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ABSTRACT
Pedotransfer functions (PTFs) are widely used empirical relationships to estimate soil hydraulic parameters. PTFs are usually 
derived from point soil samples analysed in the field or laboratory; thus, they contain uncertainties at different levels (i.e., from 
sampling and measuring techniques, as well as empirical approaches chosen to quantify relationships). When PTFs are used to 
parametrize agro- hydrological models, both the choice of PTF and the choice of the model may influence the simulation results. 
Both sources of variance (PTF choice and model structural differences) were found to be relevant in previous studies, but how 
they relate to each other has rarely been investigated. In this study, we addressed this research gap by conducting a systematic 
analysis of the variance in selected agro- hydrological model outputs (i.e., seepage water, soil water content, actual evapotranspi-
ration, transpiration, biomass production) based on an ensemble of 18 PTFs applied to four agro- hydrological models, namely: 
APEX, CANDY, DAISY and SWAP. The models were calibrated for aboveground biomass and phenology of silage maize and 
evaluated using data of actual evapotranspiration, seepage water and soil water content obtained from a lysimeter facility in 
Switzerland. ANOVA- based variance partitioning was applied to attribute variance in model outputs to two uncertainty sources 
(PTF choice, model choice). Overall, we found that agro- hydrological model structural differences had a larger influence on the 
variance in model outputs than PTF differences. Further analyses undertaken per model showed that the sensitivity of the simu-
lated outputs to the choice of PTF differed between the models; our results showed that the models integrating the Richards equa-
tion (SWAP, DAISY) were more sensitive to the choice of PTF than those using a reservoir cascade approach (APEX, CANDY). 
Our results also showed that simulated outputs using the mean of a PTF ensemble performed better than when using a single 
PTF, irrespective of the model and output variable. We therefore recommend using PTF ensembles in agro- hydrological model-
ling studies. The benefit of using large PTF ensembles is, however, likely to be reduced in larger ensembles of agro- hydrological 
models, as structural model uncertainties will dominate over PTF uncertainties, according to the four- member model ensemble 
investigated here.
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1   |   Introduction

Agro- hydrological models are commonly applied to cropping 
systems for evaluating the influence of climate, soil and man-
agement drivers on environmental processes involving water 
fluxes (e.g., transpiration, runoff, leaching of nutrients and 
pesticides), both at local and regional scales. Depending on 
the scale of interest, the parameterization of the soil hydraulic 
parameters (SHP) is carried out using actual observed data or 
by using estimates from pedotransfer functions (PTFs). PTFs 
are relationships or knowledge rules used to relate easy- to- 
measure soil information to other soil properties or variables 
that are needed to parameterise the soil processes in land sur-
face models (Looy et al. 2017). Using input variables, such as 
soil texture, bulk density and soil organic carbon, PTFs are 
commonly applied to predict SHP, relying on databases that are 
available from field or laboratory measurements. It is thus not 
surprising that estimates from PTFs are subject to uncertainties 
(e.g., Stenemo and Jarvis  (2007), Deng et  al.  (2009), Loosvelt 
et al. (2011), Weber et al. (2024)). Efforts to reduce uncertainties 
in PTFs are constantly undertaken (Szabó et  al.  2021; Zhang 
et al. 2020; Ding and El- Zein 2024) and the ability of different 
PTFs to predict soil water content or soil hydraulic conductiv-
ity has been tested in various studies (e.g., Nasta et al. (2021)). 
Furthermore, it has been explored in several modelling stud-
ies how the choice of PTF affects simulation results of agro- 
hydrological studies. For example, Weihermüller et  al.  (2021) 
applied HYDRUS- 1D in combination with several widely used 
PTFs to find that PTF choice led to substantial variability in 
the predicted water fluxes. Similarly, Paschalis et  al.  (2022) 
evaluated the responses of the eco- hydrological and terrestrial 
biosphere model T&C and quantified how uncertainties em-
bedded in using different PTFs propagate to simulated water 
and carbon fluxes. They found that PTF differences resulted in 
roughly 10% variation in the simulated leaf area. Other studies 
have included more than one model in the evaluation of PTF 
uncertainties to study to which extent specific models are sensi-
tive to PTF choices (e.g., Baroni et al. (2010), Liao et al. (2020)). 
By considering more than one agro- hydrological model, the un-
certainty in the simulated results will contain combined effects 
of structural model differences (i.e., structural model uncer-
tainty) and uncertainties originating from PTF choice. Model 
structural differences in agro- hydrological models originate, 
for example, from different representations of the soil water 
balance (i.e., Richards'- based versus a reservoir cascade imple-
mentation), or the response of plant water stress to different soil 
water content conditions and its influence on plant transpira-
tion and productivity, as well as the parameterisation of the soil 

evaporation interaction with surface soil water content. Some 
studies have addressed both structural model uncertainties and 
uncertainties resulting from PTF choice. For example, Baroni 
et  al.  (2010) used the Richards'- based model SWAP and the 
reservoir cascade model ALHyMUS with SHPs parameterised 
using laboratory measurements, field data and PTFs to assess 
the variability of simulated soil water content and bottom flux 
in a study in Northern Italy. The findings highlighted that the 
variability of the simulated water dynamics for different SHP 
sets was found to often be larger than the difference between 
model results of the two models using the same SHP set, indi-
cating that model structural differences had a smaller effect on 
the results as compared to SHP. Beyond soil water dynamics, 
Liao et al. (2020) assessed model versus SHP parameterisation 
uncertainties applying two biogeochemical models (DayCent 
and DeNitrification- DeComposition, DNDC) to simulate soil 
NO3

− N leaching on a tea garden hillslope in Taihu Lake 
Basin, China. Using an ensemble of 12 PTFs, the authors found 
that both PTF choice and model structural differences had sim-
ilar effects on variance in simulated soil NO3

− N leaching. The 
majority of the studies that investigate the effects of PTF un-
certainties in agro- hydrological models have only explored sen-
sitivities of model estimates to PTF choices based on single or 
pairs of models. It is thus not well understood how uncertain-
ties originating from PTF choices compare to model structural 
uncertainties in larger model ensembles. We addressed this re-
search gap by applying an ensemble of four agro- hydrological 
models in combination with 18 PTFs to systematically explore 
how different model structures mediate the influence of PTF 
parameterisation. Two of the four agro- hydrological models 
use a reservoir cascade scheme (APEX, CANDY) and there-
fore were expected to be less sensitive to the PTF choice, while 
the other two models describe the space–time variation of soil 
water content based on the Richards equation (DAISY, SWAP). 
We systematically investigated the effect of PTF choice as com-
pared to model structural differences in selected outputs de-
scribing the soil- crop- water dynamics.

2   |   Materials and Methods

2.1   |   Study Site and Reference Data

The reference data used in this study was obtained from the 
lysimeter facility of Agroscope Zürich- Reckenholz (Prasuhn 
et al. 2016). Additional data on averages of flowering days and 
crop yield was obtained from silage maize variety trials in 
Zürich- Reckenholz (Baux et  al.  2010; Hiltbrunner et  al.  2014; 
2015; 2016; 2017; 2018; 2019; 2020; 2021; 2022; 2023). The mete-
orological data was obtained from a MeteoSwiss monitoring sta-
tion (REH, latitude 47°26′ N, longitude 8°31′ E, altitude 443 m) 
located near the lysimeters. Our analysis was focused on 2 years 
with distinct climate patterns. In 2015, the average precipita-
tion during summer (May to September) was 421 mm; therefore, 
drought conditions were observed. In contrast, 2021 had a total 
of 609 mm precipitation during the same period and was con-
sidered to be a wet year for local conditions (Figure 1). For an 
extended dataset with data from 2009 to 2022, see Appendix A1.

Data for aboveground biomass, soil water content, actual evapo-
transpiration (AET), and seepage water were obtained from a 

Summary

• Influences of PTFs on the variance of multi- model 
simulated outputs are not well understood.

• An ensemble of 4 models and 18 PTFs was employed 
to analyse variance sources.

• Propagation of uncertainty from a given PTF depends 
on the choice of model.

• Variance due to model structural differences is mostly 
higher than due to PTF choice.
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lysimeter with a depth of 150 cm and a surface area of 1 m2 filled 
with an undisturbed soil monolith (0–135 cm). At the bottom of the 
lysimeter, a 15 cm layer of purified quartz, sand, and gravel allowed 
free drainage to occur. The soil in the lysimeter was a loamy sandy 
Cambisol above moraine. Table  1 shows the basic physical and 
chemical parameters of the soil measured during the construction 
of the station in 2009. Reference methods for the measurement of 
the soil properties are described in Agroscope (2024). Soil water 
content was monitored using frequency domain reflectometry 
sensors (FDR; ThetaProbe ML2x, Delta- T Devices) at four depths 
(10, 30, 60 and 90 cm), each with two replicates, and averaged to 
daily values. Differences in recordings from the two sensor repli-
cates were attributed to soil heterogeneities within the lysimeter 
column. Soil water suction was monitored using equilibrium tensi-
ometers at 10 cm depth (EQ15, Ecomatic), and pressure transducer 
tensiometers (Tensio 150, UGT) at 30–90 cm depths. Weighting 
load cells (UGT WM 100, UGT, Münchenberg, Germany) with an 
accuracy of 0.01 mm of water on steel trusses were used to record 
the weights of the lysimeters at a temporal resolution of 5 min. The 
volume of seepage water was measured with tipping buckets in-
stalled at the bottom of the lysimeters. The actual evapotranspi-
ration (AET) was derived from the water balance equation, as is 
typically done for lysimeters. There was no irrigation in the eval-
uated period, and the surface runoff was considered negligible. 
Consequently, AET was the result of precipitation, minus seepage 
water, minus the change in weight for the time period (Oberholzer 
et al. 2017).

In 2015 and 2021, silage maize was grown in the lysimeter, 
with a management of full fertilisation from mineral sources, 
at 100% of the recommended rate. From this lysimeter, valida-
tion data on AET, seepage water and soil water content were 
available and analysed in daily time steps. For calibrating the 
agro- hydrological models with the data of aboveground biomass 
of silage maize, we extended the dataset to include two other 
lysimeters, which had the same soil type and crop management. 
For an independent validation of yield simulations, a dataset 
from the above- cited variety trials was used (Figure 2).

2.2   |   Model Descriptions

Four agro- hydrological models were chosen that mathemati-
cally represent two different numerical approaches for simulat-
ing the soil- crop- water dynamics. APEX version 1501 Rev.2203 
(Gassman et  al.  2009) and CANDY version 22.8.2 (Franko 
et  al.  2024, 1995) (https:// www. somod. info/ candy_ main. php) 
use a soil reservoir cascade scheme, whereas DAISY version 6.33 
(Hansen et al. 1991) and SWAP version 4.2.0 (Kroes et al. 2000, 
2017) use a numerical solution of the Richards equation.

The reservoir cascade approach applies to freely draining 
soils, in which groundwater has no influence on the soil water 
content in the rooting zone. There can be different levels of 
complexity in reservoir cascade models, but the most general 

FIGURE 1    |    Cumulative daily values of precipitation (mm) and mean daily temperature (°C) during the period of growth of silage maize in 2015 
and 2021. Mean daily temperatures calculated with a moving average every 5 days.

TABLE 1    |    Soil physical and chemical properties. PD: Particle density (g cm−3), BD: Dry bulk density (g cm−3), OC: Soil organic carbon (g 100 g−1), 
CACO3: Calcium carbonate (%), CEC: Cation exchange capacity (cmol+kg−1).

Horizon
Depth 

cm Clay % Silt % Sand %
PD 

g cm−1
BD 

g cm−3
OC 

g 100 g−1 pH CaCO3%
CEC 

cmol+ kg−1

Ahp 0–25 16 32 51 2.63 1.46 0.99 6.9 0.1 9.81

Bcn 25–65 20 26 53 2.66 1.58 0.21 6.6 0.0 9.33

B (g) (t) 65–110 18 24 58 2.68 1.55 0.09 6.7 0.0 8.65

Bg (t) 110–135 16 27 57 2.69 1.62 0.05 6.8 0.0 7.45
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concept is that the available water in the soil is stored between 
a lower (permanent wilting point, PWP) and an upper limit 
(field capacity, FC). The soil profile is composed of layers with 
distinct attributes that allow for water to flow from one layer 
to another.

The Richards- based description consists of the solution of a 
non- linear partial differential equation, most commonly in the 
vertical direction, with a sink term to represent the root water 
uptake:

where C(h) (cm−1) is the specific water capacity, the derivative of 
the soil water retention function �(h), which describes the rela-
tion between water content � (cm3 cm−3) and soil water suction 
h (cm, defined as positive when h > 0), t  (d) is time, K(h) (cm d−1) 
is the hydraulic conductivity as a function of h, z (cm) is the ver-
tical spatial coordinate (negative downwards), and Sa(h) (d−1) 
is a sink term representing the rate of soil water extraction by 
plant roots.

In this approach, a mathematical relationship between 
�(h) and K(h) is essential to solve Equation  (1). We used the 
Genuchten  (1980)–Mualem  (1976) equation to describe this 
relationship:

where the relative degree of saturation is Θ is defined by the 
saturated (�s) and residual (�r) soil water contents (cm3 cm−3), 

� (cm−1), n, and l are empirical shape parameters, and Ks is the 
saturated hydraulic conductivity (cm d−1).

2.2.1   |   General Setup of the Models

A homogenised soil parametrization and general workflow were 
used by all models to ensure a similar description of the crop 
development. For calibration of aboveground biomass, all four 
agro- hydrological models were run using soil parameters de-
rived with the PTF developed by Weynants et al.  (2009). This 
PTF was chosen because it is the PTF that solely considers soil 
texture, soil organic carbon and bulk density, which are all com-
monly identified as strong factors in the prediction of SHP (Looy 
et  al.  2017). The maximum root depth was set to 135 cm, that 
is, the actual total depth of the soil in the lysimeter. Figure A2 
shows the discretisation of the soil profile in each model as com-
pared to the location of the sensors in the lysimeter. More details 
about sub- discretisation of layers are provided with the model 
descriptions below.

All models used local meteorological data as input, with a 
spin- up period starting on January 1st, 1981. The crop rotation 
in the four agro- hydrological models was defined as a silage 
maize monoculture without any crops grown during winter. 
Nitrogen stress was not considered, that is, we assumed optimal 
nitrogen supply throughout the growing season. The sowing 
dates were the same as the ones in the lysimeters for the years 
in which aboveground biomass data was available (2009, 2012, 
2015, 2019, 2021, 2022), and according to the variety trials in the 
other years.

After adjusting the simulated crop phenology to match it with 
observed dates of flowering and maturity, additional crop pa-
rameters were calibrated to match simulated aboveground 

(1)C(h)
�h

�t
=

�

�z

[
K(h)

�(h + z)

�z

]
− Sa(h)

(2)
Θ(h)=

�−�r
�s−�r

=
1

[
1+ |�h|n

]1∕n

K(h)=KsΘ
l
[
1−

(
1−Θn∕(n−1)

)(n−1∕n)]2

FIGURE 2    |    Measured values of aboveground biomass between the years of 2009 and 2022 used for calibration and validation of the models. 
Calibration was performed with data from the lysimeters, and validation with data from variety trials.
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biomass with observations from the lysimeters. The flowering 
dates simulated by DAISY and SWAP were defined as the date 
when the development stage (DVS) equals 1.0. For CANDY, the 
dates when the BBCH reaches 65 were chosen as this is usu-
ally when the flowering of maize occurs (range 61–69; Meier 
et al. (2001)). The simulated dates were compared with the flow-
ering data available from variety trials (Figure A3).

2.2.2   |   APEX

APEX (Agricultural Policy/Environmental eXtender) is a con-
tinuous, physically based, spatially explicit agro- hydrological 
model that runs on a daily time step (Izaurralde et al. 2006). 
Soil water flux is simulated on the basis of the reservoir cas-
cade concept. The unsaturated hydraulic conductivity is calcu-
lated using a variable saturation hydraulic conductivity VSHC 
(4 mm slug) method, whereby the flow of water from one soil 
layer to the next layer occurs when FC (defined in APEX as 
the soil water content at a tension of 330 cm) in a soil layer 
is exceeded. The volume of mobile water in each soil layer of 
4 mm is discretized into small fractional volumes of water, 
called slugs. Only if the available water is > 0.01 cm3 cm−3 
does the slug method take place. Percolation is iteratively 
simulated for each slug to discharge into the next 4 mm layer, 
until all slugs have moved into the sublayer (Doro et al. 2017). 
During each iteration, the effective hydraulic conductivity is 
calculated for each slug based on the saturated hydraulic con-
ductivity, FC, porosity, soil characteristics and the actual soil 
water content, using a method similar to Gardner  (1958). In 
addition to downward flux, an upward flux can occur, caused 
by evaporation or plant water uptake.

Potential evapotranspiration (PET) is calculated using the 
Penman–Monteith equation (Allen et  al.  1998). Evaporation 
and transpiration are partitioned as described by Ritchie (1972). 
Actual soil water evaporation is simulated by using an expo-
nential function related to soil depth and water content. The 
transpiration plus any evaporation due to canopy interception 
is simulated as a linear function of the potential evaporation 
and the leaf area index. The daily root growth is simulated as a 
function of the heat units (HU) and the crop potential maximum 
rooting depth (RDMX). The root depth (RD) per day (i) is a func-
tion of the soil profile depth (RZ) and is calculated as:

Mineral fertiliser was applied according to the needs of the 
simulated silage maize, which was determined according to 
the biomass. To simulate the lysimeter, the soil layers in APEX 
were set up as per the soil horizons in the lysimeter to a depth 
of 135 cm, after which a 15 cm layer of coarse sand was added to 
simulate a total depth of 150 cm; this coarse sand layer allowed 
free draining of water to drain to the bottom of the lysimeter 
(seepage water).

A sensitivity analysis was performed to select potential pa-
rameters for calibration. A set of 31 parameters related to crop 
development were initially chosen based on a literature re-
view (Baffaut et al. 2017; Jones et al. 2021; Mason et al. 2020; 
Wang et al. 2011). To calibrate the most influential parameters, 

a screening was undertaken using the Sobol' variance- based 
sensitivity analysis (Puy et al. 2022). A sample hyperspace was 
compiled with the 31 parameter values chosen by quasi- random 
numbers and a sample size of 5000 parameter sets. Quasi- 
random numbers were generated to compute the first order (Si) 
and total- order (Ti) Sobol' indices. Additionally, Sobol’ indices 
for a dummy parameter were computed to estimate the numer-
ical approximation error and identify non- influential param-
eters. Parameters with confidence intervals equal to or above 
the Si and Ti indices of the dummy parameter were sensitive. 
Based on the outputs, 12 sensitive parameters were selected for 
further calibration (Table 2). Next, using quasi- random number 
sampling, parameter sets were generated and 5000 runs were 
simulated. The dotty (point) plots were visually examined to 
set ranges for the final calibration. The calibration was carried 
out using the root mean square error (RMSE) of the corn si-
lage yields for the years available as the objective function. The 
runs with the lowest RSME and a KGE > =0.3 were selected. 
APEX does not simulate an output of crop phenology (or growth 
stages). Instead, it provides daily increments of the above and 
below ground biomass. The plant development, including leaf 
area growth and senescence, and partitioning of dry matter into 
roots and shoots are simulated based on the daily heat units ac-
cumulated, whereby a total heat unit sum determines when the 
maize crop reaches maturity. The biomass accumulation is con-
strained by a crop growth factor; stresses caused by water, nu-
trients, temperature, aeration, and radiation. Plant water stress 
is calculated as the ratio of actual vs. potential daily plant water 
use. The water stress factor (PARM38, Table 2) limits biomass 
production, which is decreased in proportion to the reduction in 
transpiration (Hanks 1983).

2.2.3   |   CANDY

CANDY is a deterministic, descriptive model that allows soil 
profiles down to 200 cm that are divided into 10 cm thick layers. 
Water flux is calculated using a reservoir cascade concept, that 
is, downwards flow of water into a lower soil layer is only simu-
lated if the water storage exceeds FC (here defined as soil water 
content at h = 63 cm) of the layer above. This implies that the 
amount of water that could enter the soil system is given by the 
daily rainfall, but includes also irrigation and water added with 
manure or slurry applications. The water balance in CANDY is 
calculated assessing the availability in relation to the maximum 
(FC) and minimum water content (PWP). Consequently, the ve-
locity of the downward flux of water is controlled by the satu-
rated hydraulic conductivity through the drainage parameter �p 
(Koitzsch and Günther 1990).

where � is the soil water content (cm3 cm−3) of a soil column of 
defined thickness, t  is the time, and �FC is the water content at 
field capacity (cm3 cm−3). Evaporation is considered to affect 
the upper five layers, that is, the top 50 cm of the soil profile, 
while all rooted layers are considered for calculating the tran-
spiration. The calculation of both potential evaporation (PE), 
PET and AET (mm d−1) is based on the work of Koitzsch and 
Günther (1990) and further presented on Franko et al. (1995):

(3)RD(i) = min(2.5 × RDMX(i) ×HU(i), RDMX,RZ).

(4)𝛿𝜃

𝛿t
= − 𝜆p

(
𝜃−𝜃FC

)2
, 𝜃 > 𝜃FC
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where Tair is the air temperature (°C), GR is the daily sum of ra-
diation energy (MJ m−2), PEI is the potential evaporation of inter-
cepted water by the crop (mm d−1), ch is the crop height (cm), Ri is 
the intercepted water (mm d−1), Ψ is the fraction of the soil surface 
that is covered by transpiring plants, and H1 and H2 are reduction 
coefficients, calculated as functions of the water content (Koitzsch 
and Günther 1990). Relevant processes of water flux are described 
for the unsaturated zone and without considering lateral fluxes. 
Surface runoff occurs as a result of infiltration surplus.

Crop growth is based on photosynthesis quantified by photo-
synthetic photon flux density PPFD (μmol m−2 s−1), based on the 
global radiation (GR, Wm−1):

The intercepted radiation PARX depends on leaf area index 
(LAI), canopy reflectance (refl) and the crop- specific kex, which 
is a development- dependent irradiance extinction coefficient. 
PARX is calculated as

The daily photosynthesis rate (DPR) depends on PARX, the 
photosynthetic capacity (�), the photosynthetic rate at light sat-
uration (�) and is further moderated depending on temperature 
stress (rfT), water stress (rfW), atmospheric CO2 concentration 
(rfC) and the nitrogen state of the crop (Nleaf ) Huang et al. (2009):

Water stress (rfW) is calculated as follows:

where i is the evaluated day and PWPi refers to the water content 
at which uptake of N by the plant ceases.

Root growth is controlled by the assimilate distribution, which 
in turn is described by a development index (DVI)- dependent 
partitioning factor. The amount of biomass that is distributed 
to the roots is transformed into root depth via a user- specific 
parameter (prx) until a maximum rooting depth is reached. In 
CANDY, the rooting depth of 135 cm cannot be assigned, since 
the compartments vary only each 10 cm, so the maximum root-
ing depth was set at 130 cm.

For this study, the lysimeter setup was used, implying that sur-
face runoff was disabled and therefore all rainfall water even-
tually infiltrates the soil profile. The depth of the soil profile 
was set at 135 cm, and an additional 15 cm of coarse sand was 
assumed at the bottom boundary, as described by Prasuhn 
et al.  (2016). CANDY allows the usage of different plant mod-
ules, some of which are N- uptake driven and require the 

(5)PE = 0.0041
(
Tair + 22.7

)
(GR + 2.09)

(6)PET =min (1 + 0.004ch,1.4)PE

(7)
AET=0.5min

(
PEI,Ri

)
+ΨH1 max

(
0,
(
1−Ri∕PEI

)
PET

)

+(1−Ψ)H2PE

(8)PPFD = 2.3 × 106
GR

86400

(9)PARX = (1 − refl)PPFD
1 − exp

(
− kexLAI

)

kexLAI

(10)DPR =
�rfTrfWNleafPARX

�PARX

(11)rfW =min

�
1,max

�
0.1,

∑
i�i −

∑
iPWPi∑

iFCi −
∑

iPWPi

��

TABLE 2    |    APEX model parameters calibrated to simulate silage maize aboveground biomass. PARM3 sets the fraction of growing season when 
water stress starts by reducing HI. If PARM38 equals zero, the water stress is strictly a function of soil water content, if it is equals 1, water stress is 
strictly a function of AET/PET. Minimum and maximum thresholds represent the ranges used for the initial calibration.

Name Description Default Min Max Units Optimised value

HI Harvest index 0.5 0.5 1.25 — 0.98

PARM3 Water stress- harvest index (HI). 0.75 0 1 — 0.55

PARM30 Heat effect on HI 1 1 10 — 8.24

PARM38 Water stress weight coefficient 1 0 1 — 0.47

PARM82 Related to percolation and 
lateral flow of 4 mm slug

3 1 6 — 2.43

WA Biomass- Energy Ratio 39 19.5 58.5 (kg ha−1)/(MJ m−2) 54.53

DMLA Maximum potential LAI 6 3.5 6 m2 m−2 5.71

DLAI Fraction of growing season 
when leaf area declines

0.8 0.72 0.88 — 0.74

TOP Optimal temperature for growth 25 20 27.5 °C 20.08

TBS Minimum temperature for growth 10 5 12.5 °C 10.64

RLAD LAI decline rate parameter 1 0 10 — 6.46

RBMD Biomass- energy ratio decline rate 1 0 10 — 8.97
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expected (or observed) crop yield as input data. However, for this 
study, a generic plant development model (AGRO1) inspired by 
the AGRO- C model (Huang et al. 2009) was used. Crop develop-
ment was quantified by the development index DVI calculated 
from the daily mean temperature and an accumulated refer-
ence temperature (ref_ts). For phenology, parameters describing 
the temperature sums until emergence (ts_emg) and maturity 
(ref_ts) were set to 110 and 1100, respectively. In addition, the 
senescence parameter (senescence) was increased from 0.004 to 
0.012. Parameter adaptation was done manually by comparing 
the simulated results with the observed aboveground biomass 
and the date of flowering (see Table 3).

2.2.4   |   DAISY

DAISY is an agro- hydrological model (Abrahamsen and 
Hansen  2000) that simulates the fluxes of water, nitrogen, car-
bon and pesticides in agricultural fields (Hansen et al. 1991). The 
model simulates processes in the vadose zone, ranging from the 
top of the canopy to the bottom of the root zone, including water 
flow in the soil, solute flow, soil organic matter turnover and soil- 
vegetationvegetation- atmosphere transfer. For this study, DAISY 
version 6.33 (Hansen et al. 1991) was set up to use the Mualem–
van Genuchten (Equation 2) parameters to simulate the hydrolog-
ical processes described with the Richards equation (Equation 1). 
The bottom boundary was set up as a lysimeter, which means that 
there is free drainage to an open seepage face. The soil profile was 
set as the layers in Table 1, with sub- compartments of 1 cm. The 
crop was set up not to be affected by nitrogen stress, but water stress 
could occur. Water stress is a reducing factor in DAISY, where the 

value can range between 0 (no water stress) and 1 (no production). 
This function is activated when the root system cannot fulfil the 
demand for water from the canopy. The PET is calculated through 
the Penman- Monteith (Allen et al. 1998) method, based on the me-
teorological conditions. The AET was calculated by the default in-
ternal protocol in DAISY (Hansen 1984). Root growth in DAISY is 
mainly simulated by two penetration parameters: a rate, PenPar1 
[cm dg−1 C d−1, default 0.25] and a constant: PenPar 2 [dg C, default 
4]. The growth rate of the root, PenPar1, can be limited by the soil 
water content of the soil, the clay content, and the developmental 
stage of the plant. The limiting factor can range from 0 to 1, follow-
ing a linear function, and it was kept on its default parameters. The 
selection of parameters was based on the sensitivity analysis per-
formed by (Wallach et al. 2021). For the phenology, the parameters 
EmrTSum were changed from 300 to 110 and DSRate1 from 0.024 
to 0.023 to ensure that the modelled phenology matched the mea-
sured phenology. For the calibration of the aboveground biomass 
in DAISY, the DEoptim package (v 2.2–8) (Mullen et al. 2011) in R 
(R Core Team 2024) was used (Table 4).

2.2.5   |   SWAP

SWAP (soil water atmosphere plant) (Kroes et al. 2000, 2017) 
is a 1- D vertically directed agro- hydrological model that sim-
ulates the transport of water, solutes, and heat in the zone 
between the groundwater and the top of the plant canopy 
in variably saturated soils. Leaf photosynthesis and crop 
growth are calculated using the generic crop growth module 
WOFOST (WOrld FOod STudies) (Wit et al. 2019). The water 
content in a layered soil is calculated by applying the Richards 

TABLE 3    |    Parameters used in the calibration of CANDY.

Name Description Default Min Max Unit Adapted value

� photosynthetic capacity per unit leaf nitrogen 27 — — μmol CO2 s−1 (g N)−1 22

� photosynthetic rate at light saturation 60 — — μmol CO2 m−2 s−1 90

ts_emg temperature sum until emergence 200 — — °C 110

ref_ts temperature sum until maturity 700 — — °C 1100

senescence partial LAI breakdown 0.004 — — — 0.012

sp_lf_ar specific leaf area 0.008 — — m2 kg−1 0.01

TABLE 4    |    Parameters used in the calibration of DAISY (Hansen et al. 1991), the range was used in the aboveground biomass calibration with 
DEoptim (Mullen et al. 2011).

Name Description Default Min Max Unit Adapted value

Fm Maximum assimilation rate 6 2 10 g CO2 m−2 h−1 5.45

Qeff Quantum efficiency at low light 0.04 0.001 0.1 g CO2 m−2 h−1/(W m−2) 0.09

E_Leaf Conversion efficiency, leaf 0.68 0.1 1 g DM C/g Assimilated C 0.69

E_Stem Conversion efficiency, stem 0.66 0.1 1 g DM- C/g 
Assimilated C

0.74

LeafAIMod Specific leaf area modifier 
at DVS = 2 (maturity)

1 0.5 3 — 0.65

Note: DVS = 2 is the development stage at maturity.

 13652389, 2025, 2, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.70088 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [27/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 21 European Journal of Soil Science, 2025

equation with a sink term representing root water extraction 
(Equation 1).

For modelling silage maize in the lysimeter, AET and its sepa-
ration between evaporation and transpiration were calculated 
using basic weather data using the Penman–Monteith method 
(Allen et al. 1998). Pounding was not allowed, meaning that 
all water precipitated would be directly converted to either in-
filtration or runoff. The bottom boundary condition was set as 
free outflow at soil- air interface, as recommended for lysime-
ters. Hysteresis, preferential flow, drainage, solute transport, 
snow and frost were not considered. The model did not consid-
ered neither nutrient stress nor salinity stress. The soil profile 
was described according to the natural layers in Table 1, with 
sub compartments varying from 0.5 cm in the topsoil to 5.0 cm 
in the bottom of the profile. Seepage water was considered as 
the water flux at the bottom of the soil profile (135 cm). The 
timing of harvest was set to depend on end of growing period, 
matching harvesting dates from the lysimeter management 
data. The plant water stress to oxygen was calculated accord-
ing to Bartholomeus et al. (2008) and drought stress according 
to Feddes et al.  (1978), with default values from the detailed 
crop file for maize in SWAP. Root development was set as a 
function of the initial rooting depth (10 cm), the maximum 
daily increase (2.2 cm d−1), and the maximum rooting depth, 
and its increase was related to relative dry matter accumula-
tion and affected by drought stress.

For the crop file calibration, the temperature sums (base 
10°C) were calibrated with data from the silage maize variety 
trial (Section 2.1) and were shown to have an average value of 
750°C- d from emergence to anthesis and 972°C- d from anthesis 
to maturity. The temperature needed for crop emergence was 
110°C- d, with a temperature base of 4°C.

Initial crop parameters were obtained from the WOFOST crop 
file database (GitHub: Parameter sets for the WOFOST crop 
simulation model implemented in YAML) for the “temperate 
maize” variety. Those were optimised against the lysimeter yield 
data using differential evolution with the R package DEoptim 

(R Core Team 2024; Mullen et al. 2011). From the selected pa-
rameters, the optimised values of EFF, SPAN, CVO and CVS 
presented values at their minimum or maximum boundaries, 
indicating that an optimal solution would be found only beyond 
the biologically meaningful ranges defined for the calibration 
(Table 5).

2.3   |   Pedotransfer Functions

An ensemble of 18 continuous PTFs was used in the model 
validation and comparison. Continuous PTFs were chosen be-
cause they provide the parameters of the SHP, instead of punc-
tual values of water content or hydraulic conductivity, which 
were important for maintaining the consistency between agro- 
hydrological models. We tested different PTFs suggested by 
Nasta et al.  (2021), including Szabó et al.  (2021) and the PTFs 
presented by Weynants et  al.  (2009) and Wösten et  al.  (1999), 
which were cited as the most accurate in European soils. In 
addition, we tested the widely used Rosetta's functions Schaap 
et al. (2001, 2004) and Zhang and Schaap (2017). Table 6 shows 
an overview of all PTFs tested and the required input variables 
for each.

2.4   |   Model Calibrations, Validations 
and Evaluations

We calibrated all four agro- hydrological models using yearly 
aboveground biomass (kg ha−1) observed at 3 lysimeters and val-
idated the models using aboveground biomass observed at the 
variety trials with silage maize (Figure 2). For the calibration, 
the modelling groups had access to the measured yearly above 
ground biomass from the lysimeters and phenology data from 
the variety trials, but not to the validation data of aboveground 
biomass, nor the evaluation data on AET, seepage water or soil 
water content from the lysimeter. The fit between measured 
and simulated values was assessed with the performance met-
ric d (Willmott 1981), which varies from 0 to 1, with 1 being a 
perfect fit between the simulated data and the measured data. 

TABLE 5    |    Parameters used in the calibration of SWAP (Kroes et al. 2017), the ranges represent the maximum and minimum limits used in 
DEoptim.

Name Description Default Min Max Unit Adapted value

RSC Minimum canopy resistance 130.0 30.0 300.0 s m−1 30.2

SPAN Life span under leaves under 
optimum conditions

33.0 24.8 41.3 d 24.8

SLATB Specific leaf area at DVS = 0.0 0.0026 0.0016 0.0029 ha kg−1 0.00286

AMAXTB Max CO2 assimilation rate at DVS = 2.0 5.0 0.0 40.0 kg ha−1 h−1 1.825

KDIF Extinction coefficient for 
diffuse visible light

0.600 0.480 0.720 — 0.583

EFF Light use efficiency for real leaf 0.450 0.360 0.540 kg ha−1 h−1(Jm2s)−1 0.540

CVO Efficiency of conversion 
into storage organs

0.671 0.537 0.805 kg kg−1 0.805

CVS Efficiency of conversion into stems 0.658 0.526 0.790 kg kg−1 0.789
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To evaluate the possible under-  or over- estimation of the mod-
els, we used the pbias (Zambrano- Bigiarini  2024), which var-
ies from − ∞ (model underestimates the data) to + ∞ (model 
overestimates the data). A perfectly unbiased model presents 
a pbias equal to zero. The Nash–Sutcliffe efficiency (NSE) was 
calculated for the daily outputs and varies from − ∞ to 1, with 1 
showing that the model perfectly fits the data. If the NSE is less 
than 0, the mean of the measured values represents a better per-
formance than the model (Nash and Sutcliffe 1970). The perfor-
mances of the calibrated models parametrized with the 18 PTFs 
were evaluated based on measured daily values of AET (cm d−1), 
seepage water (cm d−1) and soil water content (cm3 cm−3) at 10, 
30, 60 and 90 cm depths obtained from one lysimeter with maize 
for one dry year (2015) and one wet year (2021).

2.5   |   ANOVA- Based Variance Partitioning

We used ANOVA (analysis of variance) to attribute the contri-
bution of the factors model and PTF to the simulated outputs 
described in Section  2.4, as done for example Li et  al.  (2023). 
The used variables of interest (y) were the accumulated an-
nual values of: aboveground biomass (kg ha−1y−1), transpiration 
(mm y−1), evaporation (mm y−1) and seepage water (mm y−1). For 
the soil water content (cm3 cm−3), y refers to simulated outputs at 
a daily resolution and at depths of 10, 30, 60 and 90 cm. ANOVA 
quantifies the impacts of each independent factor (model and 

PTF) and their interactive effects on the dependent output (y), 
and is given by the relationship:

where yij is the value of the response variable (y) for the i- th ob-
servation under the k- th level of PTF and the j- th level of model , 
� is the overall mean of y, �PTFk is the contribution of the factor 
PTF, �modelj is the contribution of the factor model and � interactionkj 
is the contribution of the interaction between PTF and model. 
Each component is calculated as:

where n is the total number of PTF and model combinations 
(n = 4 models × 18 PTFs), yPTFk is the mean of y for the k- th level 
of PTF, ymodelj is the mean of y for the j- th level of model, and 
yPTFk ,modelj is the mean of y for the combination of k- th level of 

(12)yij = � + �PTFk + �modelj + � interactionkj

(13)� =
1

n

n∑

i=1

yi

(14)�PTFk = yPTFk − �

(15)�modelj = ymodelj − �

(16)� interactionkj = yPTFk ,modelj −
(
� + �PTFk + �modelj

)

TABLE 6    |    Summary of PTFs used to determine soil hydraulic parameters.

Method Input data Reference

EUPTF01 texture + depth Szabó et al. (2021)

EUPTF02 texture + depth + OC

EUPTF04 texture + depth + CACO3

EUPTF05 texture + depth + pH

EUPTF06 texture + depth + CEC

EUPTF12 texture + depth + BD + pH

EUPTF13 texture + depth + BD + CEC

EUPTF20 texture + depth + OC + CACO3 + pH

EUPTF21 texture + depth + OC + CACO3 + CEC

EUPTF23 texture + depth + BD + CACO3 + pH

EUPTF27 texture + depth + OC + BD + CACO3 + pH

EUPTF28 texture + depth + OC + BD + CACO3 + CEC

EUPTF29 texture + depth + OC + BD + pH + CEC

Rosetta1 texture + BD Schaap et al. (2001)

Rosetta2 texture + BD Schaap et al. (2004)

Rosetta3 texture + BD Zhang and Schaap (2017)

WEYN2009 texture + BD + OC Weynants et al. (2009)

WOST1999 texture + BD + OC + depth Wösten et al. (1999)

Note: Texture: clay, sand and silt content (%), depth: average depth of the soil profile (cm), OC: soil organic carbon (g 100 g−1), CACO3: calcium carbonate (%), CEC: 
cation exchange capacity (cmol+kg−1), BD: dry bulk density (g cm−3).
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PTF and j- th level of model. In the ANOVA, the total sum of 
squares (TSS) is used to quantify how much the obtained values 
deviate from �, given by:

where yi is the observed value of the response variable for the 
i- th observation. Given the two evaluated factors, TSS can be 
decomposed:

where SSPTF is the contribution of the factor PTF, SSmodel is 
the contribution of the model, SSinteraction is the contribution 
due to the interaction between model and SSresiduals is the un-
explained variance or ‘noise’. In our case, since there was only 
one output y per year (or per day), SSresiduals was zero, since all 
the variance in the results can be explained by the PTF, model 
or their interaction. Each contribution of TSS is described as:

where ŷPTF is the predicted value based on the main effect of 
PTF , ŷmodel is the predicted value based on the main effect of 
model, and ŷinteraction is the predicted value based on the combi-
nation of PTF and model. See Appendix A5 for the decomposi-
tion of the contributions in ANOVA.

3   |   Results

3.1   |   Soil Hydraulic Parameters

The soil hydraulic parameters (SHP) predicted by the pedo-
transfer functions (PTF) at each evaluated depth presented 
similar curve slopes for both soil water retention and soil 
hydraulic conductivity (Figures  3 and 4). Soil water con-
tent estimations varied between 0.05–0.08 cm3 cm−3 in both 
the wet and dry ranges of the retention curves. Soil hy-
draulic conductivity curves also suggested that the choice 
of PTF affects the unsaturated hydraulic conductivity to a 
larger degree in drier soil conditions (Figure 4). At the drier 
end, a lower soil hydraulic conductivity was obtained by the 
three Rosetta PTF models (Schaap et  al.  2001, 2004; Zhang 
and Schaap  2017), whereas close to saturation, the rates of 

(17)TSS =

n∑

i=1

(
�i−�

)2

(18)TSS = SSPTF + SSmodel + SSinteraction + SSResiduals

(19)SSPTF =
∑(

ŷPTF−�
)2

(20)SSmodel =
∑(

ŷmodel−�
)2

(21)SSinteraction =
∑(

ŷinteraction− ŷPTF− ŷmodel+�
)2

FIGURE 3    |    Soil water retention curves estimated by PTFs at the soil depths of 10, 30, 60 and 90 cm. Crosses represent the measured soil water 
content versus soil water suction monitored at the lysimeters. Vertical lines highlight the soil water suction at field capacity (FC) and permanent 
wilting point (PWP).
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hydraulic conductivity were similar amongst all PTFs. To 
check the plausibility of the PTF estimations, Figure 3 pres-
ents the measured soil water content versus soil water suc-
tion measured in the lysimeters during the years when silage 
maize was grown. The measured points are in the same range 
as the model simulations, despite a large cloud of uncertainty 
in the measured data.

3.2   |   Calibration and Validation of Aboveground 
Biomass and Phenology

Table  7 provides a summary of the four agro- hydrological 
model performances in simulating aboveground biomass 
for silage maize in the calibration and validation steps. The 
results showed that most models were able to reproduce ob-
served biomass levels and inter- annual variability of biomass 
production with reasonable accuracy for both the calibration 
and validation data. However, CANDY tended to underesti-
mate the observed yields (pbias = −15.9) and showed a weaker 
performance compared to the other models. All models 
tended to simulate lower aboveground biomasses in the val-
idation period. Regarding the simulation of phenological de-
velopment, CANDY (d = 0.65), DAISY (d = 0.73) and SWAP 
(d = 0.72) showed good agreement with observed flowering 
dates (Figure  A3). For APEX, no comparison with observed 
flowering dates could be made because flowering is not ex-
plicitly determined in the model.

3.3   |   Model Evaluations

To explore the propagation of uncertainties due to the choice 
of PTF on the simulated model outputs in the four different 
agro- hydrological models, Figures 5–7 show the simulated soil 
water content in the top-  and sub- soil layers, AET and seepage 
water, both for the dry year 2015 and the wet year 2021. In these 
graphs, the ranges of model estimates produced with different 
PTF parameterisations are indicated by shaded bands.

Figure 5 shows that all models were able to capture the observed 
dynamics reasonably well at all of the evaluated depths and years, 
although model performance tended to decrease in the two lower 

FIGURE 4    |    Soil hydraulic conductivity curves estimated by PTFs at the soil depths of 10, 30, 60 and 90 cm.

TABLE 7    |    Metrics for calibration and validation of aboveground 
biomass simulated by all models.

Model

Calibration Validation

d pbias d pbias

APEX 0.81 5.1 0.66 −6.3

CANDY 0.22 −15.9 0.20 −18.2

DAISY 0.87 −3.9 0.37 −10.1

SWAP 0.72 −2.1 0.56 −4.3

Note: Calibration considers only the soil parametrization with the PTF 
developed by Weynants et al. (2009) as compared with the lysimeter data; 
validation considers all PTFs compared with yield data from the variety trials.
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layers of 60 and 90 cm (Figures A6 and A7). The simulated soil 
water contents were sensitive to the choice of PTF in all models, 
as shown by their shaded areas in Figure 5. It was also interest-
ing to note that the soil water content simulated by CANDY was 
largely unaffected by PTF choice at 10 cm depth, but the sensitiv-
ity increased over 30, 60 and 90 cm depth. In the bottom layers of 
the soil profile (90 cm), all models underestimated the measured 
soil water contents in the lysimeters, as indicated by the negative 
pbias's. APEX showed the strongest underestimations of water 
content in both years and all depths, as shown by consistently neg-
ative pbias (Figure 5). Despite a general tendency of all models to 
underestimate the soil water content, during the wet summer of 
2021, the soil water content tended to be overestimated by three 
of the four models (CANDY, DAISY SWAP). However, all models 
were able to represent the soil water content dynamics well, both 
at the 10 and 90 cm depths. APEX simulated the greatest fluctua-
tions in soil water content during the growing season and tended 
to have rapid soil drying once the water content dropped below 
about 0.2 cm3 cm−3.

Figure 6 shows the simulated AET, as well as the PET as calculated 
by each model. The difference between PET and AET indicates a 

stress caused most likely by dry soil conditions. All models per-
formed well in representing both the levels and the dynamics of 
AET, with consistently positive NSEs (except CANDY in 2015). 
All models except CANDY perform better in the dry year (2015) 
than in the wet year (2021), where the high AET values measured 
during the late summer of 2021 were not matched by any of the 
four models. For estimating AET, the sensitivity of the models to 
the choice of PTF was overall low in comparison to the simulated 
soil water contents. Despite overall good simulations during the 
growing season, CANDY produced unusually high estimations of 
AET already at the beginning of the growing season, indicating 
limitations in the model approach for calculating AET. The two 
Richards- based models DAISY and SWAP showed the highest 
sensitivity of AET estimates to PTF choices—mostly during dry 
periods as in the summer of 2015. Considering the cumulative es-
timations of AET (Figure A4), CANDY and SWAP overestimate 
AET in the dry year 2015 (pbias > 20), but perform well in the wet 
year 2021. In contrast, APEX and DAISY underestimated daily 
AET in the wet year (negative pbias), but matched observed daily 
AET in the dry year with only small pbias (+/− 0.4%). Compared 
to daily AET estimates (Figure 6), seasonal sums of AET show 
a much stronger sensitivity to the choice of PTF (particularly 

FIGURE 5    |    Measured soil water content (grey crosses) over a dry (2015) and a wet (2021) year at two soil depths (panel columns) in comparison 
to soil water contents simulated with each of the four models (panel rows). Coloured full lines indicate mean values derived with all PTFs, shading 
indicates the full range between minimum and maximum. Metrics are calculated based on the average value from the PTF ensemble including two 
sensors per depth.
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evident in SWAP estimates, see Figure A4). This is explained by 
the fact that daily differences in AET originating from the choice 
of PTF accumulate over the growing season.

Figure 7 shows that the dynamics of measured seepage water gen-
eration were matched by all models with reasonable accuracy in 
both evaluated years. SWAP simulated the highest peaks in daily 
seepage and showed a high sensitivity to PTF choice (as indicated 
by the shaded bands in Figure 7). For the other models, the influ-
ences of PTF choice on daily seepage were considerably smaller. 
Considering cumulative values of the simulated seepage water 
(Figure A5), SWAP and APEX showed sensitivity to the choice of 
PTF, although SWAP had higher sensitivity. APEX simulated the 
cumulative amount of seepage well in the wet year (Figure A5), 
despite a lower performance in simulating the seasonal dynamics 
(Figure 7). On the other hand, CANDY predicted the seasonal dy-
namics of seepage water well but underestimated the cumulative 
seepage water in both dry and wet conditions (Figure A5).

All model simulations of the soil water content showed a high 
sensitivity to the choice of PTF (Figure A11). However, except 

for SWAP, the propagation of the sensitivities to the other sim-
ulated outputs was barely observed; this was especially true 
for the crop- related outputs of aboveground biomass and AET. 
This discrepancy between model sensitivity can be explained 
by differences in simulated canopy development affecting 
crop water demand and root water uptake (see LAI and root-
ing depth graphics in appendix  A12 and A13). We expected 
a higher sensitivity of the results from DAISY to the PTFs, 
but the fact that LAI and rooting depth development were 
strongly affected by PTF choice in SWAP, while it remains 
mostly unaffected in DAISY, can also explain why variance in 
AET estimates was generally higher in SWAP than in DAISY. 
For the two reservoir cascade models APEX and CANDY, the 
simulated evapotranspiration was largely insensitive to PTF 
choices.

Considering the full ensemble of four models and 18 PTFs, 
the performance metrics achieved were very good with regard 
to all simulation outputs, with NSE = 0.61 for AET (d = 0.84, 
pbias = −7%), NSE = 0.52 for seepage water (d = 0.79, pbias = −3%) 
and NSE = 0.55 for soil water content (d = 0.88, pbias = −8%).

FIGURE 6    |    Measured actual evapotranspiration (grey crosses) over a dry (2015) and a wet (2021) year (panel columns) in comparison to poten-
tial and actual evapotranspiration simulated with each of the four models. Coloured full lines indicate mean values derived from all PTFs, shading 
indicates the range between minimum and maximum. Metrics are calculated based on the average value from the PTF ensemble.
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3.4   |   Partitioning Variance in Simulated Outputs

In a subsequent analysis, we attributed the variance in the simu-
lated results to the choice of the model and the choice of the PTF, 
as described by ANOVA. For this analysis, the simulated results 
from the four validated agro- hydrological models with 18 PTFs 
were grouped according to how models describe the soil water 
flux in unsaturated conditions, that is, using the Richards equa-
tion (SWAP and DAISY) or using a reservoir cascade scheme 
(APEX and CANDY). Note that we included the years from 2009 
to 2021 in this specific analysis to obtain a broader sampling 
period of how the variance is propagated due to the choice of 
PTF compared with the model ensembles. Considering the four 
models and 18 PTFs, Figure 8 shows the contribution of ‘model’ 
choice, ‘PTF’ choice, and their interactions to the variance of the 
simulated soil water content, which is represented proportion-
ally to the total range of values of soil water content per day. 
Regarding the full model ensemble, most of the simulated vari-
ance was attributed to the model choice. Considering DAISY 
and SWAP, most of the differences between simulated daily soil 
water content could be attributed to the PTF choice. Compared 

with the two Richards- based models, the two reservoir cascade 
models showed a much lower sensitivity to PTF choice, except 
for some sensitivity in the deeper soil layers of 60 and 90 cm 
(Figure 8). The model comparisons that included APEX showed 
a higher variance caused by the ‘model’ which can be attributed 
to the very different APEX model structure (Figure  A17). An 
overview of additional combinations of model outputs is pre-
sented in Appendix A5.

To evaluate the propagation of variance in the simulated soil 
water content to other evaluated outputs, Figure  9 shows the 
variance partitioning in the simulated yearly values of abo-
veground biomass, transpiration, evaporation and seepage 
water originating from the choice of PTF and model, respec-
tively. Using the full model ensemble (left column), the range 
of simulated transpiration and evaporation did not vary much 
between the years. The total variance in the simulated results 
was dominated by model structural differences in all four sim-
ulated variables, regardless of the year or the simulated output. 
The interaction of models versus PTF choice played only a very 
minor role in contributing to the variance of the four simulated 

FIGURE 7    |    Measured (grey crosses) and simulated daily values of seepage water during the period with silage maize in the lysimeters in the years 
2015 and 2021. Full lines represent mean values among all PTFs and shading shows minimum and maximum values for each model. Metrics are 
calculated based on the average value from the PTF ensemble. Notice that the vertical scale is not the same for all models.
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variables examined, but was higher than only the PTF contri-
bution in most cases. For simulated aboveground biomass and 
seepage water, overall variance and variance sources differ sub-
stantially between the years (Figure 9). Considering only APEX 
and CANDY, the variance in simulated evaporation and transpi-
ration stems almost entirely from the model choice, while PTF 
choice has hardly any influence on these results. Discrepancies 
in the descriptions of the soil hydraulic processes in CANDY 
and APEX play a determinant role in governing this variance 
in the simulations (e.g., field capacity definition, soil discretiza-
tion). However, it is also evident that the variance in simulating 
transpiration was the lowest in both of these reservoir cascade 
models, indicating that they mostly agree in the simulation of 
transpiration.

4   |   Discussion

4.1   |   Agro- Hydrological Model Performance

When simulating the total aboveground biomass, AET, seep-
age water and soil water content, the ensemble of PTFs pro-
vided better model results than when using one unique PTF for 
all the simulated variables in all models. No single PTF could 
provide the best metric for every model and evaluated output 
(Figures A8–A11). This finding is supported by the study from 

Guber et  al.  (2006), who found that the error in simulating 
water components using PTF ensembles was on average two 
times smaller compared with simulation performances based 
on single PTFs. Similarly, Zhang et al.  (2020) showed that for 
predicting soil water content, using an ensemble of PTFs was 
better than any individual PTF. When we compared the differ-
ences in model performance and examined the PTF choice, no 
systematic effect of PTF complexity or PTF geographic origin 
(i.e., EU or USA) on model performance could be identified, as 
also reported by Weihermüller et al. (2021).

Amongst the four models applied in this study, no single model 
outperformed any other for every output variable of interest. 
In this study, APEX simulated the aboveground biomass and 
AET well, but had a weaker performance in simulating the dy-
namics of soil water content and seepage water. For CANDY, it 
was the other way around, and the model performed well with 
respect to seepage water, AET and soil water content simula-
tion, but underestimated the observed aboveground biomass. 
DAISY performed well in estimating aboveground biomass, 
cumulative seepage water and soil water content but did not 
perform as well for daily seepage water and AET. SWAP per-
formed well on average for all simulated outputs but was very 
sensitive to the choice of PTFs, which indicates that very poor 
results can be obtained when using a single SHP parametrisa-
tion. One important remark is that the models were developed 

FIGURE 8    |    Analysis of variance contribution of ‘PTF’ versus ‘model’ and their interactions for the simulated soil water content in selected years. 
The total bar size represents the range between the minimum and maximum values in all model × PTF combinations. The contribution to the vari-
ance was calculated on a daily time step during the cropping period. Plotted bars represent moving averages with a window of 10 days.
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to represent field conditions and, therefore, artefacts such as 
the oasis effect in lysimeters (Gebler et al. 2015) could not be 
completely captured without calibrating for AET.

When simulating the soil water content, the Richards equation- 
based models (DAISY and SWAP) tended to perform better 
than the reservoir cascade models (APEX and CANDY), par-
ticularly in deeper soil layers. This has also been reported by 
(Groh et  al.  2020), who found the same trend in their model 
inter- comparison study. (Groh et  al.  2020) further observed a 
superiority of Richards equation- based models with regard to 
seepage water simulations. In our study, APEX and CANDY 
had a lower performance in simulating cumulative seep-
age water (Figure  A5); however, the reservoir cascade model 
CANDY was overall the best model for simulating the dynamics 
of seepage water during the growing period (Figure 7). Similar 
observations were also made by (Baroni et  al.  2010), who no-
ticed good predictions of soil water content even when AET 
and bottom flux (corresponding to seepage water in our study) 
were poorly predicted by both a Richards- based and a reservoir 
cascade model. The differences we found can be explained by 

the fact that different models were initially built for different 
purposes and therefore differ in their level of detail and com-
plexity in representing particular process descriptions. For ex-
ample, some models were developed with a prime focus on soil 
hydrology and incorporate only simplistic descriptions of plant 
growth processes (e.g., APEX, DAISY), while others have their 
primary focus on plant growth processes and incorporate sim-
pler descriptions of soil water dynamics (e.g., CANDY). Such 
differences in levels of complexity between model components 
can explain the fact that the sensitivities to the PTFs differed by 
output and model in our study.

4.2   |   Variance Attribution to Model Versus 
PTF Choice

Although most studies investigating the propagation of PTF un-
certainty in agro- hydrological model outputs have highlighted 
that the choice of PTF played an important role in simulated 
hydrological and vegetation dynamics (Paschalis et  al.  2022; 
Weihermüller et al. 2021; Liao et al. 2020; Baroni et al. 2010), 

FIGURE 9    |    Analysis of variance contribution of ‘PTF’ versus ‘model’ and their interactions for simulated aboveground biomass (AG biomass, 
Mg ha−1), actual annual transpiration (mm y−1), actual annual evaporation (mm y−1) and annual seepage water (mm y−1). The total bar size represents 
the range between the minimum and maximum values in all model × PTF combinations. Arrows indicate the years when silage maize was grown on 
the lysimeters and the models were calibrated.
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the findings of our study suggest that the uncertainties originat-
ing from model structural differences in our 4- model ensemble 
were overall more relevant than the uncertainties originating 
from the choice of PTF. Our analyses by grouping the models ac-
cording to soil water model type (reservoir cascade vs. Richards 
equation- based) showed that the contribution from PTFs to 
the total variance differs substantially in relevance depending 
on soil water model type. Simulated variance of soil water con-
tent, seepage water and also AET were considerably affected 
by PTF choice within the two models integrating the Richards 
equation (DAISY and SWAP). However, simulation results from 
the two reservoir cascade models (APEX and CANDY) were 
less affected by the choice of PTF and were more affected by 
model structural differences. In addition to the limited number 
of input parameters required for the soil water dynamics in the 
reservoir cascade models, small inconsistencies, for example, in 
the definition of field capacity used in the model, can result in 
substantial differences in, for example, the soil water contents.

The effect of the agro- hydrological model structure compared to 
the PTF choice has not been shown by similar studies, for exam-
ple, by Baroni et al. (2010) or Liao et al. (2020). Both studies con-
cluded that the choice of PTF influences the simulated results 
more than the model structural differences (Baroni et al. 2010) 
or was at least equally important (Liao et al. 2020). These dis-
crepancies in findings suggest that the influence of PTF choice 
on the simulated outputs can differ not only depending on 
the choice of model type (i.e., reservoir cascade vs. Richards 
equation) but also depending on model setups and calibration. 
Considerable influence of model setups on the uncertainty in 
the simulated outputs was, for example, observed by Folberth 
et al. (2019), who performed an evaluation of the performance of 
the global gridded crop model (GGCM EPIC) on plant stress re-
sponses, depending on soil and soil hydraulic parametrization. 
However, in the same study, Folberth et  al.  (2019) also found 
that structural model uncertainties outweighed any impacts of 
the model configuration in a larger model ensemble. Likewise, 
the findings from our study (with four models) in comparison 
to previous studies of Baroni et al. (2010) and Liao et al. (2020) 
(each with two models) suggest that the influence of PTF choice 
on the model simulations decreases with increasing size of the 
model ensemble.

4.3   |   Structural Model Differences

In addition to different levels of model sensitivity to the choice of 
PTFs, model choice played a major role in determining the range 
of simulated outputs. As one major difference, APEX uses a de-
fault FC of 330 cm and CANDY uses a default value of 63 cm suc-
tion. Some of the differences in the simulated variables could be 
attributed to FC parametrization, whereas other differences are 
the result of the crop parameterization in the models. The lower 
FC in APEX was expected to lead to less plant available water 
compared to CANDY, which was evident in APEX particularly 
when the soil water content dropped below about 0.2 cm−3 then 
the soil water content decreased rapidly and led to minimum 
soil water contents and overall lower values (Figure  5), while 
CANDY captured the dynamics of the soil water content and 
seepage generation. The different suctions used by the two res-
ervoir cascade models go back to older discussions regarding the 

pressure head at which FC should be defined (see for example 
Turek et al. (2020) and literature cited therein). As described by 
Romano and Santini (2002), FC is a process- dependent param-
eter that depends on the water content distribution within the 
soil profile and cannot be treated as a static soil property, which 
is a widely known drawback of the reservoir cascade models, 
despite chosen FC.

Even using an aligned strategy to calibrate the crop and choos-
ing the well- established Penman–Monteith equation to calcu-
late evapotranspiration fluxes, differences in PET and AET 
were observed (Figure  6). This is because parameters within 
the equation, such as the canopy resistance factor, were dif-
ferent and ideally had to be set or calibrated. The differences 
in how crop transpiration is modelled were shown to ac-
count for a large proportion of uncertainty in model ensem-
bles (Cammarano et al. 2016). Likewise, Kimball et al. (2019) 
showed that the choice of PET estimation was the most influen-
tial factor in predicting AET between crop models. Differences 
in AET calculations were shown to lead to different crop pa-
rameterisations, in particular under water stress conditions 
(Cammarano et al. 2023). If measured AET values were avail-
able during the calibration phase, these could have been used 
in the calibration and would have removed one layer within 
the model structural differences (uncertainty). In CANDY, its 
relatively simple approach overestimated AET at the begin-
ning of the growing period, which was certainly related to the 
comparatively early beginning of the crop growth and LAI de-
velopment, as well as the approach used in the model to calcu-
late AET (see Figures 6 and A12). Regarding water stress, the 
plant transpiration in SWAP was also limited by wet conditions 
(Figure A14), including another process that was not taken into 
account by the other models, so in this model, the difference 
between potential and actual evapotranspiration cannot be di-
rectly linked to drought.

In Figure  6, the AET simulated in mid- July in 2015 shows 
larger variations in SWAP compared with the other three mod-
els. This indicates that in a dry year, the choice of PTF is espe-
cially important in SWAP. It is also worth noting that the LAI 
in SWAP was the highest, with the most variability, of all mod-
els (Figure A12). In the wet year 2021, the AET simulated in 
mid- June in DAISY was higher compared with the other mod-
els. The LAI was lowest in DAISY and explains the lower plant 
water loss during this time. The LAI was not parametrised 
the same in all models, which is an additional source of model 
structural differences. It could be of further interest to examine 
whether calibrating using the LAI during the growing season 
leads to better model performances compared with calibrating 
using only the yield data. Furthermore, it is interesting to note 
that although the phenology in the models DAISY, SWAP and 
CANDY was well matched to the available phenology data, 
the shape of the LAI is very different between all models (see 
Figure A12). It is important to note that the phenology data was 
not obtained from the lysimeters and therefore was an addi-
tional source of uncertainty. The rooting depth dynamics also 
varied according to the model, adding one more layer to the 
model structural differences (see Figure A13). Only SWAP and 
CANDY presented some sensitivity to the PTFs in estimating 
the rooting depth, but only in SWAP was a substantial reduc-
tion observed.
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Additionally, and as emphasised by Wallach et al. (2021), these 
findings highlight the importance of the parameter values se-
lected during the calibration process, which are strongly de-
pendent on the target variables chosen for calibrating. In this 
study, we applied a common approach for calibrating only the 
crop parameters based on aboveground biomass; we chose not 
to change the soil parameters. The focus of the study was on 
investigating uncertainties resulting from PTF choices and 
model choice; therefore, we did not quantify uncertainties orig-
inating from parameter choices during the calibration. Previous 
studies showed that model structural differences usually domi-
nate over the uncertainty in the crop parametrisation (e.g., Tao 
et al. (2018), Wallach et al. (2017)). However, for future work, it 
may be advisable to investigate to what extent the sensitivities 
to PTF uncertainties differ, not only depending on model choice 
but also depending on crop parametrisation. This connects to 
the fact that the calibration procedure allowed flexibility for the 
models to tune their various parameters in such a way that each 
model was able to match the calibrated data. As a result, the crop 
simulated by each model had different allocations of biomass. In 
SWAP, less biomass was allocated to the roots, but the leaf area 
index was large, while DAISY allocated less to the leaves but had 
a bigger amount of roots (For details see appendix Figures A12 
and A13). These trade- offs would have been reduced if more 
data were available, such as LAI over the growing season.

5   |   Conclusions

In this study, we systematically evaluated the simulated outputs 
by four agro- hydrological models, including the variance par-
titioning into two different variance sources: PTF choice and 
model choice. To our knowledge, our study is the first to investi-
gate the influence of PTF choice in comparison to model choice 
(i.e., model structural uncertainty), considering more than two 
models. In our four- model ensemble, the choice of PTF proved to 
be overall less influential than the model structural differences. 
Within the PTF/model ensemble, the importance of PTF choice 
differed depending on how the soil hydraulic properties are rep-
resented in the model (point or continuous) and output variable 
of interest (with water balance components being more sensi-
tive to PTF choice than plant growth- related outputs). Since 
the model structure contributes to a large part of the simulated 
variance, it is important to carefully consider the choice of agro- 
hydrological model and its setup in alignment with the research 
objective. For all four models, the simulation of the soil water 
balance- related outputs averaged over all PTFs was better than 
when choosing any single PTF for the simulation. From these 
findings, we conclude that the application of PTF ensembles 
can be recommended for improving agro- hydrological model 
performance accuracy and robustness of the simulated water- 
balance- related outputs (i.e., soil water content and seepage 
water/bottom flux) – particularly, where Richards- based models 
are applied. However, it should be noted that model structural 
uncertainties are likely to outweigh variance from PTF choice 
in larger model ensembles. With that, the benefits of consider-
ing PTF ensembles are likely to decrease as more models are 
integrated into the analysis. Further work should be done to 
investigate this hypothesis and also to quantify to what extent 
the influences of PTF choice might differ depending on crop 
parameterisation.
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