kg/d) confirmed the RMSE classification of the model 
as the least precise. 

These inconsistencies were also observed in multiparous cows 
in the CSIRO model, with both an unsatisfactory prediction and a 
negligible fit. These discrepancies could be explained by the nature 
of the CCC (Lin, 1989), also known as the reproducibility index, 
which uses the Pearson correlation coefficient times a bias-
correction factor (Cb), therefore accounting simultaneously for 
accuracy and precision (Tedeschi, 2006; Li et al., 2019). However, 
this evaluation technique is not without drawbacks. CCC analysis 
assumes that each paired data point is interchangeable and, there-
fore, does not account for the variability of the compared sets of 
observations (Nickerson, 1997). Moreover, Cb accuracy measure 
is flawed, sometimes failing to give correct accuracy information 
and yielding unexplained results (Liao and Lewis, 2000). A model 
may be considered robust if its predictions are at least acceptable 
when applied to circumstances that differ from those represented 
in the developmental data (Fuentes-Pila, 1996). In this study, none 
of the equations evaluated reported RMSE below 10%; thus, none is 
deemed robust. 

The use of daily DMI data might be the cause of the high vari-
ance due to the daily variation in intake, MY, and activity within 
cows. In an exploratory analysis, Martin et al. (2021) reported pre-
dictions of daily DMI with lower accuracy and precision than 
weekly DMI predictions. The use of weekly or group mean data, 
as in previous studies (Fuentes-Pila, 1996; Roseler et al., 1997a), 
could significantly reduce RMSE by erroneously removing impor-
tant day-to-day and cow-to-cow variations in DMI (Ingvartsen 
et al., 1992). Greater differences between the observed and pre-
dicted DMI can also be attributed to the use of individual cow data 
rather than treatment mean data (Huhtanen et al., 2011). A com-
parison of equations using day in milk as a time scale (GfE, CSIRO, 
and NASEM equations) in equations using WOL (Agroscope, NRC, 
and INRA) did not confirm the reduction in RMSE (Table 5). 

Conclusion 

The study confirms the well-known notion that all models are 
wrong, but some are useful. All the evaluated models predicted



N. Mehaba, S. Schrade, L. Eggerschwiler et al. Animal 19 (2025) 101535
DMI with biased, but some with satisfactory precision. The 
observed RMSE of prediction was within the range observed under 
practical conditions. The interaction between environmental, diet, 
and animal factors seems to limit the use and affect the evaluation 
of any empirical and mechanistic intake model. The interaction of 
several factors that influence the prediction of DMI in ruminants 
makes it difficult to identify the single isolated factors that could 
be responsible for the observed errors. However, evaluation of 
the models helped identify the leverage parameters in the model 
performance and the gaps that need to be filled, namely, a period-
ical update of existing prediction equations and the use of easily 
measurable parameters as predictors (i e. Dietary NDF, CP, etc ). 
The study emphasises the importance of considering the specific 
context of each model and recognising potential limitations. This 
underscores the need for a nuanced interpretation of model perfor-
mance, considering the unique characteristics of the studied popu-
lation (high- vs. low-producing cows) through the analysis of the 
impact of predictive variables on residual DMI, including the nutri-
tional system (animal parameters vs. animal plus dietary parame-
ters) and broader environmental and management conditions 
(high forage vs. low forage-based diets). In essence, although cer-
tain models may demonstrate superior and consistent predictive 
accuracy based on RMSE of prediction or CCC, reported inconsis-
tent contradicting results highlight RMSE of prediction as a reliable 
method for evaluating DMI. Researchers and practitioners should 
exercise caution in the application of these equations and be aware 
of their limitations in capturing the complexities of DMI in diverse 
and dynamic agricultural settings. 
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