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Abstract
Soil compaction is a regarded as a major environmental and economical hazard, 
degrading soils across the world. Changes in soil properties due to compaction are 
known to lead to decrease in biomass and increase in greenhouse gas emissions, 
nutrient leaching and soil erosion. Quantifying adverse impacts of soil compac-
tion and developing strategies for amelioration relies on an understanding of soil 
compaction extent and temporal variability. The main indicators of soil compac-
tion (i.e., reduction of pore space, increase in bulk density and decrease in soil 
transport properties) are relatively easy to quantify in laboratory conditions but 
such traditional point- based methods offer little information on soil compaction 
extent at the field scale. Recently, geophysical methods have been proposed to pro-
vide non- invasive information about soil compaction. In this work, we developed 
an agrogeophysical modelling framework to help address the challenges of charac-
terizing soil compaction across grazing paddocks using electromagnetic induction 
(EMI) data. By integrative modelling of grazing, soil compaction, soil processes 
and EMI resistivity anomalies, we demonstrate how spatial patterns of EMI ob-
servations can be linked to management leading to soil compaction and concur-
rent modifications of soil functions. The model was tested in a dairy farm in the 
midlands of Ireland that has been grazed for decades and shows clear signatures of 
grazing- induced compaction. EMI data were collected in the summer of 2021 and 
autumn of 2022 under dry and wet soil moisture conditions, respectively. For both 
years, we observed decreases of apparent electrical resistivity at locations that with 
visible signatures of compaction such as decreased vegetation and water pond-
ing (e.g., near the water troughs and gates). A machine learning algorithm was 
used to cluster EMI data with three unique cluster signatures assumed to be rep-
resentative of heavy, moderately, and non- compacted field zones. We conducted 
1D process- based simulations corresponding to non- compacted and compacted 
soils. The modelled EMI signatures agree qualitatively and quantitatively with the 
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1  |  INTRODUCTION

Soil compaction is an environmental hazard causing 
soil degradation in croplands and grasslands worldwide. 
In grasslands, soil compaction is caused largely by live-
stock treading. Steinfeld et al.  (2006) estimated that 20% 
of the world's grasslands are compacted. Grazing live-
stock walk over the soil causing soil compaction and 
poaching (https:// www. teaga sc. ie/ media/  websi te/ publi 
catio ns/ 2017/ Segme nt-  002-  of-  Today sFarm -  Jan-  Feb-  2017. 
pdf), which results in a reduction and reorganization 
of the pore space (especially macroporosity) (Drewry 
et al., 2008; Tuohy et al., 2015). The impact is greater in 
wet conditions so the problem is exacerbated in temperate 
regions (Drewry et al., 2004). Changes in the pore network 
lead to a dramatic change in the soil's transport properties 
including hydraulic conductivity, air permeability and gas 
diffusivity (Or et al., 2021). Such reductions in water and 
oxygen flow generate anaerobic conditions that limit plant 
growth and increase nitrous oxide emissions by anaerobic 
bacterial activity (Pulido- Moncada et al., 2022).

Compaction is a form of soil structure degrada-
tion, which is inherently elusive, and difficult to define 
(Batey, 2009; Benevenute et al., 2020; Bondi et al., 2021; 
Lipiec,  2000). Properties such as bulk density are insuf-
ficient to quantify compaction because similar values of 
bulk density (or total porosity) may still show wide dif-
ferences in soil transport properties (Rabot et  al.,  2018) 
and other properties may be needed to detect soil com-
paction such as the soil macroporosity or relative bulk 
densities (Carter, 1990). Therefore, soil compaction detec-
tion and characterization remain very challenging tasks 
(Keller et al., 2013; Romero- Ruiz et al., 2018). Traditional 
methods for detecting soil compaction rely on point mea-
surements, soil sampling and time intensive laboratory 
measurements which makes field- scale quantification of 
soil compaction particularly difficult, time consuming and 
costly. In addition, if only few point measurements are 
made then the spatial variability of soil compaction across 
a site cannot be characterized. Geophysical methods have 
recently been proposed to help bridge this scale gap to and 
allow for field- scale characterization of soil compaction 

(Romero- Ruiz et al., 2018). They may help delimiting the 
spatial extent of surface soil compaction (often visible by 
the naked eye) by livestock trampling and offer additional 
information about compaction effects in the soil profile.

In particular, geophysical methods that target soil 
electrical conductivity/resistivity are widely used in soil 
applications due to their flexibility and the relatively ro-
bust understanding of the electrical properties of soils 
(Friedman,  2005), with electrical resistivity being the in-
verse of electrical conductivity. Soil compaction signatures 
captured by electrical properties are known to cause a de-
crease in electrical resistivity (Seladji et al., 2010), especially 
in clay soils, potentially due to the better connected soil 
conductive phase (i.e., surface conductivity) and relatively 
higher water content resulting from low water mobility in 
the soil (Romero- Ruiz et al., 2022). Electrical resistivity to-
mography (ERT) methods are often used to characterize soil 
compaction (Besson et al., 2013; Keller et al., 2017; Romero- 
Ruiz et al., 2018). Despite the relative success in detecting 
and characterizing soil compaction, studies employing the 
ERT method are still limited in their ability to cover large 
areas and are usually limited to stationary 2D profiles. More 
mobile proximal sensing methods, such as electromagnetic 
induction (EMI), that also measure soil electrical prop-
erties offer an alternative means to cover larger areas and 
can build on the knowledge of how compaction impacts 
soil electrical properties (Schmäck et al., 2022). In addition, 
EMI methods have been successfully used to monitor soil 
texture and layering and related plant development traits 
(Brogi et al., 2019; von Hebel et al., 2020).

While geophysical methods may be useful at provid-
ing information about soil processes and properties, the 
interpretation of geophysical signatures is not straight-
forward (Binley et  al.,  2015). The sensed geophysical 
properties depend on several factors including soil tex-
ture, soil moisture, soil temperature, soil pore connec-
tivity and conductivity of the pore water; disentangling 
their relative contribution in field measurements is diffi-
cult (Friedman, 2005). Coupled modelling of subsurface 
processes and related geophysical signatures provides 
a powerful tool for mechanistic interpretation of the 
measured data, as well as helping to improve survey 

measured EMI data, linking decreased electrical resistivities to zones that were 
visibly compacted. By providing a theoretical framework based on mechanistic 
modelling of soil management and compaction, our work may provide a strategy 
for utilizing EMI data for detection of soil degradation due to compaction.

K E Y W O R D S

animal treading, agrogeophysics, grazing strategies, hydrogeophysics, soil structure, water 
dynamics
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design for processes and properties of interest (Kowalsky 
et al., 2004). This framework has been used in agricultural 
applications to monitor changes in water content and to 
understand soil plant interactions (Garré et al., 2010, 2011; 
Kuhl et al., 2018) including those related to soil compac-
tion. Using geophysical methods to support agricultural 
management by helping to quantify soil compaction may 
be substantially improved by a coupled mechanistic un-
derstanding of (1) the processes causing soil compaction, 
(2) the impacts of soil compaction on soil properties, 
(3) related soil processes and (4) the corresponding geo-
physical signatures. In such a framework, geophysical 
signatures can be directly linked with compaction and 
indirectly with land management practices.

Romero- Ruiz et al. (2022) found that the impacts of soil 
compaction on soil water dynamics may mask its electrical 
signature; therefore, understanding water dynamics is im-
portant. The monitored time (i.e., dry or wet conditions) 
matters due to changes in water flow and evapotranspira-
tion induced by compaction (Assouline et al., 2014). Despite 
efforts to model and monitor soil compaction, most studies 
remain limited to small areas (e.g., focusing on soil profiles) 
(Keller et al., 2013). There are no modelling studies that link 
paddock (defined as an area of the farm that is grazed as a 
single unit) variations in soil compaction with geophysical 
signatures to the management that induce such compaction. 
Clustering is the grouping together of spatially coincident, 
multi- dimensional data that exhibit statistical similarities 
and the production of a single representative “cluster sig-
nature” for each group (Kaufman & Rousseeuw,  2009). 
Therefore, clustering techniques have the potential to link 
field- scale (spatial and vertical) variation of EMI data with 
compaction- induced variations of soil properties and soil's 
hydrology across a paddock (i.e., compacted zones).

The aim of this work is to develop a modelling frame-
work to demonstrate how EMI data can be used to detect 
soil compaction in grassland. To achieve this, EMI data 
were collected from paddocks which have undergone sev-
eral consecutive years of grazing on a dairy farm in Ireland 
where detailed land management practices are recorded 
in the pasturebase system. The collected EMI data are 
grouped into clusters to provide a single EMI signature for 
a defined spatial area. A newly developed coupled agro-
geophysical modelling approach was then used to inter-
pret grazing- induced compaction in the EMI signatures. 
The agrogeophysical modelling includes (i) a model of an-
imal movement, (ii) a soil compaction model, (iii) an agro-
ecosystem model, (iv) a soil structure- based pedophysical 
model of soil electrical resistivity and (v) a forward solver 
for modelling EMI signatures. These modelled EMI sig-
natures are then compared to measured EMI signatures. 
In Section 2, we describe the acquisition and clustering of 
EMI data collected on a dairy farm and present the main 

features in the data. In Section  3, we present the meth-
odology for detecting and modelling soil compaction with 
EMI data. Sections 4–6 contain the results, discussion and 
conclusion, respectively.

2  |  METHODS

2.1 | EMI data acquisition and clustering 
for soil compaction detection

The EMI method uses an oscillating electromagnetic field 
generated by an alternating electrical current flowing 
through a transmitter coil (Tx) (Garré et al., 2022). This pri-
mary field diffuses into the subsurface and induces so- called 
eddy currents, whose strength depends on how electrically 
conductive the medium is. These currents in turn generate 
a secondary magnetic field, which is then measured by a 
receiver coil (Rx). The depth of investigation depends on 
the orientation of the coils (vertical or horizontal coplanar), 
their separation, the frequency of the Tx coil and the electri-
cal conductivity of the subsurface (Garré et al., 2022). EMI 
instruments can collect data from multiple depths by either 
varying the frequency of the Tx coil or by incorporating 
multiple receiver coils at different separations. In a typical 
survey, an EMI instrument is carried or towed over the site 
of interest and data are collected at set time intervals (see 
Figure 1). Modern instruments can collect data automati-
cally at a high sampling frequency while simultaneously 
collecting Geospatial Positioning System (GPS) locations. 
EMI instruments can be attached to a sled behind a quad 
motorbike and towed over the field (Figure 1a), to collect 
data consistently over large spatial areas allowing to cover 
approximately 1 ha h−1 (see also Figure  1b). A processing 
flow (i.e., stacking, filtering and interpolation) is then ap-
plied to the collected data to correct for GPS offset, reduce 
noise and obtain a 2D grid of measured apparent electrical 
conductivities (Figure 1c), for each of the various depths of 
investigations sensed by the instrument (Figure 1d).

In this study, the geophysical data were collected using 
the CMD MiniExplorer 6 L (Figure 1a) (https:// www. gfins 
trume nts. cz). This instrument has a constant Tx frequency 
and 6 separate receiver coils, with separations of 0.2, 0.33, 
0.5, 0.72, 1.03 and 1.5 m, and coils orientated horizontally 
resulting in six depth measurements at each spatial po-
sition. For each coil separation, the instrument provides 
an apparent electrical conductivity sensitive to soil depth 
range (Figure 1d). The instrument was towed ~2 m behind 
a quad motorbike (Figure 1a) at a speed of approximately 
5 km h−1 and a sampling frequency of 1 Hz. This resulted 
in an EMI data sample roughly every 1 m in the inline 
direction. A crossline spacing of ~2 m was maintained 
throughout the acquisition. A Trimble GNSS system was 
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used (models R8 and R2 were used in 2021 and 2022, re-
spectively), providing an accuracy in geographic position 
of ~1 m. A typical processing flow was applied to each coil 
separation/depth data layer on a paddock- by- paddock 
basis. Repeated geographic locations were averaged to re-
move duplicate readings and corrections were applied to 
the GPS to account for antenna location relative to instru-
ment centre. A correction was applied to account for the 
presence of the sled, which was measured prior to each 
acquisition day. Strong lateral variations (>1 mS m−1) in 
the data were removed and interpolated and a histogram 
filter (von Hebel et al., 2014) was applied to remove out-
liers. Principle component analysis (PCA) filtering was 
applied (Minsley et  al.,  2012) to remove high- frequency 
noise. Finally, each of the six data layers was interpolated 
using minimum curvature to a 1 m × 1 m grid. Data from 
the 0.2- m dipole separation were discarded because they 
showed high noise levels, due to the presence of air be-
neath the sled. EMI data often need to be calibrated due 
to instrument drift. Here, calibration coefficients were 
generated from a single coincident EMI and ERT calibra-
tion line. The coefficients were calculated for each coil 
separation using EM4SOIL (software for Electromagnetic 
Tomography. http:// www. emtomo. com/ ) and applied to 

the cluster centres to improve matching to modelled EMI 
for the times presented. The data are then converted to 
apparent electrical resistivity (�a), which is the inverse of 
the apparent electrical conductivity, to match the outputs 
from the modelling section (Section  2.2.3). Additionally, 
the relative apparent resistivity (�a) is calculated as:

where �ai is the apparent resistivity measured at any given 
location in the paddock and �amean is the mean apparent 
electrical resistivity of the paddock.

This study uses an unsupervised machine learning 
technique called self- organizing maps (Kohonen,  2013) 
to detect zones with a similar EMI signature. Typically, a 
range of appropriate number of clusters for a given data 
set is determined using a set of stability metrics (e.g., the 
MCASD; O'Leary et al., 2023). In this study, this method 
is applied independently for each paddock and time, con-
sidering data from all available EMI coil separations (i.e., 
sensitive to different soil depth ranges, Figure  1d). By 
doing this, the zonation accounts for soil compaction ef-
fects in the apparent electrical resistivity due to (a) shallow 

(1)�a =
�ai

− �amean

�amean

,

F I G U R E  1  (a) Electromagnetic induction (EMI) acquisition system including CMD mini explorer and Trimble global positioning 
system (GPS) mounted in a purpose- built sledge that is towed by a quad bike. (b) Example of mapped acquisition points measured in a 
1 ha paddock at a sampling frequency of 1 Hz. (c) Example of processed EMI data for the acquisition points shown in (b). (d) Normalized 
sensitivity of EMI data to soil depth as a function of coil separation. The legend endings - 1, - 2, - 3, - 4, - 5, and - 6 correspond to 0.2, 0.33, 0.5, 
0.72, 1.03 and 1.5 m coil separations, respectively (from https:// www. gfins trume nts. cz).
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variations of soil bulk properties and (b) variations in the 
soil moisture dynamics in the soil profile.

2.2 | Soil compaction explicit 
agrogeophysical modelling

Grazing management was linked to measured geophysi-
cal signatures by developing an explicit soil compaction 
agrogeophysical modelling framework that couples: (i) 
an animal movement model (Section  2.2.1), (ii) a soil 
compaction model (Section 2.2.2), (iii) an agroecosystem 
model (Section 2.2.3), (iv) a pedophysical model of elec-
trical properties (Section  2.2.4) and (v) a forward solver 
for simulating EMI data (Section  2.2.5). The modelling 
scheme is shown in Figure 2.

2.2.1 | Animal movement model

The model by Romero- Ruiz, Milne, et al. (2023) was used 
for representing animal movement as random walks (see 
also Rivero et al., 2021; Stephenson & Bailey, 2017). The 
model describes animal movement in polar coordinates 
characterized by two main properties: rotation angle and 
travelling distance that indicate the direction to which 

animals will move and the Euclidean distance between 
the current and next location. Animal movement pat-
terns are then obtained by sequentially sampling from 
probability density functions (PDF) that are representa-
tive of the rotation angle and travelling distance to up-
date the position of the targeted animal. A uniform PDF 
is used to sample rotation angles from 0 to 2� and the 
travelling distance is sampled from a Weibull distribution 
given by:

where pw is the probability of the travelling distance xw, 
and aw and bw are the Weibull parameters that are used 
to scale the travelling distance and highlight the distances 
with highest probability. Animal movement is then simu-
lated for each grazing day. For this, an area in which an-
imals will move is defined and discretized into 1 m × 1 m 
grid cells. Animal spatial locations within such area are 
then sampled using the model described above using a 
given number of steps per day (Nd). A heat map of animal 
movement is finally obtained by calculating the number 
of times in which animals were located in a given grid cell.

(2)

pw= fw
�
xw; aw, bw

�
=

⎧
⎪⎨⎪⎩

bw
aw

�
xw
aw

�bw−1

e(xw∕aw)
bw

if x≥0,

0 if x<0,

F I G U R E  2  Flow chart of the coupled 
agrogeophysical modelling framework 
used in this work. It includes a model of 
animal movement that simulates grazing 
management, a soil compaction model 
that predicts soil structure dynamics, 
an agroecosystem model for soil process 
modelling, a pedophysical model of 
electrical properties and a forward model 
of electromagnetic induction (EMI) data. 
The section of the manuscript in which 
each model is described is provided in 
each block.
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2.2.2 | Soil compaction model

Once animal movement and statistics about compaction 
locations are obtained (Section  2.2.1), a soil compaction 
model (Romero- Ruiz, Monaghan, et  al.,  2023) was used 
to systematically calculate the corresponding temporal dy-
namics of soil bulk density (d), macroporosity (wmac) and 
saturated hydraulic conductivity (Ksat). In such a model, 
the soil is conceptualized as a dual- domain porous media 
formed by (1) a soil matrix that is represented as an assem-
bly of soil aggregates presenting intra- aggregate porosity 
and (2) a soil macroporous region that can be conceptual-
ized as inter- aggregate porosity. The model used the rhe-
ology models proposed by Ghezzehei and Or (2001) based 
on Bingham's theory and simulates the lasting effect of one 
treading. Each event produces an irreversible deformation, 
�v, which is modelled using information about the initial 
(prior to compaction) strain �0, the axial load and duration 
of stress application and the soil rheological properties as:

where t is the time, � is the angular frequency, ϵB comprises 
information of the soil rheological properties and the char-
acteristics of the compaction event (e.g., weight of animal 
and walking speed), Ssm = �sm∕�sm is the water saturation 
in the soil matrix, where �sm is the water content in the soil 
matrix and Nν is an empirical exponent. The compaction- 
induced strain is then used to calculate d, wmac and Ksat. 
Further details on the soil compaction model and limitations 
can be found in Romero- Ruiz, Monaghan, et al., (2023).

The soil compaction model can also estimate recovery 
of soil properties as a function of time once the compact-
ing elements are removed. Soil macro, meso and micro- 
porosities change dynamically as a function of time and 
recovery is expected to be associated with biological activ-
ity, climatic cycles and management. Meurer et al. (2020) 
showed that macroporosity (wmac) recovers at an expo-
nential rate asymptotically to a maximum macroporosity 
(wmac0). Similarly, soil structure recovery in the viscous 
strain can be modelled as:

where ϵmaci is the soil strain, representing the strain result-
ing after the grazing season, dr is the number of days after 
the last grazing season, and �tr determines the recovery rate.

2.2.3 | Agroecosystem modelling

The compaction- induced dynamics of soil properties 
derived from the compaction model (Section  2.2.2) 

are entered into an agroecosystem model to explic-
itly account for compaction- induced soil degradation 
in important soil processes such as water flow, plant 
growth, nutrient and carbon cycling. The Rothamsted 
Landscape Model (RLM) (Coleman et  al.,  2017) was 
used in this study. The RLM incorporates daily updates 
of key soil properties affected by compaction during the 
grazing days. As illustrated in Figure 2, the RLM outputs 
water content and temperature, which are the control-
ling factors for electrical properties of the soil sensed by 
the EMI method. The RLM discretized the soil in three 
layers with model- defined interfaces at 0.23 and 0.46 m 
(final layer ends at 1 m). To include soil structure ef-
fects in soil functioning, a slightly modified version of 
the RLM was used. In such version, the water retention 
and hydraulic properties are modelled using the dual 
domain approach by Durner (1994) as:

and

where h is the pressure head, Se is the effective saturation 
of the soil, �r is the residual water content, ni is the van 
Genuchten exponent (relating to soil texture) and �i is re-
lated to the inverse of the air- entry pressure. The saturated 
hydraulic conductivity of the soil Ksat = rkKsm is defined as 
the product of the saturated hydraulic conductivity of the 
soil matrix Ksm and the ratio rk = Ksat∕Ksm which is a func-
tion of the soil macroporosity.

2.2.4 | Pedophysical modelling of 
electrical properties

Translating the simulated soil states to soil electrical 
properties requires a pedophysical model linking the soil 
water content, temperature, porosity and texture to the 
soil electrical resistivity. There are a multitude of predic-
tive (or forward) models for predicting the soil electri-
cal resistivity that often consider the main mechanism of 
electrical conduction in soils through the solid and liq-
uid phases (Bussian, 1983; Linde et al., 2006; Waxman & 
Smits, 1968). To be consistent with the soil compaction 
model (Section  2.2.2), a dual- domain electrical model 
was used. This model is based on differential effective 

(3)ϵv(t)=
[
ϵ2BSsm(t)

Nν (1−cos(�t))+ϵ20
] 1
2 ,

(4)ϵv=ϵ0−
(
ϵ0−ϵi

)
e−dr∕�tr ,

(5)

Se=
�−�r

�T −�r
=wsm

[
1+

(
�smh

)nsm]1− 1

nsm +wmac

[
1+

(
�mach

)nmac]1− 1

nmac ,

(6)

Ksoil= rkKsm

�
wsmSesm +wmacSemac

�0.5
�
wsm�sm+wmac�mac

�2
⎛⎜⎜⎝
wsm�sm

⎡
⎢⎢⎣
1−

�
1−S

nsm
nsm−1

esm

�1−
1

nsm
⎤
⎥⎥⎦
+wmac�mac

⎡
⎢⎢⎣
1−

�
1−S

nmac
nmac−1
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media (Sen et al., 1981) and represents the soil as a com-
bination of a soil matrix and a macroporous space. The 
electrical conductivity of the soil (�soil) is expressed as 
(Romero- Ruiz et al., 2022):

where �mac and �sm are the electrical conductivity of the mac-
roporous region and the soil matrix, respectively; and Msoil is 
an exponent that is understood to be related to the connectiv-
ity of soil aggregates and thus may be used to indicate com-
paction (Romero- Ruiz et al., 2022). The conductivity of the 
soil matrix �sm depends on the surface conductivity �s and 
the electrical conductivity of the pore fluid �f. Full expres-
sions for �s and �f can be found in Romero- Ruiz et al. (2022). 
In this work, the electrical resistivity of the soil is reported, 
which is the reciprocal of the soil electrical conductivity:

A temperature correction model is applied to the elec-
trical resistivity to account for temperature effects using 
the model by Campbell et al. (1948).

2.2.5 | Forward modelling of EMI data

The EMagPy forward model, developed by McLachlan 
et al. (2021), was used to convert the predicted true electrical 

resistivity to apparent resistivity, which is what is measured 
by EMI instruments. This allows a comparison between 
modelled results and acquired EMI data. EMagPy is a 1D 
open- source modelling tool that can be used with python 
scripts or in graphical user interface (GUI). It offers the flex-
ibility of forward modelling of EMI data for different coil 
separations.

3  |  CASE STUDY: DAIRY FARM IN 
TIPPERARY, IRELAND

3.1 | Study site and grazing history

The field site used in this study is a working dairy farm lo-
cated in County Tipperary, Ireland (Figure 3a). This dairy 
farm is made up of several paddocks with a total spatial ex-
tent of ≈50 ha. It is located ≈100 m above mean sea level, 
and its annual precipitation averages 980 mm (https:// 
www. teaga sc. ie/ crops/  grass land/ heavy -  soils/  ). Cattle are 
housed when ground conditions are poor; otherwise, they 
graze in paddocks, typically from February to November. 
Poor conditions are most likely to occur when there have 
been consecutive days of rain.

We did not perform soil sampling campaigns for this 
study. In order to infer soil compaction, we relied instead 
in pasture base information, pasture records, visual assess-
ment of the studied farm and extensive literature reports 
of soil compaction in grazed pastures. Soil compaction has 
been consistently observed for grazed pastures (such as the 

(7)�soil=
(
1−wmac

)
�sm

(
1−�mac∕�sm

1−�mac∕�soil

)Msoil

,

(8)�soil=1∕�soil.

F I G U R E  3  (a) The location of the 
study site in County Tipperary, Ireland. 
(b) An aerial photograph of paddocks 
13, 14, 16 and 17. The locations of the 
paddock gates and water troughs are 
highlighted. (c) A photograph of paddocks 
14 and 13 where compacted areas can be 
seen around the water trough.
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one used in this study) across the world (Hu et al., 2021). 
This is typically concentrated around spatial locations that 
experience highest trampling frequency (e.g., near water 
troughs, entry gates, shelter) (Rivero et al., 2021). As ex-
pected, we observed poaching, water ponding and reduced 
vegetation, which are common signs of soil compaction, 
near the entry gates and water troughs of all monitored 
paddocks (Figure 2c, see more pictures in the Figure S1).

EMI data were acquired from four paddocks on this 
farm, paddocks 13, 14, 16 and 17 with respective areas 
of 1.01, 0.91, 2.05 and 1.87 ha. These paddocks have been 
grazed by a herd of dairy cows an average of 8 days per 
year per paddock in the period between 2014 and 2023. 
The herd is composed by 124 cows since 2019. According 
to in situ single point measurements in each paddock, the 
soil type of all paddocks is typical surface- water gley under 
the Irish soil classification “Great Group” level (Creamer 
& O'Sullivan, 2018). In a second point measurement at the 
north half of paddock 16, the soil was classed as a “Brown 
Earth” (see Figure S2).

The EMI data were collected over two separate ac-
quisition campaigns. A full survey of the farm took 
place in the summer of 2021, with paddocks 13 and 14 
being acquired on 16 July 2021 (Time 1) and paddocks 
16 and 17 being acquired on 3 September 2021 (Time 2). 
These four paddocks were revisited on 20 October 2022 
(Time 3) specifically for this study to include different 
soil moisture conditions. Environmental variables (i.e., 
temperature, rainfall and solar radiation) recorded on 
this farm were used to predict the soil moisture deficit 
(SMD) (Schulte et al., 2005). This shows that data for this 
study were acquired under dry (Times 1 and 2) and wet 
(Time 3) soil conditions. Data were processed and clus-
tered (see Section 2.1) independently for each paddock/
acquisition date.

3.2 | Application of agrogeophysical 
modelling framework

In this study, modelled electrical signatures of compacted 
and non- compacted soil in EMI data were compared. It 
is assumed that compacted areas were trampled a given 
number of steps per grazing day (i.e., N = 17) and non- 
compacted were not trampled at all. The starting con-
ditions within the soil model were selected based on 
published values of physical and electrical properties of 
soils with similar textures. The initial property values 
were set to d = 1.29 g cm−2, wmac = 0.15 cm3cm−3 and Ksat 
= 195 cm h−1 (Hu et al., 2021). The water retention proper-
ties were selected based on soil with similar textures as re-
ports by Carsel and Parrish (1988) to αsm = 0.04 cm−1, nsm 
= 1.9, �rsm = 0.06 cm3 cm−3, and Ksm = 1.9 cm h−1. These 

properties were also assigned all three layers of the RLM 
(Figure 2).

To generate a compacted soil scenario, true recorded 
information about grazing days and trampling amount 
was used to calculate changes in soil physical and elec-
trical properties. For simplicity, only compaction- induced 
changes in the soil bulk density, soil macroporosity and the 
saturated hydraulic conductivity were allowed to be varied 
by the model. Similarly, compaction only induces changes 
in one key pedophysical parameters: soil macroporosity. 
The rest of the pedophysical parameters were the same for 
both compacted and non- compacted soil scenarios. Soil 
structure recovery was modelled using a recovery rate of 
�tr = 100 days, in agreement with recovery rates observed 
by Drewry (2006). Here, we do not model changes in Msoil 
due to compaction and rather use values of Msoil = 5 for 
both compacted and non- compacted soils. The electrical 
conductivity of water was set to �w = 0.04 S m−1 (Farahani 
et al., 2018). The soil surface conductivity (�s), known to 
be highly variable, was used as a calibration variable. The 
simulated apparent electrical resistivities were calibrated 
to the cluster centre data corresponding to low- compacted 
paddock 13 at Time 1 using a grid search.

4  |  RESULTS

4.1 | Observed EMI data

Figure 4 shows maps of relative apparent resistivity (�a) 
corresponding to a coil separation of 0.33 m (shallowest 
reading with highest sensitivity to detect compaction) 
together with SMD calculations for 2021 and 2022. The 
SMD corresponding to Times 1 and 2 is similar (~40) 
and higher than the SMD for Time 3 (~−10), suggesting 
dry conditions for Times 1 and 2 and wet conditions for 
Time 3. Thus, higher absolute values of apparent electri-
cal resistivities were measured at Time 1 and Time 2 (dry 
conditions).

4.2 | Relative apparent resistivity of 
in- field EMI survey

The relative apparent resistivities (Figure 4a–c) are pad-
dock independent, meaning that they were calculated 
as the relative change with respect to the mean value of 
apparent resistivity of soil collected for each paddock/ac-
quisition date. This allowed comparison of data collected 
in different years. For all paddocks/acquisition date, the 
range in the relative apparent resistivity �a remains stable, 
with most values falling between −60% and +60% of rele-
vant mean value. This indicates that, for these soils, spatial 
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patterns revealed by EMI data are consistent regardless of 
the soil moisture, temperature and time of the year. These 
spatial patterns are maintained in the relative apparent 
resistivity �a calculated from data from all coil separations 
(see Figure S3). This is expected since data from larger coil 
separations sensitive to deeper soil depth ranges are still 
strongly affected by shallow soil depths (Figure 1d).

Regions with negative values of �a are less electrically 
resistive than the mean resistivity of the paddock. Regions 
with positive values of �a are more electrically resistive 
than the mean resistivity of the paddock. For all acqui-
sition times, the areas with negative �a coincide with the 
entry gates, the water troughs, and areas linking these two 
features of the paddock. In contrast, regions with higher 
�a are most often those located the furthest away from the 
entry points. When comparing �a between 2021 and 2022, 
approximately 10% of the area of all paddocks changed 
from negative to positive values. Similarly, approximately 
10% of the areas changed from positive to negative values 
(Figure 5).

4.3 | Clustering

MCASD analysis (O'Leary et  al.,  2023), used for the first 
time here on EMI data, highlighted which number of clus-
ters would be appropriate to define the EMI data acquired 
in these paddocks (see Figure S4). Three clusters per pad-
dock/acquisition date were chosen for conceptual sim-
plicity. The results from an increased number of clusters 
did not change the conclusions derived in this article (see 
Figure S5). The spatial structures resulting from clustering 
exhibit similar features for all paddocks regardless of the 
soil wetness conditions on the data collection date. The spa-
tial structures in the cluster maps in Figure 6 correspond 
very well with the spatial structure of �a maps shown in 
Figure  4. In addition, spatial patterns obtained in maps 
using data from 2021 are very similar to maps obtained with 
data from 2022, consistent with �a results (Section 4.2).

Zones associated with the cluster centres having less 
resistivity values were near the locations of water troughs 
and entry gates where signs of compaction are visible and 

F I G U R E  4  Within field relative changes in apparent electrical resistivity for electromagnetic induction data collected with a coil spacing 
of 0.33 m in (a) July 2021, (b) September 2021 and (c) October 2022. (d) Soil moisture deficit (SMD) calculated continuously for 2021 and 
2022. SMD values for Times 1, 2 and 3 are marked in the figure.
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expected. This is consistent with expectations for elec-
trical properties of compacted soils. Based on this, we 
termed this zone as highly compacted soil. Since tram-
pling (and hence compaction) occurs across the entire 
paddocks, zones associated with mid and high electrical 
resistivity cluster centres were termed moderately and 
low- compacted soils, respectively. These terms must be 
seen as relative and the values apply for this study only. 
Cluster centres corresponding for 0.33 m coil separation 
for all paddocks and times are reported in Table 1.

4.4 | Simulated apparent electrical 
resistivities

Figure  7 presents the modelling results of water contents 
of the first soil layer (0–0.23 cm) and the simulated appar-
ent electrical resistivity for a coil separation of 0.33 cm (see 
sensitivity to soil depth in Figure  1d) for compacted and 
non- compacted soils from February 2021 to October 2022. 
Figure  7b shows the cluster centre values (Table  1) cor-
responding to low-  and high- compacted zones for all pad-
docks and times. The simulated water contents show that 
the water contents are typically higher for compacted soils 

than for non- compacted soils. During wet periods, both 
compacted and non- compacted soils have similar water 
contents, whereas on dry days non- compacted soil consist-
ently become drier than compacted soils due to their ability 
to better drain water.

For both compacted and non- compacted soils, the 
modelled apparent electrical resistivities followed sea-
sonal temperature trends and are very sensitive to vari-
ations of water contents. The pedophysical model of 
electrical resistivity was calibrated to reproduce data from 
Time 1 in the low compaction case in paddock 13. For 
this, the simulated apparent electrical resistivities suc-
cessfully reproduced the clusters centres for Time 1 for 
both compacted and non- compacted soils. The simulated 
apparent electrical resistivities reproduced the cluster 
centres of Times 2 and 3 with a normalized root square 
mean (NRMS) of 1.2 (considering an error of 5%) and a 
correlation coefficient or r = .96. The simulated apparent 
resistivities are qualitatively consistent with the cluster 
observations and show good match between the simu-
lated non- compacted and the measured low- compacted, 
and the simulated and measured highly compacted.

5  |  DISCUSSION

5.1 | Signatures of grazing- induced 
compaction in EMI data

Our study constitutes an advance on soil compaction detec-
tion because it utilizes the flexibility of EMI to cover large 
areas. Clear spatial patterns were observed in both maps of 
�a and cluster maps. The spatial patterns are present in all 
paddocks and on all acquisition days. The areas predicted 
to be compacted correspond very well with locations where 
compaction can be clearly identified with the naked eye (i.e., 
entry points and water troughs; see Figure  3c), and areas 
that are likely to be transited by animals (e.g., areas between 
gates and troughs). This suggests that long- term soil com-
paction produces primary signatures in the electrical resis-
tivity data and that variations due to natural, within- field 
variations of soil texture may be less for the paddocks studied 
here. However, compaction may not be detectable in cases 
where the natural variations of soil texture are large and 
hence dominate spatial changes in soil electrical resistivity.

When comparing data from 2021 and 2022 (Figure 5), 
only 10% of the paddocks' areas changed from negative 
values in �a to positive values. This may indicate post- 
compaction recovery of soil properties as commonly ob-
served in grasslands (Drewry, 2006; Drewry et al., 2004). 
Despite this potential recovery, the same percentage of 
the paddocks' areas shifted from positive values of �a to 
negative values, suggesting further compaction. This 

F I G U R E  5  Map contrasting changes in relative apparent 
resistivity measured in 2021 and 2022. Regions changing from 
negative to positive values suggesting recovery are coloured 
in green. Regions changing from positive to negative values 
suggesting compaction are coloured in black.
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   | 11 of 16ROMERO- RUIZ et al.

suggests that the grazing patterns of animals change 
randomly every year or that animals graze areas in one 
year that were less frequented the previous year, implying 
compaction related differences in grass yield. The areas of 
paddocks 16 and 17 is almost twice the areas of paddocks 
13 and 14. In this farm, the paddocks are grazed under a 
rotational grazing strategy. The amount of time spent in 
the paddock will reflect (approximately) its size so larger 
paddocks will be split grazed using temporary fences and 
be subject to an overall longer residency time. Ultimately, 
a larger paddock (such as 16 and 17) supplies much more 
feed than a smaller paddock so is utilized as such to avoid 
undermining pasture quality and herd performance. This 
partly explains why paddocks 13 and 14 show similar 
values of apparent electrical resistivity in Time 3 (when 
measured simultaneously) and similar associated levels 
of compaction. This suggests that the rotationally graz-
ing strategy effectively induces similar disturbance in soil 
structure for smaller and bigger paddocks. It is unclear, 
however, if this grazing strategy would be beneficial for 

reducing the environmental impacts of grazing- induced 
soil compaction (e.g., increase in GHG emissions, see also 
Section  2) (De Klein et  al.,  2006). This requires further 
modelling, laboratory and field work and is outside the 
scope of this study.

5.2 | Clustering within paddock 
EMI data

Using an unsupervised machine learning algorithm, we 
identified three clusters in the EMI data that are associ-
ated with heavily, moderately and low- compacted soils. 
The clustering- based spatial delineation (Figure  6) led to 
very similar results from the relative difference- based areas 
(Figure 4) for identifying spatial patterns characteristics of 
soil compaction. The cluster centres output from the clus-
tering algorithm allowed for EMI values to be assigned to 
each of these clusters which facilitated the link to predic-
tive modelling results. When considering the cluster centres 

F I G U R E  6  Spatial distribution of the three clusters derived using data from (a) July 2021, (b) September 2021 and (c) October 2022.
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12 of 16 |   ROMERO- RUIZ et al.

associated with high compaction and low compaction, 
the decrease of apparent electrical resistivity (coil separa-
tion of 0.33 m) was 22%, 19% and 33% for Times 1, 2 and 
3, respectively (See Table  1). When considering the clus-
ter centres associated with high compaction and moderate 
compaction, the compaction- induced decrease of apparent 

electrical resistivity was 12%, 9% and 19% for Times 1, 2 and 
3, respectively. These differences are slightly higher, yet con-
sistent, with the decrease in electrical resistivity observed 
in field studies using the ERT method in soils compacted 
by passages of agricultural machinery (Besson et al., 2004; 
Keller et  al.,  2017; Romero- Ruiz et  al.,  2022). Such slight 

T A B L E  1  Apparent resistivity values of each cluster centre for each paddock/date acquisition. Only displaying the 0.33 m coil separation 
as this roughly relates to the depth where compaction is known to occur.

Paddock 13 Paddock 14 Paddock 16 Paddock 17

Time 1 (16 July 2021)

High compaction 88.67 89.04

Medium compaction 101.93 97.71

Low compaction 113.98 106.99

Time 2 (03 September 2021)

High compaction 105.32 87.94

Medium compaction 116.43 107.46

Low compaction 130.87 122.94

Time 3 (20 October 2022)

High compaction 61.83 69.48 69.22 60.87

Medium compaction 76.52 80.96 81.83 74.26

Low compaction 92.52 95.91 96.26 87.74

F I G U R E  7  (a) Simulated water 
contents corresponding to the topsoil 
layer (0–23 cm) for non- compacted and 
compacted soils. (b) Simulated apparent 
electrical resistivity for non- compacted 
and compacted soils and cluster centres 
associated with low- compacted (LC) and 
high–compacted (HC) zones. Vertical 
black lines mark the dates in which 
electromagnetic induction data were 
collected.
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   | 13 of 16ROMERO- RUIZ et al.

differences with the literature values may be due to the dif-
ferent sensitivity to soil depth from the methods used, differ-
ences in soil type, compacting force, climate or compaction 
due to animal as opposed to machinery.

The clustering algorithm provided a powerful data- driven 
tool to reduce the dimensionality of the acquired data that 
focused this study on two specific scenarios to reproduce 
with agrogeophysical modelling. By comparing the mea-
sured decrease in apparent resistivities (see clusters centres 
in Figure 6b and Table 1), soil compaction effects were more 
evident on Time 3 (wet), followed by Time 1 (dry) and Time 
2 (dry). This suggests that soil compaction effects on soil 
electrical properties are more evident on wet days, and thus, 
monitoring campaigns aimed at detection are more likely 
to be successful if performed on wet days, as recommended 
by Romero- Ruiz et  al.  (2022). However, it was still possi-
ble to clearly delineate the presumed  compacted and non- 
compacted zones on Times 1 and 2, under dry conditions. In 
contrast, Romero- Ruiz et al. (2022) found that, in conditions 
when surface evaporation is important, compacted soils dried 
faster and more than non- compacted soils which masked 
compaction effects in the electrical resistivity. This is not ob-
served in our study and may be also related to how the com-
paction mechanism (e.g., wheeling or trampling) changes soil 
hydrological and mechanical properties as a function of depth 
and time. Therefore, soil processes controlling soil water dy-
namics such as drainage, evaporation and root water uptake 
may be substantially different for each compaction type and 
likely depend on the climate too (through, e.g., differences 
in potential evapotranspiration). The observed increase in 
relative differences at Time 3 may be also driven by the fact 
that the paddocks had a higher number of total cumulative 
grazing days (since 2014) and seasonal grazing days (since the 
beginning of the grazing season in 2022).

5.3 | Agrogeophysical modelling: 
Limitations and outlook

Our newly developed agrogeophysical modelling approach 
allowed us to link aspects related to management such as 
grazing days and number of animals to soil electrical prop-
erties by considering the impact of management in soil 
processes. In such dynamic agricultural systems, these 
process- based modelling strategies have an advantage over 
traditional inversion of geophysical data that use smooth-
ing constraints where infusing knowledge about the sys-
tem is not straightforward (Tarantola, 2005). Despite the 
discrepancies between simulated and measured values of 
apparent electrical resistivities, the modelling results quali-
tatively confirmed the expectation and predicted decrease 
in the apparent electrical resistivity for the compacted soils. 
Since the model was calibrated using data from Time 1 in 

the low- compacted paddock 13, the discrepancies between 
modelling results and observations can be associated with a 
combination of factors. The water flow module in the agro-
ecosystem model may not be able to reproduce the moder-
ately dry conditions in Time 1 and 2 and their differences 
fully, or the wet conditions expected for Time 3. This occurs 
in both compacted and low- compacted cases and thus may 
be caused by the simplifications in the choices of soil water 
retention and water flow properties that are the same in both 
systems. It is also likely that the simulated evaporation and 
root water uptake are overestimated. There may be other 
farm management practices which took place on Paddocks 
16 and 17 that are not recorded in the grazing data provided 
(i.e., spraying and fertilizing) which may have affected the 
EMI results at Time 2. Finally, the differences may be re-
lated to the soil electrical properties defined for the com-
pacted and non- compacted soils, which were simplified.

The modelling work is limited by its ability to repre-
sent soil properties and the soil processes associated with 
it. Despite these limitations, the model successfully repro-
duced the measured apparent resistivities to a NRMS of 
0.98. As described in  Section  2, mechanistic modelling 
work is important to help in understanding subsurface 
processes and harnessing monitoring techniques that 
allow quantification of such processes, the impact of soil 
management and to predict their environmental impacts 
(Vereecken et al., 2016).

The modelling approach presented here can be har-
nessed to use clustered EMI data in order to constrain 
spatially explicit models to help predicting field- scale im-
pacts of grazing on soil functions due to compaction (e.g., 
increase in nitrous oxide emissions or reduction of carbon 
stocks) (Hu et  al.,  2021; Pulido- Moncada et  al.,  2022). 
This work offers the first attempt at linking a fully cou-
pled model of soil management processes and its impact 
on geophysical signatures but further research is needed. 
Future work on developing a globally applicable model-
ling framework, requires more knowledge on the mech-
anistic links between management and geophysical data. 
This included a detailed field sampling campaign to ac-
quire in situ soil data to constrain and validate the models 
presented here.

6  |  CONCLUSIONS

We have developed a framework to model and detect the 
spatial extent of soil compaction in grasslands using field- 
scale EMI data. We measured EMI in paddocks of differ-
ent sizes and under different soil wetness conditions in a 
dairy farm in Ireland. The EMI data were clustered using 
an unsupervised machine learning algorithm to obtain 
representative EMI signatures of spatial variation of soil 
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compaction. The clusters centres were then interpreted 
using a newly developed agrogeophysical modelling 
framework. The clustering results that were interpreted as 
compacted soils are consistent with field features such as 
water troughs and entry gates. Electrical resistivities meas-
ured for these zones are consistent with those reported 
for compacted soils in the literature. We suggest that, for 
these grasslands, compacted zones can be identified re-
gardless of the size of the paddock and the soil wetness 
on the day of monitoring; however, this may be a char-
acteristic that is unique to these climates and the nature 
of the compaction. The modelling framework presented 
here allowed us to mechanistically link measured field- 
scale EMI data with animal movement, soil compaction 
and a soil process model, which with further development 
may help to quantify, monitor and predict the field- scale 
and spatially explicit environmental consequences of dif-
ferent agricultural practices.
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