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• Improvement of soil carbon accounting 
estimation tools needed for inventory 
phase in life cycle assessment.

• Reviewed existing estimation tools to 
develop a coherent harmonization 
approach for soil C change.

• The results show that high applicability 
was related to low accuracy and vice 
versa.

• With sufficient data DNDC or CropSys 
models are preferred, alternatively IPCC 
Tier 1 is easy to use.

• New challenges for soil carbon ac-
counting will require temporal and 
spatial differentiation.

☆ This article is part of a Special issue entitled: ‘Agricultural LCA methods’ published in Agricultural Systems.
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A B S T R A C T

CONTEXT: The increasing demand for animal products, coupled with the need to reduce greenhouse gas (GHG) 
emissions from livestock production, highlights the urgency for effective mitigation strategies for livestock 
systems, including the cropping systems. Soil organic carbon (SOC) sequestration, a crucial approach for 
reducing atmospheric GHG concentrations, is often underrepresented in Life Cycle Assessments (LCA) of agri-
cultural systems, largely due to methodological challenges in accurately accounting for soil carbon dynamics.
OBJECTIVE: The objective of this study was to evaluate soil carbon simulation models, emission factors and 
direct measurements used in LCA, with the aim of developing a harmonized approach for including soil carbon 
change in agricultural LCAs. The goals were to: i) assess soil carbon simulation models, emissions factors and 
direct measurements used in LCAs of agricultural systems; ii) evaluate the strengths and weaknesses of these 
models; iii) provide recommendations for LCA practitioners; and iv) identify areas for future methodological 
improvements.
METHODS: A systematic review of soil carbon simulation models, emission factors and direct measurements used 
in LCAs of agricultural systems was conducted, obtaining 263 relevant articles from an initial pool of 29,151. In 
addition to direct measurements, fifteen soil carbon simulation models and three methods based on emission 
factors were identified and categorized into three tiers based on complexity and data requirements. A modified 
Delphi participatory process was used to evaluate each method against established criteria through expert 
workshops.
RESULTS AND CONCLUSIONS: The results showed an inverse relationship between applicability and accuracy of 
methods, making the choice of methodology critical to achieving high-quality LCA results. Recommendations 
emphasize selecting methods based on objectives and data availability, while being aware of the effect of the 
initial soil carbon level and the assessment time period when using soil carbon simulation models. In addition, 
this study identified current methodological challenges in assessing soil C dynamics in LCA of agricultural 
systems.
SIGNIFICANCE: This research provides a foundation for improving LCA practices and supports better decision- 
making in mitigating climate impacts of agricultural systems.

1. Introduction

Agriculture, forestry and other land use sectors contribute 22 % of 
the total greenhouse gas (GHG) emissions which comprised 59 Gt of 
CO2-eq in 2019, worldwide. Thus, all economic sectors should reduce 
GHG emissions, including agriculture (IPCC, 2022). Meanwhile, animal 
product demand is forecast to increase in the future due to the growing 
population and economic prosperity (Godfray et al., 2018). This growth 
implies an expansion of livestock numbers and a corresponding increase 
in feed crop cultivation, linking livestock and cropping systems in their 
contribution to overall GHG emissions. Globally, around 2.5 billion 
hectares of farmland, representing about half of all agricultural land, are 
dedicated to producing feed for livestock (Mottet et al., 2017). To 
compensate for this increase, there is a need for practices that reduce 
total atmospheric emissions (Kane and Solutions, 2015). Carbon 
sequestration, which is the removal and temporary storage of carbon 
from the atmosphere either in the permanent vegetation or soil, is seen 
as a potential pathway towards climate change mitigation. (Brandão 
et al., 2013; Don et al., 2024; Rodrigues et al., 2023). Soil organic carbon 
(SOC) is the main terrestrial carbon sink for reducing GHG emissions, 
with potential additional benefits, such as improving soil health, 
fertility, and agricultural production (Rodrigues et al., 2023; Wang 
et al., 2022). Soils constitute the largest pool of terrestrial organic C 
(~1500PgC at 1m depth; 2400PgC at 2m depth (Paustian et al., 
2016)), which is three times the amount of CO2 currently in the atmo-
sphere (~830PgC) and 240 times current annual fossil fuel emissions 
(~10Pg) (Batjes, 2014; Ciais et al., 2013; Lal et al., 2021; Le Quéré et al., 
2016). Therefore, increasing net soil C storage by even a small per-
centage over a large area represents substantial C accumulation poten-
tial. Soil carbon dynamics approach an equilibrium depending inter alia 
on soil types, climate, and management practices. Management strate-
gies can increase SOC content, but the ability of the soil to sequester 
carbon is constrained by factors such as soil carbon saturation limits and 
diminishing returns over time (Powlson et al., 2014; Stewart et al., 
2007).

Land management changes, such as crop selection influence SOC 
dynamics through associated management practices, inputs, and residue 

characteristics, which in turn affect soil carbon sequestration. Practices 
like switching from annual to perennial crops and vice versa and waste 
and residue management can enhance SOC levels (Petersen et al., 2013). 
Changes in land use can also contribute to SOC changes. These changes 
occur either directly within the production system or indirectly as a 
consequence of production activities elsewhere (Planton, 2013). Thus, 
land use change (LUC) and sustainable soil management are crucial for 
the effective sequestration of terrestrial organic carbon (Rodrigues et al., 
2023).

CO2 emissions from soils are evaluated mostly with regards to land 
management changes (e.g. tillage, fertilisation) (Pelaracci et al., 2022) 
and LUCs (from and to grassland/ cropland/ forest), following Inter-
governmental Panel for Climate Change (IPCC) classification 
(McConkey et al., 2019; Ogle et al., 2019b; Ogle et al., 2019a). Short- 
term biogenic carbon fluxes, such as occur within annual crops are not 
considered in GHG accounting. For example, during the night, vegeta-
tion acts as a carbon source through plant respiration, while decompo-
sition of crop residues in the soil releases carbon into the atmosphere. In 
addition the yearly storage of carbon in agricultural products, by means 
of photosynthesis is not included, as products are used, and thereby 
oxidated to CO2 within a few years. Soil CO₂ flux can be used as an in-
dicator of changes in soil carbon stocks, reflecting either net emissions 
(carbon release to the atmosphere) or net sequestration (carbon uptake 
from the atmosphere). When accounting for CO₂ flows in agro- 
ecosystems it is important to assess which management practices and 
land-use changes can mitigate greenhouse gas emissions and enhance 
soil carbon sequestration in agricultural systems, including but not 
limited to livestock production. (Grossi et al., 2019; Jiang et al., 2023; 
Sykes et al., 2019).

Life Cycle assessment (LCA) can be used to assess environmental 
impacts of livestock systems and products. It has also been effective to 
assess land management practices and their impact on environmental 
performance of a cropping and grassland systems (Goglio et al., 2014; 
Rotz, 2018; Zaher et al., 2013). In order to improve the environmental 
assessments in the livestock systems, it is important to consider the 
interaction between cropping and livestock systems.

The importance of soil C sequestration and soil CO2 is poorly 
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reflected in current LCAs (Goglio et al., 2015; Petersen et al., 2013), 
since the majority of studies have not included soil C sequestration in the 
overall GHG estimations, mainly due to methodological limitations 
(Brandão et al., 2019). However, recently a few LCA studies have 
attempted to include soil C changes - using mainly modelling (Goglio 
et al., 2018a; Jensen et al., 2024; Knudsen et al., 2019; Lefebvre et al., 
2021; Petersen et al., 2013). Jensen et al. (2024) showed a 14 % 
reduction in the carbon footprint of cabbage and Knudsen et al. (2019)
showed a 5–18 % reduction in carbon footprint of milk from different 
production systems due to inclusion of soil carbon changes in the LCA. 
Goglio et al. (2018b) demonstrated through direct observation that soil 
carbon sequestration accounted for 62 % of the total global warming 
potential (GWP) mitigation across the cropping systems and crops 
analysis. This highlights the significant role that soil carbon plays in the 
overall GHG budget of cropping systems and crops, underscoring the 
necessity of incorporating these factors into future LCA methodologies 
(Goglio et al., 2015; Paustian et al., 2016).

Furthermore, the use of satellite-based methods, such as remote 
sensing and spectral analysis, is emerging as a promising solution for 
assessing soil carbon content at larger scales, providing more detailed 
and continuous data on spatial variations in soil carbon. These methods, 
together with field measurements, can enhance the accuracy of carbon 
sequestration estimates in LCA models. (Morais et al., 2023; Pouladi 
et al., 2023).

In addition, there is an increasing need to assess livestock systems, 
taking into account present and future climate (Godfray et al., 2018; 
Willett et al., 2019). Improved LCA methodologies can capture systems’ 
effects, crop-livestock interactions and circular economy aspects (Costa 
et al., 2020; Goglio et al., 2017; Grossi et al., 2019; Van Zanten et al., 
2018) with a focus on C sequestration and GHG emissions (FIL-IDF, 
2022; Goglio et al., 2023).

Grasslands play a crucial role in carbon sequestration, significantly 
contributing to GHG mitigation. Despite this, they remain understudied 
compared to croplands, even though they represent ~70 % of global 
agricultural area (ITPS, F, 2015), which is 25 % of the Earth’s ice-free 
land surface (FAO, 2019), and store 28 % to 37 % of the terrestrial 
SOC pool (Paustian et al., 2016) which implies that they play a signifi-
cant role in the global carbon and water cycles (Herrero et al., 2016; 
Wang and Fang, 2009). Despite their importance, grasslands present 
unique challenges for soil carbon modelling and assessment and most of 
the existing carbon tools were primarily developed for annual crops, and 
their ability to simulate SOC dynamics in grasslands is often limited 
(Ehrhardt et al., 2018). These ecosystems are particularly complex and 
difficult to investigate because of the wide range of management and 
environmental conditions they are exposed to (McSherry and Ritchie, 
2013; Senapati et al., 2016; Soussana et al., 2010), leading to a large 
variability in their CO2 source/sink capacity, such as the frequency and 
intensity of foliage removal and its fate (grazed on site or mowed and 
exported) (Herrero et al., 2016; Jérôme et al., 2014), difficulties in 
measuring grassland productivity, spatial variability due to grazing and 
animal excreta (Dlamini et al., 2016; Oates and Jackson, 2014), and 
complexities in direct and accurate measurements of small changes in 
SOC stocks over short time periods in response to different management 
practices (Allen et al., 2010; Arrouays et al., 2012). Models like DNDC, 
DAYCENT, Century provide valuable tools for representing these pro-
cesses, but their accuracy can still be enhanced due to the inherent 
complexities of grassland ecosystems. Therefore, advancing our under-
standing and improving the modelling of grasslands are essential for 
developing effective carbon management strategies that contribute to 
global sustainability goals. While the DNDC model simulates multiple 
soil carbon pools, its performance is highly sensitive to input data 
quality and often requires extensive site-specific calibration and data 
requirement to run (Del Grosso et al., 2020). The latter is a major lim-
itation also for the DAYCENT model (Del Grosso et al., 2020). In 
contrast, the Century model, valued for its simplicity and low data re-
quirements, can simplify soil processes but operates on a monthly 

time-step thus may not adequately estimate crop yields and residue in-
puts or reflect local management practices (Goglio et al., 2015).

Several harmonization attempts for calculating GHG emissions were 
carried out in sectors other than agriculture (Segura-Salazar et al., 2019; 
Siegert et al., 2019), wines (Jourdaine et al., 2020), citrus fruit sector 
(Cabot et al., 2022) or food waste, proposing to better integrate between 
LCA and soil science (Morris et al., 2017) and for soil N2O emissions in 
agricultural systems (Goglio et al., 2024). However, the integration and 
recommendation of harmonized estimation tools specifically for 
assessing soil carbon changes (both emissions and sequestration) within 
agricultural systems was not previously published, even though recent 
guidelines have been proposed by the Food and Agriculture Organiza-
tion (FAO, 2020; FAO, 2016a; FAO, 2016b; FAO, 2016c; FAO, 2016d; 
FAO, 2016e),

Considering the growing urgency to integrate soil carbon dynamics 
into LCA methodologies for agricultural systems, this review aims to 
harmonize existing soil carbon estimation tools. The objectives were: i) 
assessing soil carbon simulation models, emission factors and direct 
measurements used in LCA of agricultural systems; ii) evaluate strength 
and weaknesses of these estimation tools; iii) providing recommenda-
tions for LCA practitioners; iv) identifying the need for methodological 
improvements in future research.

In this paper, we address the urgent need for a harmonized frame-
work to assess soil carbon changes in agricultural systems LCA. Our 
approach goes beyond existing reviews through assessing both simula-
tion models, emission factor-based approaches and direct measure-
ments, and applying a multi-step Delphi process to define robust 
evaluation criteria.

2. Methodology

2.1. Screening and review procedures

A systematic review of the existing literature was conducted to 
provide a comprehensive assessment on how LCA methodologies ac-
count for soil C changes in LCA of agricultural systems. To achieve this, a 
review protocol was developed (Fig. 1), describing the search and 
screening process including an iterative process of article selection based 
on restrictive criteria.

For the selection of scientific literature, publications in English in 
scientific journals or published by the FAO or the European Commission, 
were first retained.

A literature search was performed in Scopus, Web of Science and 
Google Scholar databases. Key words employed include “LCA“, “Life 
Cycle Assessment”,“ life cycle analysis”, “soil”, “emissions”, “carbon 
dioxide”, “CO2”, “carbon sequestration”, “GHG”, “greenhouse gas”, “C 
dynamics”, “carbon”, “livestock”, “wheat”, “maize”, “grass”, “barley”, 
“oat”, “soy”, “faba beans”, “alfalfa”, “clover”, “sorghum”, “Rye”, “Ley”, 
“soil emissions”, “soil carbon”, “soil organic matter”, “feed”, “fodder”, 
“farming system”, “farm”, “dairy”, “cattle”, “sheep”, “pig”, “poultry”, 
“goat”, “milk”, “egg”, “chicken”, “cow”, “husbandry”, “crop soil emis-
sions”, “wheat soil emissions”, and 29,151 papers were found with these 
keywords. The search was limited to the 2012–2022 period in the 
following research areas: Agriculture; Agriculture or Soil or Animals or 
Cattle or Dairying or Crop production or Animal feed or Animal Hus-
bandry or Swine or Livestock or Chickens or Poultry.

Selected publications focused on methods relevant to LCA that are 
linked to crop-livestock systems or their components, specifically 
applicable to crop-livestock systems. Papers related to rice, plastic, 
biofuel, and bioenergy were excluded as not fully related to the livestock 
sectors. Papers on biogas without any link to feed, insect, fish were also 
disregarded.

Further screening was carried out to analyse the evaluation of the 
accessibility of the articles, the language and the region. Documents 
prior to 2012 and inaccessible ones were excluded (1175 documents). A 
further selection was based on the content of the abstracts, if relevant to 
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the work. As a final step, the remaining 621 articles were subject to a 
complete reading of the text to exclude those not directly relevant. This 
iterative process brought the number of articles to 263, of which 66 
related to soil C. After further grouping and method identification, only 
20 were retained.

2.2. General criteria and specific criteria selection

A harmonization participatory approach based on a modified Delphi 
method was used to identify key topics and evaluation criteria for LCAs 
of crop-livestock systems. The criteria were identified through a litera-
ture review and 19 workshops with experts from different disciplines 
and nationalities. These participatory approaches have fostered 
consensus among participants. The workshops were organized to elicit 
expert knowledge and record key findings, arguments and observations. 
Further details are provided in Goglio et al. (2023).

Initially, the priority topics on which to base the research were 
identified. An anonymous survey among LCA experts was conducted via 
Google Survey, to select the criteria used to evaluate and compare the 
suitability of different soil carbon estimation tools in LCA of agricultural 
systems, which were then refined through expert discussions to align 
with the methodological harmonization of LCAs for livestock systems 
and products. Definitions and scales have been adapted for some criteria 
to ensure rigor and consistency in the evaluation of LCA estimation 
tools.

The criteria that emerged from the discussion were: i) Transparency 
and reproducibility (Comprehensive documentation and mechanisms 
that allow reviewers to verify/review all data, calculations, and as-
sumptions); ii) Completeness (Relationships between quantification of 

the environmental impact (material/energy flows and other environ-
mental interventions) and adherence to the defined system boundary, 
the data requirements, and the impact assessment methods employed); 
iii) Fairness and acceptance (Level playing field across competing 
products, processes and industries); iv) Robustness (Associated in the 
RACER framework the following sub criteria of providing a defensible 
theory, Sensitivity, Data quality, Reliability, Consistency, Compara-
bility, Boundaries); v) Applicability (Ability of the method to be used by 
a wide range of LCA practitioners).

The selection of specific criteria was carried out with a combined 
approach involving both literature and expert knowledge. A group of 
experts composed of three or four individuals, as in previous studies 
evaluating the implementation of LCA (Testa et al., 2022), was involved 
in the selection and refinement of the specific criteria (Goglio et al., 
2023). The group worked on the specific assigned topic in three to five 
workshops. Four specific criteria related to soil C accounting estimation 
tools in crop-livestock systems were discussed: i) Adaptability to 
different soil types (If the method can be applied to different soil types, 
e.g. peat soils, coarse and medium/fine textured mineral soils); ii) 
Adaptability to different land uses (If the method can be applied to 
different types of land use, e.g. grassland and cropland); iii) Adaptability 
to different climates (If the method can be applied to different climates, 
e.g. temperate and boreal climates); iv) Accuracy (The ability of the LCA 
methods to capture the daily changes and the long-term dynamics of 
CO2 emissions; it also takes into account the temporal horizon over 
which the soil CO2 emissions occur (Brady and Weil, 2002; Lal and 
Stewart, 2018)).

A complete list of criteria definitions and detailed scoring used in the 
Delphi assessment can be found in Appendix A.

Fig. 1. Methodological steps of the literature search process for soil CO2 emission estimation in LCA of crop-livestock systems.
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It was assumed that the LCA practitioner has sufficient expertise to 
adopt the methodology and that observations have been carried out with 
a protocol. Further details can be found in Pelaracci (2024).

2.3. Data processing

Following the workshops with experts in which the general and 
specific criteria on which to evaluate the estimation tools were selected, 
a targeted discussion was held in which all the experts of subgroup 5 of 
the PATHWAYS project (15 experts from 12 research institutions and 
universities across Europe) evaluated all the estimation tools examined, 
using the chosen criteria.

Each expert evaluated each estimation tools for each criterion, 
assigning a score from 1 to 3 (or 1 to 4 based on the scale on which the 
criterion was evaluated). The overall method assessment was reviewed 
in several group workshops (n = 19) which have been progressively 
evaluated. When disagreement was found among experts, this was 
resolved through targeted discussions and reassessment of the methods, 
following previous research (Goglio et al., 2023).

From the data obtained, the mean, the minimum and maximum 
values were calculated for the scoring results for each different esti-
mation tools and for each criterion (Fein et al., 2022).

3. Results and discussion

3.1. Quantitative results

The soil carbon simulation models, emission factors and direct 
measurements used in the LCA of agricultural systems satisfied most of 
the general criteria, with the exception of applicability (average score 
across all 5 criteria >2.72 on a scale of 1–3 except for completeness 
(1–4)). Average values were slightly higher than those found in the 
assessment for N2O emission calculation methods in agricultural LCA 
(average score > 2.4) (Goglio et al., 2024). Despite higher average 
scores for general criteria, the applicability average score was lower 
(1.47 on average with a range from 1 to 3) (Fig. 2) compared to N2O 
emission methods (1.7 on average with a range from 1 to 3). More than 
64 % of estimation tools reviewed in this research scored more than 3, 
indicating that the LCA estimation tools reviewed here have sufficient 
transparency, completeness, fairness, acceptance, and robustness, in 
contrast to Goglio et al. (2024) where 94 % of the methods scored 2 or 
higher but only a smaller percentage (22 %) scored 3 or higher. This 
comparison illustrates that although both types of methods generally 
scored well for most criteria, soil carbon tools encounter distinct chal-
lenges, particularly in applicability, that are not as pronounced in N₂O 
methods. However, 55 % of the estimation tools scored 1 for applica-
bility, indicating that many estimation tools applied for soil carbon 
change have very limited applicability (Fig. 2). Based on the estimation 
tools assessed, only the IPCC Tier I approach (for details see appendix B) 
scored 3 for applicability (Aalde et al., 2006).

For the specific criteria, the soil CO2 emission estimation tools 
assessed had an average score above 2.28 on a 1–3 scale. However, for 
adaptability to soil types, land uses, and climate conditions, more than 
96 % of the estimation tools scored higher than 2. Except for adaptability 
to different climates, where the average scores were low (< 2.2 on a 1–3 
scale). The methods for N2O emissions also achieved high average scores 
(2.4 on a 1–3 scale) (Goglio et al., 2024). In contrast, only 18 % scored 
above 2 for accuracy, with only three methods scoring 4 (i.e., CropSys, 
DNDC, and Delta LCA, see section appendix B) (Li et al., 1996; Stöckle 
et al., 2012a; Wiedemann et al., 2016a). Therefore, the majority of soil 
CO2 emission estimation tools (82 %) reviewed here were assessed as 
having low accuracy within livestock systems (Fig. 2). This is similar to 
the findings in Goglio et al. (2024) for N2O emission methods.

To improve clarity and facilitate the comparison of methods, Table 1
summarizes the average scores assigned to each estimation tool evalu-
ated in this study. The tools are categorized into three tiers according to 

the IPCC methodology, from simple empirical (Tier 1), complex 
empirical models (Tier 2), to complex simulation models and direct 
measurements (Tier 3). Detailed descriptions and tier classifications for 
each tool are provided in Appendix B.

From the results obtained, approximately the same limitations for 
both soil carbon accounting estimation tools and N2O emission methods 
were observed.

3.2. Identified key methodological issues

The soil carbon estimation tools, scored high with regards to the 
general criteria (>2.68 for all the general parameters except 
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Fig. 2. Results obtained for the five general criteria (a) and four specific criteria 
(b) for the LCA estimation tools used to assess soil CO2 emissions simulation 
models, emission factors and direct measurements. Orange colour indicates the 
maximum value obtained, grey colour the minimum value and blue colour the 
average value. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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applicability). However, most of the estimation tools(59 %) assessed 
have a low applicability (average value below 1.50). This can be related 
to the complexity and large data requirements of the estimation tools, 
limiting their applicability, as previously reported (Goglio et al., 2015). 
Most of the assessed soil carbon estimation tools (96 %) considered 
climate, soil characteristics and land use, however only three estimation 
tools(DNDC, CropSys and Delta LCA) scored a high level of accuracy 
(>3), while the average for accuracy was quite low (<2). Furthermore 
Delta LCA can only be employed in Australian conditions (Wiedemann 
et al., 2016b). All these estimation tools are based on several pools of 
carbon and are able to capture soil C dynamics (Li et al., 1996; Stöckle 
et al., 2012b; Tuomi et al., 2009; Wiedemann et al., 2016b). As high-
lighted in previous papers, it is often difficult to achieve high data 
quality for soil C assessments which is often the case for site-dependent 
LCA, site-generic LCA, consequential LCA and anticipatory LCA (Dale 
and Kim, 2014; Goglio et al., 2019; Potting and Hauschild, 2006). The 
most common estimation tools used to assess soil C is therefore the use of 
IPCC Tier 1 methodology, which has often been considered inadequate 
as it provides simplified estimates based on categories and poorly re-
flects local conditions, as previously reported (FAO, 2018; Goglio et al., 
2015), which are relevant for LCA of agricultural systems (Camargo 
et al., 2013; MacWilliam et al., 2014). However this methodological 
compromise is highly dependent on the objectives and the system 
boundary of the assessment, in agreement with the ISO standards (ISO, 
2006a, 2006b). The IPCC Tier 1 methodology scored very high in terms 
of applicability (3).

Grassland systems present unique challenges for soil carbon ac-
counting due to their inherent spatial and temporal variability, combi-
nation of plant species, and complex interactions with management 
practices such as grazing, mowing, and fire regimes (Zhou et al., 2022; 
Eze et al., 2018; Bai and Cotrufo, 2022). Recent research highlights the 

critical role that plant and soil biodiversity play in mediating the im-
pacts of climate change and promoting SOC storage in grasslands 
(Bardgett et al., 2021; Yang et al., 2019). In particular, the formation of 
microbial necromass carbon, mineral-associated organic matter 
(MAOM), and particulate organic matter (POM) is influenced signifi-
cantly by biodiversity, land management practices, and restoration ef-
forts, thereby complicating soil carbon modelling (Bai and Cotrufo, 
2022). The estimation tools which scored higher in accuracy are typi-
cally crop-based and may not fully capture this complexity in grassland 
system. Such crop-based tools generally simplify these multispecies in-
teractions and often underestimate spatial and temporal heterogeneity 
common in grassland ecosystems (Li et al., 1996; Stöckle et al., 2012a; 
Tuomi et al., 2009; Wiedemann et al., 2016a). The DNDC model, when 
used to simulate intercropping over the long-term (approximately 50 
years), well simulated the yield and N uptake of the intercropping sys-
tem under different N management scenarios, however, the yield and 
associated N uptake of one of the crops in the mix was underestimated 
(Zhang et al., 2018). On the other hand, grassland systems are multi-
species systems, where each species has its own agronomic character-
istics, which is often reflected in high spatial and temporal variability 
(Klumpp et al., 2010; Paustian et al., 2016). Furthermore, grassland 
yields and residues usually lack quantification at the farm level, making 
soil C dynamics more difficult to quantify through modelling (FAO, 
2019).

Beside data quality and the type of methodology to be selected, 
another key factor is the LCA practitioner expertise. Independently of 
the method chosen, the inappropriate use of the soil CO2 emission 
estimation tools could cause potential biases in the assessment, as pre-
viously discussed for soil C in agricultural LCA and for GHG mitigation 
(Goglio et al., 2015, 2019). A key aspect to be considered in the appli-
cation of estimation tools for the assessment of soil carbon are the 

Table 1 
Summary of scores for general and specific criteria of soil carbon estimation methods.

General criteria Specific criteria

Method 
name

Transparency and 
Reproducibility

Completeness Fairness and 
Acceptance

Robustness Applicability Adaptability to 
different soil 
types

Adaptability to 
different land 
uses

Adaptability to 
different 
climates

Accuracy

Emission factors (simple empirical) (Tier 1)
Delta LCA 3 3 2 3 2 3 3 2 4
IPCC 2006 

Tier 1 3 4 3 2 3 2 3 3 1

IPCC 2006 
Tier 2 3 3.5 3 3 1.5 2 3 1 2

Basic process or complex empirical models (Tier 2)
AMGv2 2 4 3 3 2 2 2 2 2
SOCRATES 3 4 3 3 2 3 3 2 2
C-Tool 3 4 3 3 2 2 3 2 2
IMAGE 2 2 3 3 1 3 3 3 1
IPCC Tier II 

SS 3 3 3 3 1 2 3 2 2

Roth C 3 3 3 3 2 2 3 2 2
Yasso 3 3 3 2 1 3 3 2 2
ICBM 3 3 3 3 2 2 3 2 2

Complex simulation models and direct measurement (Tier 3)
CANDY 3 3 3 2 1 2 2 2 2
CENTURY 3 3 3 3 1 2 3 2 2
CropSys 3 4 3 3 1 3 3 2 4
Direct 

measure 2 3 3 2 1 3 3 3 3

DNDC 3 3.5 3 3 1 3 3 3 4
TEM 3 3 3 2 1 2 3 2 2
TRIPLEX 2 3 3 3 1 3 3 3 2
FullCAM 3 3 3 3 2 2 3 2 2
MIN 2 2 2 2 1 2 2 1 1
MAX 3 4 3 3 3 3 3 3 4
AVG 2.78 3.28 2.94 2.72 1.47 2.44 2.89 2.22 2.28
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equilibrium dynamics of the soil C which affects the magnitude and 
duration of soil C sequestration (Paustian et al., 2016) going from one 
equilibrium reflected in the initial carbon content and depending on 
historical practices towards a new equilibrium based on the assessed 
farming practices. This equilibrium can be achieved with different 
timing and is dependent on the interaction between farm management, 
soil and climate characteristics (Gan et al., 2014; Goglio et al., 2015; 
Petersen et al., 2013). Indeed several models, such as DayCent or IPCC 
Tier 2 Steady State, require a spin-up period to stabilize the soil C dy-
namics (Pelletier et al., 2024; Uzoma et al., 2015). In DNDC a 5–10 years 
spin-up is required (He et al., 2021; Perlman et al., 2013). Thus, the 
initial soil carbon (reflecting historical practices) and the time 
perspective in which the assessments are done are indeed affecting the 
results of the soil CO2 emission estimation tools.

Measurements if not appropriately carried out can also lead to biases 
(FAO, 2019). However, they are still a valuable data source for LCA, if 
properly carried out, despite their low applicability at a large scale due 
primarily to cost and time constraints (FAO, 2019; Goglio et al., 2018b).

3.3. LCA methodological issues related to scale and objectives

The importance of soil C change is poorly reflected in current LCA 
methodologies (Goglio et al., 2015; Koerber et al., 2009), partly due to 
challenges related to selecting appropriate temporal horizons and 
adequately considering initial soil carbon content (Brandão et al., 2013; 
Brandão et al., 2019). Some LCA studies have included changes in soil 
carbon based on a 100 years’ time perspective to align with GWP100 
(Knudsen et al., 2019; Knudsen et al., 2014) and other LCA studies have 
used temporal horizons of 30 years or less (Hörtenhuber et al., 2010; 
Röös et al., 2010; Halberg et al., 2010; Hillier et al., 2009; Mila i Canals 
et al., 2008; Gabrielle and Gagnaire, 2008), although the temporal ho-
rizon used is not explicitly stated in all studies. Most of the estimation 
tools discussed, do not fully consider the temporal effects of carbon 
balance in soil, which are relevant to climate change (Brandão et al., 
2013, 2019; Bui et al., 2018; Plevin, 2017).

Two critical challenges in accounting for soil carbon changes in 
agricultural LCA are establishing a clear baseline (initial soil carbon 
content) and determining an appropriate time perspective for assess-
ments. Among the main uncertainties and discussions regarding the 
inclusion of soil carbon changes in LCA of agricultural products is the 
achievement of a new equilibrium (Petersen et al., 2013). Essentially, 
the shift to a new agricultural practice will lead to a change towards a 
higher or lower level of soil organic matter, eventually stabilizing at a 
new equilibrium. The carbon in soil organic matter is not “stable” but 
undergoes constant turnover, and net changes in soil carbon will balance 
between what is sequestered and what is emitted (Oberholzer et al., 
2014). Furthermore, some simple procedures such as Tier 1 IPCC use a 
20-year temporal perspective to accumulate the total change in SOC 
between practices (time to equilibrium), however, the period for this to 
occur may actually be 30 years, or even 100 years (Goglio et al., 2015). 
As a result, modelling only 10 or 20 years, the rate of accumulation of 
SOC, and thereby the consequences for GHG emission calculation, may 
be greatly exaggerated. Therefore, the chosen temporal perspective for 
assessing carbon sequestration or recovery time is crucial. A well veri-
fied process-based agroecosystem model can be used to estimate the 
period to equilibrium and the dynamics of SOC change over time. Other 
approaches include using complex empirical models combined with a 
carbon decay model, such as the Bern Carbon Cycle Model, which allows 
the integration of temporal aspects of soil carbon changes by accounting 
for CO2 degradation and atmospheric decline. This method highlights 
the significance of the time perspective chosen, with substantial differ-
ences observed across 20, 100, and 200-year horizons, thereby 
impacting the results and comparability in LCA applications (Petersen 
et al., 2013). Initially the rate of SOC change between practices is high 
with gradual decrease over time, usually following first order decay 
towards a new equilibrium (Smith et al., 2012).

Our assessment revealed that current carbon balance estimation 
tools, which have a significant impact on LCA results, show a dichotomy 
between high accuracy and low applicability, or vice versa (e.g., low 
accuracy but high applicability). Estimation tools with high applicability 
only roughly account for the interaction between soil, time, and man-
agement. Although the drivers of this interaction are well known, 
quantifying their effects on soil carbon is often difficult (Paustian et al., 
2016), because of long-term equilibrium dynamics and soil variability 
(FAO, 2018; Loubet et al., 2011; Petersen et al., 2013). Most of the 
analysed empirical estimation tools consider constant management, 
while in reality, farmers may change crop and grassland management 
practices annually, thus influencing the outcomes on soil carbon dy-
namics (Goglio et al., 2017). However, the individual contributions of 
crop management practices to various carbon pools are usually not 
evaluated in the long term. Only a few attempts have been made, for 
example, using the Bern Carbon model (Petersen et al., 2013), the 
DAYCENT model (Nguyen et al., 2022) or DNDC model (Jiang et al., 
2023).

Two critical challenges in including soil carbon estimates in climate 
impact assessments are establishing a clear baseline (initial soil carbon 
content) and determining an appropriate time perspective. In agricul-
tural LCAs, accurately defining this baseline is crucial because the initial 
soil C content is strongly influenced by historical management practices 
and often determines modelling outcomes. If an arable crop rotation of 
grain legumes and catch crops is introduced on a soil with high carbon 
content due to a historical practice of dairy cow grazing in a grassland 
system, the soil carbon content will presumably decrease. On the con-
trary, the same rotation applied to a soil with low C content, resulting 
from intensive wheat production and straw removal, would presumably 
increase the soil C stock. This interaction between historical manage-
ment (which establishes the baseline) and any proposed changes is 
fundamental to the modelling process. When assessing the impact of a 
change in farming practices, a comprehensive approach is to first 
simulate the current set of practices to determine the baseline soil car-
bon content and then simulate the effect of the proposed new practices 
using that baseline as a starting point. This process in two steps ensures 
that the influence of historical practices is properly accounted for in the 
LCA results. Furthermore, the time perspective for the assessments is 
decisive since the transition from one equilibrium to another can span 
20 to 100 years, with the most pronounced changes occurring at the 
beginning. A short assessment period may, therefore, exaggerate the 
effects if the total change in SOC from a management practice is ex-
pected to occur within this limited timeframe. These considerations 
underscore the importance of carefully defining both the baseline and 
the assessment period when modelling soil carbon change.

Future LCA research should therefore develop methodologies which 
encompass the correct level of details to capture the interaction between 
soil C dynamics and crop management on one side and on the other side 
the extensive application of the estimation tools in itself also by agri-
cultural consultants and farmers with a more limited level of expertise. 
This methodological choice should be carried out in agreement with the 
LCA objectives.

3.4. LCA methodological recommendations

From the analysis of the current LCA estimation tools, some pre-
liminary recommendations can be made regarding the suitability and 
application of estimation tools when undertaking an agricultural system 
LCA.

To accurately assess soil C dynamics within a temperate climate, a 
time perspective of at least 20 years is required. This should be 
considered or, at the very least, estimated based on the best available 
knowledge (Goglio et al., 2015; Petersen et al., 2013), as such a “spin- 
up” period is necessary for most models. Furthermore, it is important to 
be aware of the shifts from one equilibrium to another and the potential 
decisive effect on the results of the historical practices reflected in the 
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initial soil carbon content, when using estimation tools for accounting of 
C exchanges. For site-specific assessments (e.g., at the farm level), 
agroecosystem models such as DNDC or CropSys are preferred. If less 
detailed input data is available, the IPCC 2019 Tier 2 steady-state 
methodology can be employed. For broader, site-dependent or site- 
generic assessments, or when large-scale evaluations are needed, the 
use of Tier 2 methodologies such as the IPCC 2019 Tier 2 steady-state 
method or simplified carbon models like C-TOOL and ICBM is recom-
mended (Andrén and Kätterer, 1997; Ogle et al., 2019a; Petersen et al., 
2013). In cases of very limited information, or when data quality cannot 
be ensured or expertise is lacking, the IPCC Tier 1 methodology may be 
used (Ogle et al., 2019b). Regardless of the methodological approach 
chosen, it is essential to justify the choice and outline its potential lim-
itations, in accordance with ISO standards (de Alvarenga et al., 2012; 
ISO, 2006a, 2006b).

4. Conclusion

In this research an attempt to harmonize soil C estimation tools in 
LCA of agricultural systems was carried out together with providing 
recommendations for LCA practitioners and scientists. Increasing net 
soil C storage by even a small percentage, represents substantial C 
accumulation potential and mitigation of GHG emissions, reducing 
climate impacts. It was observed that a high level of accuracy corre-
sponded to a low level of applicability and vice versa. Thus, the choice of 
the methodology in relation to the LCA objectives is particularly critical 
to enable the best possible LCA assessments for the climate impact 
indicator.

Following the analysis of the available literature, a series of pre-
liminary recommendations were proposed: 

- As a general recommendation for all the GHG assessments for agri-
cultural systems, the choice of LCA estimation tools for the individ-
ual impact categories should be based on the LCA objectives and data 
availability. Specifically, for estimating the GHGs the soil carbon 
changes are extremely important;

- It is crucial to be aware of the shift from one soil carbon equilibrium 
to the other and the potential decisive effect of the initial soil carbon 
content and the assessment period.

- More complex methods are available, but they have greater data 
requirements and additional training or collaboration with model-
ling experts is required. At the other end of the complexity spectrum, 
the IPCC Tier 1 methodology has been employed in most of the as-
sessments analysed here. Thus, for soil carbon there are only a few 
IPCC Tier 2 or basic process model solutions which combine the need 
for applicability with the need of accuracy;

- Independently of the estimation tool used, estimation tool limita-
tions should be discussed in the LCA of agricultural systems.

Two critical challenges in including soil carbon estimates in climate 
impact assessments are establishing a baseline (initial soil carbon con-
tent) and determining an appropriate time perspective. The influence of 
past practices and crop types on the initial status of soil carbon will 
affect the results of the soil C accounting estimation tools. This problem 
may not exist when conducting a site-specific assessment for a single 
land unit or farm, as historical data may be available to make accurate 
estimates. However, when performing a site-dependent or site-generic 
large-scale assessment, such as evaluating soil carbon content at the 
national level, issues of overestimation or underestimation can arise due 
to the lack of historical data. This should be taken into account for future 
development of LCA methodology on soil carbon changes in agricultural 
systems. In summary, this study provides a solid framework for 
harmonizing soil carbon estimation methodologies within the agricul-
tural and livestock LCA, improving current practices through the iden-
tification of methodological strengths and limitations. This research 
identified methodological gaps, especially those related to time horizons 

and initial carbon content in soil. Further, it provides valuable insights 
for researchers, practitioners and policy-makers involved in the assess-
ment and mitigation of climate impacts in different agricultural systems. 
Our recommendations can enhance decision-making capacity, thereby 
supporting the sustainable transformation of agricultural systems to-
wards climate neutrality.
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Hashemi, F., Waqas, M.A., Yngvesson, J., Nassy, G., Broekema, R., Moakes, S., 
Pfeifer, C., Borek, R., Yanez-Ruiz, D., Cascante, M.Q., Syp, A., Zylowsky, T., Romero- 
Huelva, M., Smith, L.G., 2023. Defining common criteria for harmonizing life cycle 
assessments of livestock systems. Clean. Prod. Lett. 4, 100035. https://doi.org/ 
10.1016/j.clpl.2023.100035.

Goglio, P., Moakes, S., Knudsen, M.T., Mierlo, K.V., Adams, N., Maxime, F., Maresca, A., 
Romero-Huelva, M., Waqas, M.A., Smith, L.G., Grossi, G., Smith, W., Camillis, C.D., 
Nemecek, T., Tei, F., Oudshoorn, F.W., 2024. Harmonizing methods to account for 
soil nitrous oxide emissions in life cycle assessment of agricultural systems. Agric. 
Syst. 219, 104015. https://doi.org/10.1016/j.agsy.2024.104015.

Grossi, G., Goglio, P., Vitali, A., Williams, A.G., 2019. Livestock and climate change: 
impact of livestock on climate and mitigation strategies. Anim. Front. 9, 69–76. 
https://doi.org/10.1093/af/vfy034.

Halberg, N., Hermansen, J.E., Kristensen, I.S., Eriksen, J., Tvedegaard, N., Petersen, B.M., 
2010. Impact of organic pig production systems on CO2 emission, C sequestration 
and nitrate pollution. Agron. Sustain. Dev. 30, 721–731. https://doi.org/10.1051/ 
agro/2010006.

S. Pelaracci et al.                                                                                                                                                                                                                               Agricultural Systems 227 (2025) 104361 

9 

http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0005
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0005
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0005
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0010
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0010
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0010
https://doi.org/10.1890/1051-0761(1997)007[1226:ITICBM]2.0.CO;2
https://doi.org/10.1890/1051-0761(1997)007[1226:ITICBM]2.0.CO;2
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0020
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0020
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0020
https://doi.org/10.1126/science.abo2380
https://doi.org/10.1126/science.abo2380
https://doi.org/10.1038/s43017-021-00207-2
https://doi.org/10.1111/ejss.12114_2
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0040
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0040
https://doi.org/10.1007/s11367-012-0451-6
https://doi.org/10.1111/gcbb.12593
https://doi.org/10.1039/C7EE02342A
https://doi.org/10.1039/C7EE02342A
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0060
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0060
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0060
https://doi.org/10.1525/bio.2013.63.4.6
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0070
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0070
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0070
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0075
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0075
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0075
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0075
https://doi.org/10.1007/s11367-020-01812-x
https://doi.org/10.1007/s11367-020-01812-x
https://doi.org/10.1111/jiec.12151
https://doi.org/10.1111/jiec.12151
https://doi.org/10.1016/j.jclepro.2011.06.023
https://doi.org/10.1016/j.jclepro.2011.06.023
https://doi.org/10.1016/j.cosust.2020.07.003
https://doi.org/10.1016/j.agee.2016.01.026
https://doi.org/10.1111/gcb.16983
https://doi.org/10.1111/gcb.16983
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0105
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0105
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0105
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0105
https://doi.org/10.1016/j.jenvman.2018.06.013
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0115
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0115
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0115
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0120
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0120
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0120
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0125
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0125
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0125
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0125
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0130
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0130
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0130
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0130
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0135
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0135
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0135
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0140
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0140
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0140
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0140
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0145
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0145
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0145
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0145
http://www.fao.org/partnerships/leap/en/
http://www.fao.org/partnerships/leap/en/
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0155
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0160
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0160
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0160
https://doi.org/10.1016/j.biombioe.2007.10.017
https://doi.org/10.1038/ncomms6012
https://doi.org/10.1126/science.aam5324
https://doi.org/10.1126/science.aam5324
https://doi.org/10.1016/j.scitotenv.2014.05.070
https://doi.org/10.1016/j.scitotenv.2014.05.070
https://doi.org/10.1016/j.jclepro.2015.05.040
https://doi.org/10.1016/j.jclepro.2015.05.040
https://doi.org/10.1007/s11367-017-1393-9
https://doi.org/10.1016/j.jclepro.2017.03.133
https://doi.org/10.1016/j.jclepro.2017.06.175
https://doi.org/10.1016/j.jclepro.2017.06.175
https://doi.org/10.1016/j.jclepro.2019.118896
https://doi.org/10.1016/j.clpl.2023.100035
https://doi.org/10.1016/j.clpl.2023.100035
https://doi.org/10.1016/j.agsy.2024.104015
https://doi.org/10.1093/af/vfy034
https://doi.org/10.1051/agro/2010006
https://doi.org/10.1051/agro/2010006


He, W., Grant, B.B., Jing, Q., Lemke, R., St. Luce, M., Jiang, R., Qian, B., Campbell, C.A., 
Vander Zaag, A., Zou, G., Smith, W.N., 2021. Measuring and modeling soil carbon 
sequestration under diverse cropping systems in the semiarid prairies of western 
Canada. J. Clean. Prod. 328, 129614. https://doi.org/10.1016/j. 
jclepro.2021.129614.

Herrero, M., Henderson, B., Havlík, P., Thornton, P.K., Conant, R.T., Smith, P., 
Wirsenius, S., Hristov, A.N., Gerber, P., Gill, M., 2016. Greenhouse gas mitigation 
potentials in the livestock sector. Nat. Clim. Chang. 6, 452–461.

Hillier, J., Whittaker, C., Dailey, G., Aylott, M., Casella, E., Richter, G.M., Riche, A., 
Murphy, R., Taylor, G., Smith, P., 2009. Greenhouse gas emissions from four 
bioenergy crops in England and Wales: integrating spatial estimates of yield and soil 
carbon balance in life cycle analyses. GCB Bioenergy 1, 267–281. https://doi.org/ 
10.1111/j.1757-1707.2009.01021.x.
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Stöckle, C., Higgins, S., Kemanian, A., Nelson, R., Huggins, D., Marcos, J., Collins, H., 
2012a. Carbon storage and nitrous oxide emissions of cropping systems in eastern 
Washington: a simulation study. J. Soil Water Conserv. 67, 365. https://doi.org/ 
10.2489/jswc.67.5.365.
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Zaher, U., Stöckle, C., Painter, K., Higgins, S., 2013. Life cycle assessment of the potential 
carbon credit from no- and reduced-tillage winter wheat-based cropping systems in 
Eastern Washington State. Agric. Syst. 122, 73–78. https://doi.org/10.1016/j. 
agsy.2013.08.004.

Zhang, Y., Liu, J., Wang, H., Lei, Q., Liu, H., Zhai, L., Ren, T., Zhang, J., 2018. Suitability 
of the DNDC model to simulate yield production and nitrogen uptake for maize and 
soybean intercropping in the North China plain. J. Integr. Agric. 17, 2790–2801. 
https://doi.org/10.1016/S2095-3119(18)61945-8.

Zhou, Y., Singh, J., Butnor, J.R., Coetsee, C., Boucher, P.B., Case, M.F., Hockridge, E.G., 
Davies, A.B., Staver, A.C., 2022. Limited increases in savanna carbon stocks over 
decades of fire suppression. Nature 603, 445–449. https://doi.org/10.1038/s41586- 
022-04438-1.

S. Pelaracci et al.                                                                                                                                                                                                                               Agricultural Systems 227 (2025) 104361 

11 

https://doi.org/10.1038/nclimate2292
https://doi.org/10.3390/soilsystems7030064
https://doi.org/10.3390/soilsystems7030064
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0465
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0465
https://doi.org/10.3168/jds.2017-13272
https://doi.org/10.1016/j.jclepro.2019.05.318
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0480
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0480
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0480
https://doi.org/10.1007/s11367-018-1549-2
https://doi.org/10.1016/j.agee.2012.07.024
https://doi.org/10.1016/j.agee.2012.07.024
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0495
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0495
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0495
https://doi.org/10.1007/s10533-007-9140-0
https://doi.org/10.1007/s10533-007-9140-0
https://doi.org/10.2489/jswc.67.5.365
https://doi.org/10.2489/jswc.67.5.365
https://doi.org/10.2489/jswc.67.5.365
https://doi.org/10.2489/jswc.67.5.365
https://doi.org/10.1016/j.jclepro.2019.06.171
https://doi.org/10.1016/j.jclepro.2019.06.171
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0520
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0520
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0520
https://doi.org/10.1016/j.ecolmodel.2009.05.016
https://doi.org/10.1016/j.ecolmodel.2009.05.016
https://doi.org/10.1016/j.agee.2015.03.014
https://doi.org/10.1111/gcb.14321
https://doi.org/10.1111/gcb.14321
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0540
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0540
https://doi.org/10.1016/j.scitotenv.2022.153018
https://doi.org/10.1016/j.scitotenv.2022.153018
https://doi.org/10.1016/j.jclepro.2016.02.025
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0555
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0555
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0555
http://refhub.elsevier.com/S0308-521X(25)00101-5/rf0555
https://doi.org/10.1038/s41467-019-08636-w
https://doi.org/10.1038/s41467-019-08636-w
https://doi.org/10.1016/j.agsy.2013.08.004
https://doi.org/10.1016/j.agsy.2013.08.004
https://doi.org/10.1016/S2095-3119(18)61945-8
https://doi.org/10.1038/s41586-022-04438-1
https://doi.org/10.1038/s41586-022-04438-1

	Harmonizing soil carbon simulation models, emission factors and direct measurements used in LCA of agricultural systems
	1 Introduction
	2 Methodology
	2.1 Screening and review procedures
	2.2 General criteria and specific criteria selection
	2.3 Data processing

	3 Results and discussion
	3.1 Quantitative results
	3.2 Identified key methodological issues
	3.3 LCA methodological issues related to scale and objectives
	3.4 LCA methodological recommendations

	4 Conclusion
	CRediT authorship contribution statement
	Funding sources
	Declaration of competing interest
	Appendix A Supplementary data
	Data availability
	References


