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Abstract: Ecotoxicological impacts of chemicals released into the environment are characterized by combining fate, exposure,
and effects. For characterizing effects, species sensitivity distributions (SSDs) estimate toxic pressures of chemicals as the
potentially affected fraction of species. Life cycle assessment (LCA) uses SSDs to identify products with lowest ecotoxicological
impacts. To reflect ambient concentrations, the Global Life Cycle Impact Assessment Method (GLAM) ecotoxicity task force
recently recommended deriving SSDs for LCA based on chronic EC10s (10% effect concentration, for a life‐history trait) and
using the 20th percentile of an EC10‐based SSD as a working point. However, because we lacked measured effect concen-
trations, impacts of only few chemicals were assessed, underlining data limitations for decision support. The aims of this paper
were therefore to derive and validate freshwater SSDs by combining measured effect concentrations with in silico methods.
Freshwater effect factors (EFs) and uncertainty estimates for use in GLAM‐consistent life cycle impact assessment were then
derived by combining three elements: (1) using intraspecies extrapolating effect data to estimate EC10s, (2) using interspecies
quantitative structure–activity relationships, or (3) assuming a constant slope of 0.7 to derive SSDs. Species sensitivity dis-
tributions, associated EFs, and EF confidence intervals for 9862 chemicals, including data‐poor ones, were estimated based on
these elements. Intraspecies extrapolations and the fixed slope approach were most often applied. The resulting EFs were
consistent with EFs derived from SSD‐EC50 models, implying a similar chemical ecotoxicity rank order and method robustness.
Our approach is an important step toward considering the potential ecotoxic impacts of chemicals currently neglected in
assessment frameworks due to limited test data. Environ Toxicol Chem 2024;43:1914–1927. © 2024 The Author(s). Environ-
mental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Chemicals released into the environment can affect various

ecosystems. Different assessment frameworks have been devel-
oped to evaluate and prevent or reduce these impacts. In one of
those, life cycle assessment (LCA), ecotoxicological impacts of
chemicals used in and emitted along product, service, and
technology life cycles are characterized by their environmental
fate, exposure, and effects in the life cycle impact assessment
phase (Fantke et al., 2018; Jolliet et al., 2006). This enables se-
lection of products with lowest expected impact of their use and
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is an important metric to design benign products, evaluate
product environmental footprints, and monitor the environ-
mental improvements following the use of safer chemicals over
time. It is thus key to try to cover all chemicals in LCA and avoid
neglecting data‐poor chemicals in practice because that could
severely bias conclusions on most benign chemicals.

Successive harmonization efforts have led to a scientific
global consensus model to characterize (eco‐)toxic impacts of
chemicals in LCA, the USEtox model (Henderson et al., 2011;
Rosenbaum et al., 2008; Westh et al., 2015). Another framework
aims to evaluate the absolute sustainability of chemical pressure
based on this pressure in itself but also on the capacity of the
ecosystem to withstand it (Kosnik et al., 2022). These methods
complement others that start with the setting of protective
environmental standards per chemical (e.g., the European
Union's Registration, Evaluation, Authorisation and Restriction
of Chemicals [REACH] regulation) and that can eventually be
expressed as regional chemical footprints of unintended
ambient mixtures (Bjørn et al., 2014; Zijp et al., 2014).

Common to most of these assessment frameworks is that
the potential toxicity to species exposed to chemicals
can be characterized using species sensitivity distributions
(SSDs; Posthuma & De Zwart, 2012). An SSD describes the
variation in sensitivity for a chemical for a set of tested spe-
cies and allows for the estimation of the toxic pressure of a
predicted or observed exposure concentration, expressed as
the potentially affected fraction (PAF) of species. Various
studies in aquatic ecosystems have shown that higher toxic
pressure levels increase the difficulty of maintaining bio-
diversity at nonpolluted reference levels (see Posthuma
et al., 2020).

For the ecotoxicity assessment, the required compound‐
specific SSDs are derived from measured or estimated test effect
data for a set of species exposed to a certain chemical under
laboratory test conditions. Recently, the Global Life Cycle Impact
Assessment Method (GLAM) task force recommended that the
effect factor (EF) used for ecotoxicity characterization in the im-
pact assessment phase of LCA should be based on a concen-
tration reflecting the chronic aspects of true ambient exposure
levels. This concentration defines the “working point” on the
SSD. That working point should thus be close to the domain of
ambient concentrations. The 20th percentile response level of an
SSD of measured or extrapolated chronic 10% effective con-
centration (EC10) values, HC20 ,EC10 with HC denoting the haz-
ardous concentration, was therefore adopted as the current
“working point.” A chronic EC10 value is the concentration at
which tested individuals of a species show an adverse effect of
10% on a common life‐history trait (e.g., growth or reproduction)
in comparison to nonexposed individuals (Owsianiak et al., 2023).
This GLAM recommendation differs from the approach followed
so far, where the 50th percentile response level of an SSD based
on measured or extrapolated EC50 values was used as the pre-
vious working point, that is HC50EC50, mostly derived from acute
EC50 test data (Müller et al., 2017). That previous practice was
based on the consideration that the amount of EC50 data is
relatively high and that the estimation of the EC50 as an impact
metric from a concentration–response curve is statistically most

robust. Over time, it has been recognized that this “old” working
point bears little relationship with ambient exposure levels.

To ensure that the SSD derived from test data sets for species
from the studied ecosystem are both statistically robust and
sufficiently representative of the species assemblages in field
ecosystems and that the EFs derived from them are ecologically
representative and statistically robust, various scholars have
proposed minimum data requirements. The prescribed number
of required species and species groups can vary between four
and 10 data points per chemical for different use contexts (Nu-
gegoda & Kibria, 2013). While different research teams derived
different definitions for optimal approaches to derive SSDs, SSDs
for more data‐rich compounds are invariantly statistically more
robust because they are less sensitive to adding or removing test
data and likely more representative of field species assemblages.

A recent case study illustrated the use of the current GLAM
recommendations for freshwater ecosystem–based SSDs on a
minimum of five species from at least three distinct species
groups (Owsianiak et al., 2023). Following these recom-
mendations, HC20EC10‐based EFs could only be derived for 31
out of the 115 chemicals from that case study's inventory. This
example demonstrates that currently available ecotoxicity data
would allow assessment of ecotoxicity effects in LCA for relatively
few compounds and would in turn lead to the unjustified neglect
of the potential ecotoxicity of many chemicals, as highlighted in
several other publications (Oginah et al., 2023; Posthuma et al.,
2019; Saouter et al., 2019). The limited availability of measured
effect concentrations also limits the use of SSDs in the other
assessment frameworks (Dyer et al., 2008). We posit that it is
better to avoid neglecting chemicals in comparative LCA con-
texts and provide EFs that can be (in part) based on additionally
generated ecotoxicity data with their confidence intervals.

Filling data gaps with measured ecotoxicological effect
data is not always desirable in the context of reduced animal
testing and not always necessary. Alternatives to measured
ecotoxicological effect data exist in the form of so‐called in silico
methods (Von Borries et al., 2023). The quantitative structure–
activity relationship (QSAR) is an example of an in silico method
that estimates the effect concentration based on the chemical's
physicochemical properties. Regression equations extrapolating
from one effect concentration to another either for the same
species (intraspecies) or toward a different species (interspecies)
are another example. With the LCA context as an example, the
consequences for the derived SSD (and its decision support–
related metrics, e.g., HC20EC10) when the underlying SSD is
based on a combination of measured data and in silico effect
data are, however, unclear. Studies exist which evaluated single
in silico tools for SSDs (see Douziech et al., 2020; Hoondert
et al., 2019), but a systematic comparison of different in silico
approaches and the consequences for the HC20EC10 in terms of
predictive power and uncertainty are currently missing. Fur-
thermore, guidance on how to use these in silico methods to
derive EFs for as many compounds as possible for supporting the
impact assessment phase of practical LCA assessments is lacking.
Finally, insights into the consequences of implementing the
HC20EC10 approach for scoring and ranking of chemicals as
compared to the HC50EC50 approach are also lacking, despite
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them being needed to evaluate the novel consensus method and
its adoption in practice. That is, if the change in working point
and the addition of in silico data represent a robust method to
characterize ecotoxicity, then the application of both the old and
the new methods for an array of chemicals should yield a similar
rank order of relative toxicity differences across an array of
chemicals.

The aim of the present study was therefore to define a
methodological approach for deriving compound‐specific
freshwater SSDs and HC20EC10‐based EFs for a large number
of chemicals, based on different levels of available measured
effect concentrations and different in silico methods. The
method can be applied similarly to the various frameworks in
which SSDs are used for other decision support practices. To
illustrate how the use of extrapolation methods for addressing
data‐poor conditions works out, the developed approach was
applied to derive a consistent set of freshwater ecotoxicity
GLAM‐compliant EFs for use in contemporary LCA. The re-
sulting novel HC20EC10 estimates were compared with older
HC50EC50 estimates, derived under more data‐rich conditions, to
evaluate the implications of the new GLAM recommendations
when combined with in silico methods.

MATERIALS AND METHODS
Steps followed

The steps followed to derive EFs from different levels of
available measured effect concentrations can be summarized in
five steps (Figure 1).

First, the database of measured effect concentrations
(DatabaseRaw) to be used was chosen, and two subsets were
created. DatabaseRich included only data‐rich chemicals with
measured effect data for at least five species from three species
groups. Reference SSDs were derived from these data‐rich
chemicals based on mean and standard deviation andHC20EC10

estimated based on Owsianiak et al. (2023) and used as a com-
parative “anchor.” DatabaseAll included all chemicals based on
the steps detailed below (see Database of measured effect
concentrations). Second, in silico methods to handle data‐poor
chemicals were identified (see section In silico methods). Third,
the in silico methods were tested on DatabaseRich, by replacing
measured values with predicted values, and thereupon com-
paring resulting SSDs, hypothesizing that a good in silico method

would yield similar SSDs. TheHC20EC10 values based on different
combinations of measured and in silico–based effect concen-
trations were therefore compared to the “anchor” HC20EC10

derived from data‐rich chemicals (see section Evaluations across
SSDs). In brief, the usefulness of intraspecies extrapolation
equations, QSARs, interspecies correlation estimation (ICE)
equations, and an approach using an average slope of the SSDs
was evaluated. Based on the findings of this third step, an ap-
proach to characterize data‐poor chemicals was derived in the
fourth step. Finally, HC20EC10 values and EFs were estimated
based on the defined approach for all chemicals in DatabaseAll,
compared toHC50EC50based on the previous impact assessment
of LCA (more data‐rich) consensus models; and the uncertainty of
the derived HC20EC10 was estimated (see section Estimating
freshwater ecotoxicity EFs and their uncertainty).

Database of measured effect concentrations
We used a harmonized and enriched version of the database

of ecotoxicity test data published by Posthuma et al. (2019). This
database was chosen because it is the most consistently curated
set of ecotoxicity data for the purpose of SSD derivation available
to date (Owsianiak et al., 2019). For the present evaluation, only
measured effect data on freshwater species with a harmonized
endpoint were used, representing 9862 chemicals and 118,720
effect data (=DatabaseRaw). Peer‐reviewed test data and Euro-
pean Chemicals Agency (ECHA)–dossier data, representing
industry‐based chemical safety assessment test data, were kept
to increase the number of species‐specific measured effect data
available per chemical. Ongoing research suggests that the
subsets of peer‐reviewed test data and ECHA‐dossier data do
not systematically differ, apart from differences in the composi-
tion of the tested species. The two data sources were therefore
combined to improve the statistical SSD robustness (which in-
creases with increasing data richness). Because the available
ECHA data obtained in 2016 were only specified per species
group, we assigned each dossier test to the most tested species,
meaning Daphnia magna for tests on daphnids, Pimephales
promelas for tests on fishes, and Raphidocelis subcapitata for
tests on algae. Further, in case several effect data were available
for the same chemical and the same species, the geometric
mean of the available measured effect data was calculated to
have a single effect data point for SSD derivation for one

FIGURE 1: Steps followed to derive freshwater ecotoxicity effect factors based on different levels of available measured effect concentrations and
their inclusion in a database: DatabaseRich and Database. All are subsets of the original database, as explained in the text. The number of chemicals
included in each database is also specified. EF = effect factor; HC50 = 50% hazardous concentration.
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chemical and species. The hierarchy followed in this case is ex-
plained in Supporting Information, S1, and is in line with current
GLAM recommendations. The resulting database used to apply
the approach developed in this paper (=DatabaseAll) had 71,605
data points for 9862 chemicals. The majority of the chemicals in
DatabaseAll (90%, meaning 8894 chemicals) had fewer than five
measured effect data for fewer than three species groups, and
95% (9395) of the chemicals in DatabaseAll had fewer than 10
species‐specific measured effect data from three species groups
(Supporting Information, S2). Thus, the number of compounds
for which the GLAM‐recommended assessment can be made is
diminished by a lack of measured, compound‐specific ecotoxicity
test data for a sufficient variety (and number) of species.

For DatabaseRich, only the measured effect data from peer‐
reviewed sources were kept from DatabaseRaw, to ensure the
reproducibility of the estimated HC20EC10 and the representa-
tiveness for freshwater ecosystems. Peer‐reviewed test data and
ECHA‐dossier data were excluded in DatabaseRich because it
was not clear which species these effect data points referred to,
so their reproducibility was not ensured. Data‐rich chemicals
were pragmatically defined for the present study as having at
least five measured effect data from at least three species groups
(Fantke et al., 2018; Müller et al., 2017; Rosenbaum et al., 2008).
This minimum number was chosen, first, because HC20EC10

values derived from SSDs composed of at least five data points
do not require extrapolation of the HC20EC10 beyond the avail-
able data (Owsianiak et al., 2019). Second, this threshold was
chosen because use of five data points is not too limiting on the
number of chemicals meeting this minimum number, while ex-
perience has shown that SSDs based on them are relatively ro-
bust (Oginah et al., 2023; Posthuma et al., 2019). Third, in the
context of the impact assessment of freshwater ecotoxicity, the
three species groups should cover algae, crustaceans, and fish
(see Dong et al., 2016). In total, DatabaseRich included 10,144
data points for 670 chemicals based on measured effect data and
was the starting point for the comparison of the effects of using
ecotoxicity data generated with in silico methods. Using a more
conservative approach to describe SSDs as data‐rich when based
on measured effect data for, for example, at least 10 species
from three species groups would have nearly halved the size of
DatabaseRich (N= 341; Supporting Information, S3). Requiring a
higher number of data in this step would thus have had a sub-
stantial trade‐off on the judgment of the effects of the ex-
trapolation methods and was therefore not preferred. This
observation further supports the pragmatic choice of using five
species‐specific effect data from three species groups as a
threshold to derive reproducible and representative HC20EC10

values for the evaluation of adding in silico effect data.

In silico methods
Four types of in silico methods were identified and tested in

the present study. First, intraspecies endpoint extrapolations
estimating another endpoint from one given endpoint, for ex-
ample, a chronic EC10 estimated from a chronic no‐observed‐
effect concentration (NOEC), were evaluated. The intraspecies

endpoint extrapolation Equations (1) to (5), derived from the
same database used in this paper and described in Oginah et al.
(2023; Equations [1]–[5], all variables in micrograms per liter),
were used.

Log EC10 0.816 log NOEC 0.021chronic acute= ( × ) + (1)

LogEC10 0.965 log NOEC 0.144chronic chronic= ( × ) − (2)

LogEC10 0.869 log EC50 0.508chronic acute= ( × ) − (3)

LogEC10 0.872 log EC50 0.733chronic chronic= ( × ) + (4)

LogEC10 0.813 log EC10 0.967chronic acute= ( × ) + (5)

These endpoint extrapolation methods were chosen be-
cause they were based on a scientifically peer‐reviewed
methodology that used a recent, curated set of underlying
effect data (Oginah et al., 2023). In addition, the ecotoxicity
data were close to the chemical space of the chemicals in-
cluded in DatabaseRaw and represented chemicals with
measured effect data for at least three distinct species from at
least three taxonomic groups.

Second, interspecies in silico equations or species ex-
trapolations, meaning equations estimating an effect data for
one species from the effect data of another species, were tested
as an option to generate additional input data for deriving SSDs.
More specifically, we used the ICE equations published by
Raimondo et al. (2009). All available ICE equations were used
because Bejarano et al. (2017) showed that including ICE
equations with lower predictive accuracy barely influenced the
representativity of the derived SSD. In fact, no applicability
domain is provided for the ICE equations in the literature. The
acute EC50 values estimated from the ICE equations were
extrapolated to chronic EC10 values using Equation (3).

Third, we evaluated the representativeness of HC20EC10

derived from an SSD based on a fixed slope derived as the
average SSD slope across data‐rich chemicals, SSD log EC10σ . The
SSD log EC10σ in Equation (6) was fixed to 0.7. Posthuma et al.
(2002, 2019) have shown that the standard deviation of SSDs
across chemicals that all had a larger number of underlying
data points available tends to stabilize toward a slope of 0.7,
whereas the slope under (far) more data‐poor conditions can
be very flat or steep simply by coincidence. As an example, the
SSD derived from three highly similar test species can by co-
incidence be very steep, but this calculated value will change to
less steep or steeper values by adding one or more test data of
dissimilar species. Likewise, a coincidental flat slope tends to
change toward a slope of 0.7 when adding species. For the
fixed‐slope approach, we employed this data‐driven observed
pattern on slope values as a function of the number of data
points. That is, a log‐normal distribution is hereby assumed,
with the mean as the average of all measured effect data
available and a fixed standard deviation of 0.7.

zLog HC20 SSD SSDEC10 log EC10 0.2 log EC10= + ( × )μ σ (6)

Finally, QSARs predicting the ecotoxicity of a chemical
based on its physicochemical properties or molecular descrip-
tors were evaluated for their ability to complement SSDs based
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on limited measured effect concentrations. The QSARs used in
our study were chosen based on criteria from previously
published studies (Gramatica, 2007; Netzeva et al., 2007;
Organisation for Economic Co‐operation and Development
[OECD], 2007). We focused the comparison on QSARs from the
T.E.S.T consensus model estimating EC50 for D. magna and P.
promelas (Martin, 2020) and from the European Union LIFE
COMBASE project for R. subcapitata (Istituto di Ricerche Farm-
acologiche Mario Negri, 2018). The chosen QSAR methods have
specific applicability domains. Only EC50s estimated for chem-
icals within the applicability domains of the QSARs were kept. To
apply the QSARs, a simplified molecular‐input line‐entry system
(SMILES) notation was automatically retrieved per chemical
using the webchem R package (Szöcs et al., 2023). It should be
noted that SMILES notations, required for some in silico
methods, could not be retrieved for 43 chemicals out of the 670
reference compounds. Equation (3) was subsequently used to
extrapolate the QSAR‐based EC50 to chronic EC10 values.
HC20EC10 values were also calculated for combinations of QSARs
and ICE‐based effect concentrations. The acute EC50s esti-
mated from the QSARs and ICE equations were extrapolated to
chronic EC10s using Equation (3).

The uncertainty brought along by ICE‐ and QSAR‐based
effect concentrations in comparison to the uncertainty related
to the limited amount of measured data points was thoroughly
discussed in Douziech et al. (2020). They showed that adding
sufficient in silico–based effect data to SSDs of data‐poor
chemicals reduced the overall uncertainty of the resulting
SSDs, despite the additional modeling uncertainty brought
along by these two in silico methods.

Evaluations across SSDs
For defined data‐rich chemicals, an SSD from in vivo test

data was derived using its mean across species‐specific log

EC10 values for this chemical as detailed in Owsianiak et al.
(2023). Species sensitivity distributions for the data‐rich chem-
icals were used as reference (see entry line 2 in Table 1) to
comparatively characterize the (dis)similarity between the data‐
rich SSDs and the SSDs defined, wholly or partly, by system-
atically removing measured ecotoxicity data and adding eco-
toxicity data generated by the aforementioned in silico
methods. This procedure was only applied to the 670 chem-
icals in DatabaseRich, to provide insights into the effects of the
investigated options to amend (replace original with ex-
trapolated data) ecotoxicity data. We thereupon judged the
effect of the change from original to extrapolated data because
a “good” extrapolation method is expected to have a minimal
effect on the SSD. A justification for using the HC20EC10 based
on measured chronic EC10 and intraspecies extrapolated
measured effect data to chronic EC10 as reference for the
comparisons (no. 2 in Table 1) is detailed in the Results section.

It was hypothesized that additions of predicted effect data
for chemicals with insufficient measured test data for missing
species would improve the representativeness of the resulting
SSDs. This was judged by calculating a representativeness ratio
(Rrepr in Equation [7]) per chemical by comparing HC20reference

(no. 2 in Table 1), based on at least five measured or
extrapolated chronic EC10s, to HC20estimated based on a
systematically reduced number of measured effect data com-
plemented with in silico–based effect data (no. 3–9 in Table 1).
This relies on the assumption that HC20reference of the data‐rich
chemicals is a good anchor to judge the HC20EC10 of the ex-
trapolation methods, just for the present (comparative) pur-
pose. Because the addition of test data for a compound can
pertain to any value of the novel data point, we removed data
points and replaced them with extrapolated data of any of the
methods a repeated amount of times, referred to as iterations,
to get insight into patterns that can be realistically expected
when adding data from novel measurements or from ex-
trapolation.

TABLE 1: Summary of the 20% hazardous concentration (HC20estimated) derived with the different in silico approaches and the HC20s used as
reference values for comparisons (1 and 2)

No. Name Description

1 HC20EC10,measured Based only on measured chronic EC10 for at least the minimum required data set (≥5 test data from ≥3 taxonomic
groups). Number of compounds= 10.

2 HC20EC10,extrap Based on measured chronic EC10 and measured effect data intraspecies extrapolated from selected endpoints toward
chronic EC10. Reference‐value for all comparisons. Number of compounds= 670.

SSDs derived upon data enrichment with various techniques (below) compared with the reference (no. 2).
3 HC20EC10,slope Based on measured data and enriched with intraspecies endpoint extrapolated chronic EC10 and fixed slope

SSD log log EC10σ .
4 HC20EC10,ICE Based on measured data and enriched with extrapolated chronic EC10 and all ICE‐based acute EC50 extrapolated to

chronic EC10 using Equation (3).
5,6,7 HC20EC10,QSAR Based on measured data and enriched with extrapolated chronic EC10 and one, two, or three QSAR‐based acute EC50

values extrapolated to chronic EC10 using Equation (3).
8 HC20EC10,QSAR,ICE Based on measured data and enriched with extrapolated chronic EC10 and three, two, or one QSAR‐based acute EC50

values depending on applicability domain and all applicable ICE‐based acute EC50s. The acute EC50s were
extrapolated to chronic EC10 using Equation (3).

9 HC20QSAR,ICE Not based on measured data for any species but fully based on three, two, or one QSAR‐based acute EC50 values
depending on applicability domain and all applicable ICE‐based acute EC50s using the acute EC50 based on QSAR.
The acute EC50s were extrapolated to chronic EC10 using Equation (3).

EC10 = 10% effective concentration; ICE= interspecies correlation estimation; QSAR= quantitative structure–activity relationship; SSD = species sensitivity distribution.

1918 Environmental Toxicology and Chemistry, 2024;43:1914–1927—Douziech et al.
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R
HC20
HC20repr

reference

estimated
= (7)

A ratio of 1 implies a perfect match between the original
(data‐rich) HC20EC10 and the ones resulting from removal of
data and replacement by an extrapolated value(s), a ratio <1 a
largerHC20EC10 of the estimated versus the referenceHC20EC10

(lower hazard estimated), and a ratio >1 a smaller HC20EC10 of
the estimated versus the reference HC20EC10 (higher hazard
estimated). We compared HC20EC10 based only on measured
chronic EC10 (no. 1 in Table 1) to HC20EC10 derived for the
same chemicals but using two extrapolated effect data per
species group for the chemicals in DatabaseRich. This was
done to test the influence of extrapolated effect data on the
HC20EC10. Per iteration, extrapolated EC10s from measured
data were randomly drawn, and an HC20EC10 was calculated
from them per chemical, as well as anRrepr. The 25th, 50th, and
75th percentiles and the minimum and maximum of the Rrepr

were then computed over theRrepr derived for the 10 chemicals
with HC20EC10,measured over 1000 iterations.

Regarding the other in silico approaches, an increasing
number of measured effect data was removed randomly per
chemical, followed by adding extrapolated values generated by
any of the methods (no. 3–9 in Table 1). An HC20EC10,slope was
derived using the constant slope for the reduced set of meas-
ured effect data (no. 3 in Table 1). Further, HC20EC10,ICE values
were estimated based on the reduced set of measured effect
data systematically complemented by either all ICE estimates
available for the remaining effect data (no. 4 in Table 1), one
QSAR estimate (no. 5 in Table 1), two QSAR estimates (no. 6 in
Table 1), three QSAR estimates (no. 7 in Table 1), or all ICE
estimates available for the remaining effect data and the QSAR
estimates (no. 8 in Table 1). In other words, the number of
measured effect data was systematically reduced and com-
plemented with in silico–based effect data, whereby ideal re-
placements would not change the SSD. In case several effect
data were available for the same chemical and species, an
average effect data point was derived according to the steps
mentioned in Supporting Information, S1. Approaches 1 to 7 in
Table 1 work only if at least one measured effect data point is
available. Alternatively, we evaluated how HC20EC10 derived
using QSAR estimates as a basis for ICE equations (no. 9 in
Table 1) compare to theHC20EC10 of the reference data set. This
procedure was repeated for all 670 chemicals 40 times to limit
the computational expenses while still evaluating the robustness
of the results. In addition, we quantified the applicability of each
in silico approach as a percentage of chemicals to which the
approach could be applied compared to the total of 670 and
present the outcomes in the Results section.

Estimating freshwater ecotoxicity EFs and their
uncertainty

The outcomes of the evaluations of the in silico methods
were used to identify whether and which of these methods
result in SSDs that resemble the data‐rich ones and, if so, to

define the approach that would be most suitable to estimate
HC20EC10 for data‐poor chemicals. As an extra validation step,
we compared the past (HC50EC50, more data‐rich) and novel
(HC20EC10, more data‐poor and extrapolated) consensus
methods for deriving EFs, which should result ideally in similar
hazard rankings of the chemicals. That is, the HC20EC10 values
calculated for all chemicals of DatabaseAll were then compared
to the former HC50EC50 values derived following the approach
in USEtox (Ver. 2.12). This was possible for 629 chemicals
with at least five measured chronic or acute EC50s from
three different species groups and a corresponding estimated
HC20EC10. Finally, once theHC20EC10 values were calculated for
all chemicals, the EFs were estimated using Equation (8)
(Owsianiak et al., 2023).

EF
0.2

HC20EC10
= (8)

In addition to the calculation of the EFs, we estimated their
uncertainty based on the approach presented in Oginah et al.
(2023). The calculated uncertainty of the EFs can be used by end
users to decide on using the various EFs in an LCA. The overall
uncertainty around the calculated HC20 values is derived by
combining the geometric standard deviation (GSD) for the in-
terspecies variability, thus across available effect values, and for
the intraspecies variability, thus around the effect values. We did
not determine the GSD for data‐poor chemicals (fewer than six
records) because the limited number of data could imply strong
bias. Instead, we used a fixed interspecies GSD calculated as the
97.5th percentile of estimated values across chemicals with six
records. Similarly, we used a fixed intraspecies GSD for chem-
icals with one record, calculated as the 97.5th percentile of the
estimated intraspecies GSD across chemicals with two records.
To evaluate the robustness of the HC20EC10 values obtained
through various in silico methods, we set a practical upper limit
criterion of total GSD approximately 2.23 based on experience
with commonly accepted SSDs. The HC20EC10 values were
deemed robust if the uncertainty metric was below this criterion.

RESULTS
Performance of the in silico approaches

From the 670 chemicals kept in DatabaseRich, only 10 had
measured chronic EC10s for at least five species from three
species groups. The other chemicals had variable numbers of
measured effect data for other endpoints. The ecotoxicity as-
sessments method recently recommended in GLAM would
therefore only be feasible for 10 out of 670 compounds
if strictly based on the recommended measured chronic
EC10 data (Owsianiak et al., 2023). Implicitly, this would ne-
glect 660 compounds in LCA, even if those compounds would
clearly cause a toxic pressure based on insights from the
available ecotoxicity data. This provides a clear motive for the
present study, to explore whether the extrapolation methods
can be used to expand on the available ecotoxicity data, as-
sociated SSDs, and resulting EFs (including representing their
uncertainty).

Freshwater ecotoxicity characterization for >9000 chemicals—Environmental Toxicology and Chemistry, 2024;43:1914–1927 1919
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Intraspecies endpoint extrapolations. As a first step, we
tested the usefulness of intraspecies extrapolation approaches
(Equations [1]–[5]). The Rrepr between the HC20EC10 values
based only on measured chronic EC10 and theHC20EC10 values
based also on extrapolated chronic EC10 derived from 1000
iterations over the 10 chemicals with sufficient measured
chronic EC10 varied between 1.7 and 2.54. It should be noted
that these values, despite relying on several iterations, only
consider 10 chemicals. The range of Rrepr (e.g., over the 25th
and 75th percentiles of the iteration results) decreased with an
increasing number of initial measured data points from 7 to 2
(Supporting Information, S4). These results resemble the pat-
tern described by Posthuma et al. (2002), here represented by
Rrepr, closer to one with an increasing number of input data.
These observations provide a data‐driven insight, and re-
confirm literature patterns, that the SSDs for chemicals with
more effect data are more (statistically) robust (insensitive) to
adding or removing test data. The Rrepr values were >1, which
implies that adding extrapolated effect data (line 2) to sets of
data‐poor chemicals (line 1) generally yielded a lowerHC20EC10

estimate. This suggests a slightly higher ecotoxicity potential at
the exposure level considered in impact assessment in LCA.
Apparently, the data sets for the data‐poor chemicals are
characterized by tests with species with relatively lower sensi-
tivity, whereby the added (extrapolated) species data are ap-
parently more sensitive. A comparison at the endpoint level is
provided in Supporting Information, S4.

Based on these findings, the following comparative results
rely on HC20EC10 values based on measured chronic EC10
combined with intraspecies extrapolated measured effect data

to chronic EC10 as anchors (cf.HC20EC10,extrap, no. 2 in Table 1),
expanding the number of data for evaluating the use of ex-
trapolation methods from 10 to 670 chemicals. Although the
use of the intraspecies extrapolation methods itself is an ex-
trapolation step, we consider it key to help evaluate the effects
of the other extrapolation methods for a large number of
chemicals. Therefore, we utilized the latter data as reference.

Comparative outcomes of the in silico approach-
es. Figure 2 compares theRrepr obtained fromHC20EC10 values
derived from the four in silico approaches, namely the average
slope of 0.7 (HC20EC10,slope); a combination of measured effect
data and ICE estimates (HC20EC10,ICE); or a combination of
measured and QSAR‐based estimates for a fish, a crustacean,
and an algae species (HC20EC10,QSAR).

The results are shown for chemicals with 1 to 20 measured
data points. Note that applying in silico approaches for chem-
icals that are already composed of more than 20 measured data
points had specific effects (Supporting Information, S5). While at
a lower number of initial data points the addition of new species
reduces the uncertainty band and likely improves the robustness
of the SSD, this was not observed at a higher number of data
points. This is likely attributable to the fact that the extrapolation
does add new data but (at higher initial numbers of data) much
less likely also new species with a specific higher or lower sen-
sitivity. This implies that outcomes for higher numbers of initial
species therefore will vary, dependent on the iteration and the
original composition of the data.

Over the range of originally measured data points from
1 to 20, the resulting median Rrepr for the extrapolated

FIGURE 2: Median representativeness ratio between 20% hazardous concentration 10% effect concentration (HC20EC10,extrap; the baseline or
reference) and four alternative ways to estimate HC20EC10 for data‐poor chemicals, tested with data for 670 chemicals (lines and dotted lines). The
baseline is derived from measured chronic EC10 and measured effect data extrapolated to EC10 (no. 2 in Table 1). The y‐axis is a log‐scale, and a
perfect representativeness ratio corresponds to y= 1, marked as a horizontal black solid line. The x‐axis shows the number of measured data points
available per chemical prior to the remove and extrapolate/amend approaches. The shaded area corresponds to the 25th and 75th percentiles of 40
iterations. The average‐slope approach was applied to 670, the interspecies correlation estimation (ICE) equations approach to 598, all quantitative
structure–activity relationships (QSARs) approach to 142, and the combined QSAR and ICE approach to 417 chemicals.

1920 Environmental Toxicology and Chemistry, 2024;43:1914–1927—Douziech et al.
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HC20EC10,slope ranges between 0.59 and 0.98 (tendency for
lowered hazard after extrapolation), for HC20EC10,ICE between
0.98 and 1.62 (tendency for higher hazard after ex-
trapolation), for HC20EC10,QSAR between 0.88 and 1.06 (both
lower and slightly higher hazard), and for HC20EC10,QSAR,ICE

between 0.85 and 1.65 (tendency for higher hazard). In
comparison, the Rrepr between the HC20EC10 based only on
measured chronic EC10 and the HC20EC10 based on ex-
trapolated chronic EC10 derived from 1000 iterations over
the 10 chemicals with sufficient measured chronic EC10
varied between 1.7 and 2.54.

As for the range around Rrepr and the original number of
ecotoxicty data, if only one measured data point was available,
the ratio of the 75th to the 25th percentile for HC20EC10,slope

was 14.8, while it was 6.2 and 5.6 for HC20EC10,ICE and
HC20EC10,QSAR,ICE, respectively. Consistently, but most for the
constant‐slope approach, addition of extrapolated data to very
data‐poor chemicals tends to result in a higher hazard estimate
based on the complemented data. This ratio stayed rather
stable with increasing number of measured data points for
HC20EC10,ICE and HC20QSAR,ICE but reduced to approximately
3.2 forHC20EC10,slope. That is, starting with more initial data, the
addition of extrapolated data yields far more similar hazard
insights (seven times lowered Rrepr as compared to one initial
data point). Starting with more data yields consistently better
results.

Among the three methods relying on EC10 estimates, the
HC20EC10 that is estimated from a combination of measured
and QSAR‐based effect data (HC20EC10,QSAR) leads to a small
deviation of the Rrepr from 1 and a relative constant spread,
which only slightly reduces with an increasing number of

measured initial data points. This indicates that this method, if
applied to data‐poor compounds, appears to result in the most
consistent insights in the hazards of chemicals.

ForHC20EC10 based on measured and ICE‐based effect data
(HC20EC10,ICE) and a combination of QSAR and ICE‐based effect
data (HC20EC10,QSAR,ICE), the median Rrepr HC20EC10,extrap is ap-
proximately 2 and reduces with an increasing number of
measured data points. The opposite is the case for HC20 based
on the mean of the measured effect data and a fixed slope of
0.7 (HC20EC10,slope): the median Rrepr is approximately 0.8 for
fewer than five data points but increases with an increasing
number of initial measured data points. This is important to
note because the aim of the present study is to propose an
approach for data‐poor chemicals, whereby its application
would yield good hazard insights.

The Rrepr of the HC20EC10,slope is the only one consistently
below 1, meaning an increasing overestimation of extrapolated
HC20EC10 values as compared to the reference HC20EC10,extrap

with increasing number of measured effect data. Adding in-
formation on “missing species” on the basis of a fixed slope
influences the SSDs differently than for the other in silico ap-
proaches, where the added information is not fixed by any
systematic pattern apart from “more initial data is better.”

Using one, two, or three species‐specific QSARs to estimate
HC20EC10,QSAR had little influence on the bias and spread
thereof (Supporting Information, S6). The pattern was similar to
the one observed in Figure 2 where lower initial numbers of
ecotoxicity data implied a wider bandwidth of the Rrepr, in turn
implying less robust SSDs at a lower number of ecotoxicity data
per chemical and no further reduction in the bandwidth above
10 measured effect data.

FIGURE 3: (A) Boxplot of the representativeness ratio between the 20% hazardous concentration (HC20)of the 10% effect concentration (EC10)
derived from measured and extrapolated effect data (the reference anchor HC20EC10,extrap) and derived only from in silico–based effect data
(quantitative structure–activity relationship and interspecies correlation estimation equations; n= 137 chemicals) and (B) correspondence plot of the
estimated (y‐axis) versus reference (x‐axis) HC20EC10. QSAR= quantitative structure–activity relationship; ICE= interspecies correlation estimation.
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Figure 3 illustrates theRrepr resulting from combining QSARs
and ICE‐based effect data to estimate the HC20EC10 for chem-
icals with no measured effect data (HC20QSAR,ICE) as well as a
scatterplot of the reference anchor (HC20EC10,extrap) and the
estimated HC20EC10 (HC20QSAR,ICE). The limited applicability
domain of the used QSARs implied that an HC20QSAR,ICE based
on effect data from at least five species and three species
groups could only be estimated for 137 chemicals out of
the 605 chemicals with <35 measured data points and available
SMILES notation. The median bias is approximately 2, while the
fraction of the 75th to the 25th percentile is approximately 5.6.
The underestimation of estimated versus measured HC20EC10

also appears from Figure 3.

Applicability of the in silico approaches. As shown in
Table 2, using a default slope to derive an HC20EC10

(HC20EC10,slope) is the only method applicable to technically use
this extrapolation method for all 670 chemicals (100%). The
other in silico methods evaluated in the present study do not all
reach this level of applicability. For example, the algae QSAR
approach was only applicable to <25% of the 670 chemicals.
The ICE‐based approach is the method that adds the highest
number of effect data to the total amount of effect data
available to derive the HC20EC10.

Approach to characterize data‐poor chemicals
The comparative results, generated by studying 670 com-

pounds with sufficient measured chronic EC10s, amended with
intraspecies extrapolated values, was used to derive a proposal
for generally applicable data processing steps to derive
HC20EC10‐based EFs for data‐rich and data‐poor chemicals. In-
deed, the comparative results showed a larger median Rrepr for
the approaches using ICE‐based effect data as well as a larger
spread in the computed Rrepr, represented with the 25th and
75th percentiles (Figure 2). While the median Rrepr closest to 1
was obtained from HC20EC10,QSAR algae,fish,daphnia, its limited ap-
plicability (21.5%; Table 2) limits its use for a large range of
chemicals. The average‐slope approach with medianRrepr of the
HC20EC10,slope close to 1 and a spread comparable to the

approaches using ICE‐based effect data seems a promising
alternative to estimate HC20EC10,slope for data‐poor chemicals.

Based on these findings, the following generally applicable
method is proposed to avoid neglecting ecotoxic chemicals in
LCA and therefore to characterize the HC20EC10 for data‐poor
chemicals in line with the GLAM3 recommendations:

1. In cases where several endpoints for the same chemical and
species are available, chronic EC10s should be preferred,
or alternatively the hierarchical approach presented in
Supporting Information, S1, should be used.

2. Per chemical, the unique species‐specific effect data should
be extrapolated to chronic EC10s based on extrapolation
equations.

3. Per chemical and species, in cases where several values for
the chronic EC10 are available, meaning also potentially ex-
trapolated values, their geometric mean should be calculated.

4. For chemicals with at least five effect data from at least three
species groups, the HC20EC10 can be calculated based on
the approach in Owsianiak et al. (2023).

5. For chemicals with effect data for fewer than five species
and three species groups:
a. In case the SMILES notation is available and the appli-

cation of QSAR can help reach effect data for exactly five
species and three species groups, the approach in
Owsianiak et al. (2023) should be applied for this ex-
tended data set to derive the HC20EC10.

b. In case the SMILES notation is not available or the ap-
plication of QSAR cannot help reach effect data for ex-
actly five species and three species groups, the default
slope approach should be applied to derive HC20EC10.

The uncertainty of the resulting EFs is further to be noted as
a key part of the end result of the extrapolation process so that
end users can decide on applying the extrapolation methods
for the conditions of an LCA study.

These recommendations are assumed to be valid for all
QSARs and extrapolation equations meeting the criteria
specified in the Materials and Methods section (Gramatica,
2007; Netzeva et al., 2007; OECD, 2007) because those

TABLE 2: Maximum technical applicability (percentage of chemicals for which the in silico approach could be applied to judge its accuracy) of each
in silico method together with the number of data points each in silico method adds to the available measured effect data

HC20
Technical applicability (%; for evaluating

extrapolation performance)
Average no. of data points added

(when applicable)

HC20EC10,slope 100 Only the available measured effect
data are used.

HC20EC10,ICE 90.3 39 (Supporting Information S1, S7)
HC20EC10,QSAR algae 22.2 1
HC20EC10,QSAR fish 52.7 1
HC20EC10,QSAR daphnia 55.7 1

HC20EC10,QSAR algae,fish 21.5 2
HC20EC10,QSAR algae,daphnia 21.6 2
HC20EC10,QSAR fish,daphnia 52.1 2
HC20EC10,QSAR algae,fish,daphnia 21.5 3

EC10 = 10% effective concentration; HC20 = 20% hazardous concentration; ICE= interspecies correlation estimation; QSAR= quantitative structure–activity relationship.

1922 Environmental Toxicology and Chemistry, 2024;43:1914–1927—Douziech et al.
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data‐driven methods themselves are likely to further develop
and improve over time. The use of the ICE in this hierarchical
approach is not recommended at this stage.

Derived EFs
The recommended approach presented above in Approach

to characterize data‐poor chemicals was applied to the entire
set of chemicals available in DatabaseAll (=9862). Including all
measured effect data and ECHA‐dossier data, 701 chemicals in
DatabaseAll had effect data for at least five species from three
species groups so that Step 4 of the approach in Approach to
characterize data‐poor chemicals could be applied. For 285
chemicals, QSAR estimates were added to the pool of meas-
ured effect data so that the approach in Owsianiak et al. (2023)
could be used to derive the HC20EC10 (=Step 5a of the ap-
proach in Approach to characterize data‐poor chemicals).
Finally, the derived EFs for the vast majority of the chemicals,
meaning 8876 chemicals, could be based on the default slope
approach (=Step 5b of the approach in Approach to charac-
terize data‐poor chemicals) because adding QSAR‐based effect
data was not sufficient to reach the minimum of five measured
effect data from three species groups for these chemicals.

The EFs were expressed as PAF (cubic meters per kilogram;
Figure 4), describing the volume of the freshwater compart-
ment affected at the toxic pressure levels characterized as
HC20EC10 upon emitting 1 kg of chemical. The EFs span various
orders of magnitude, implying that the ecotoxic potential of
different chemicals differs vastly per unit emitted mass, as ex-
pected. The denomination PAF of species was kept in the unit
to differentiate it from other damage metrics used in LCA, such
as potentially disappeared fraction of species. The values of the
EFs are provided in Supporting Information, S5.

The uncertainty analysis criterion was set at GSD total ≤2.23
based on experiences with regulation‐accepted SSDs to char-
acterize sufficiently robust SSDs based on EC10‐equivalents
and the HC20EC10 values derived from those. As illustrated and
described in relation to Figure 2, a robust SSD is defined as an
SSD that is largely insensitive to changes regarding the addi-
tion or removal of test data, whereby nonrobustness occurs
especially in case of limited initial test data. Removal or addi-
tion of test data may in such cases cause substantial but
random effects on slope and position of the SSD. The un-
certainty analysis findings for 9862 chemicals revealed that
HC20EC10 values derived from only sufficient and originally
measured data exhibited the highest robustness
(HC20EC10,extrap), with 57% of chemicals meeting this criterion
(n= 401 out of 701), followed by the HC20EC10 values com-
plemented by QSAR (29% of chemicals, n= 83 out of 285). The
HC20EC10 values derived from the default slope (HC20EC10,slope)
proved the least robust, with only 1% of chemicals meeting the
criterion (n= 132 out of 8876). Regardless of the source of data
used to compute the HC20EC10 values, a higher number of
initial ecotoxicity data generally improves SSD robustness
(insensitivity to adding or removing test data), thus improving
the SSD output, that is, HC20EC10 and the EF (Figure 4).

Comparison between past and current modeling in life
cycle impact assessment. To evaluate whether the latest
GLAM recommendation to base the EFs onHC20EC10 instead of
HC50EC50 implied a consistent shift in the EFs, and similar
hazard ranking of the chemicals, the HC50EC50 values were
compared to the associated HC20EC10 values for the 629
chemicals with both values (Figure 5). The results show a close
to 1 slope and a constant factor of 0.07 betweenHC20EC10 and
HC50EC50 with, as expected, systematically lower HC20EC10

values compared to the HC50EC50. This finding implies that

FIGURE 4: Effect factors (EFs; 20% hazardous concentration of the 10% effect concentration [HC20EC10]) expressed as potentially affected fraction
of species derived for all the chemicals in DatabaseCaseStudy (=9862). The uncertainty around each EF is presented as well depending on the
approach followed to derive the HC20EC10. Default_Slope stands for the default slope approach, Original is the approach proposed in the second
global life cycle impact assessment method phase, and QSAR_Complemented are the HC20EC10 values based on measured as well as quantitative
structure–activity relationship‐based EFs. PAF = potentially affected fraction.
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application of the extrapolation methods, needed to derive
HC20EC10, did not cause substantial disturbance in the ranking
of the ecotoxicity of chemicals: A higher HC50EC50 (without
extrapolations) covaries strongly with a higher HC20EC10.

DISCUSSION
The current section discusses the applicability of our pro-

posed approach to handle data‐poor chemicals, addresses the
limitations of the method, and lists future research needs.

Applicability of the approach for data‐poor
chemicals

Applied ecotoxicology is confronted with two issues: first, that
a relative large amount of measured EC50s requires ex-
trapolation to ambient exposure levels to obtain environmentally
relevant outcomes; second, that a choice for lower‐level effect
data as alternative input for existing assessments (because they
represent ambient concentrations) trades off with a far lower
availability of such data. This limited availability of measured
chronic EC10 makes the estimation of HC20EC10,measured on only
measured EC10 data difficult and implies neglect of a large
number of chemicals from existing assessment frameworks. This
contrasts with the knowledge that many chemicals potentially
pose ecotoxic risks and the societal requirement to evaluate the
ecotoxic risks of a wide diversity of products, embodied in con-
cepts such as environmental footprinting and the recently
adopted Corporate Sustainability Reporting Directive (European
Commission, 2022) or the European Union product environ-
mental footprint (European Commission, 2021). The present
study therefore aimed to propose an approach to derive

HC20EC10 values for data‐poor chemicals relying on intra‐ and
interspecies extrapolation equations.

Given the relatively good overlap of the HC20EC10,measured

and the one based on extrapolated EC10 (bias close to 1), and
moreover the observed close covariation of the past and cur-
rent consensus methods for deriving EFs (Figure 5), we con-
cluded that intraspecies extrapolated EC10 values can be used
to derive HC20EC10 values whenever (at least) five measured
effect data from three species groups are not available. We
used extrapolation methods listed in Equations (1) to (5) but
assume that the outcome applies to other extrapolation
equations that satisfy criteria for good extrapolation functions.

The in silico approaches used in the method proposed in
Approach to characterize data‐poor chemicals for data‐poor
chemicals have been chosen according to the findings in Per-
formance of the in silico approaches. Overall, for chemicals
with fewer than 20 measured effect data, adding QSAR‐based
effect data led toHC20EC10 values close to the reference values
with median differences between HC20EC10,extrap and
HC20EC10,QSAR between 0.88 and 1.06 over the range of 1 to 20
measured data points. The usefulness of QSAR‐based effect
data to derive hazardous concentrations was also shown in
other studies (Belanger et al., 2016; Lu et al., 2020). On the
other hand, the median Rrepr for HC20EC10,ICE ranged between
0.98 and 1.62 and for HC20EC10,QSAR,ICE between 0.85 and 1.65
over the range of measured data points from 1 to 20.

The restricted applicability domain of QSARs (<50% for the
chemicals investigated in the present study) currently limits
their use for more chemicals currently in trade. This limited
applicability for QSARs is due, on the one hand, to the avail-
ability of SMILES notations and, on the other hand, to the
applicability domain of the QSARs. For the former, SMILES
notations could not be retrieved for 43 chemicals out of the

FIGURE 5: The 20% hazardous concentration of the 10% effect concentration (HC20EC10) estimated from measured and extrapolated EC10
compared toHC50EC50 estimated from measured and chronic EC50 and extrapolated acute EC50. Two linear regression equations are shown: one
with a fixed slope of 1 (red) and another with best fit (blue). RMSE= root mean squared error.

1924 Environmental Toxicology and Chemistry, 2024;43:1914–1927—Douziech et al.
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670. The latter relates directly to the “chemical space” covered
by the training data set. This could be counterbalanced by
QSARs with larger applicability domains or alternatively by
choosing among the wide range of available QSARs the one
tailored specifically for the considered chemical. Despite this,
QSARs are likely to be not available for all existing chemicals,
so it was necessary to include another in silico approach in the
developed approach to ensure a broad chemical coverage.

The HC20EC10 derived from measured and ICE‐based effect
data (HC20EC10,ICE) had a median difference between 0.98 and
1.62 compared the to HC20EC10,extrap and was comparable
when combining measured, ICE‐based, and QSAR‐based effect
data (HC20EC10,QSAR ICE). Bejarano et al. (2017) report a three-
fold difference between SSD‐based HC5 estimates based on
ICE‐complemented SSDs and HC5 estimates relying only on
measured effect data in 58% of the cases. The difference de-
rived forHC20QSAR ICE, so only QSAR and ICE‐based effect data,
was approximately 3. Following a similar approach, Douziech
et al. (2020) reported a difference between 1 and 2 for HC50
based on QSAR and ICE and between 3 and 4 for an SSD‐
based estimate of HC5s based on QSAR and ICE effect data,
thus comparable to the values in the present study. While more
species can be included using ICE than what is currently done
in assessments based solely on measured effect data, the ob-
served difference for HC20EC10,extrap is a potential sign of spe-
cies selection bias as discussed in Limitations and future
research. On the contrary, the default slope method showed an
average mean difference of 1.3 for data‐poor chemicals (fewer
than 20 measured data points). Based on this, the average‐
slope method was chosen over the combination of QSAR and
ICE for application in our proposed approach, instead of the
alternative of neglecting a chemical in impact assessment if its
SSD was missing.

Limitations and future research
The proposed approach was derived on the basis of a large

data set, although the available data were, in part, not yet
ideal. For example, the implications of assigning ECHA‐dossier
data to the most tested species were not investigated in detail.
One could alternatively have assumed a different species for
each test entry. Given the link of ECHA data with legal re-
quirements, the assumption that tests represent the most
widely tested species seems, however, valid. Further, an ideal
data set would represent all relevant test data globally collated.
However, the data set used for the present study was slightly
smaller than the data used by Posthuma et al. (2019) due to the
removal of proprietary data.

Refinements of the average‐slope method used as part of
the approach to characterize data‐poor chemicals might be
necessary in the future, by either restricting the application of
the average‐slope approach or updating the average‐slope
value itself. In fact, the outcomes suggest that the slope of 0.7
is underestimated because it was determined based on data
sets with restrictive biodiversity and overrepresentation of most
commonly tested species such as D. magna. Oginah et al.

(2023), for example, obtained a slope of 0.9 on their data set on
data‐rich chemicals that, once confirmed in a larger data set,
might be considered to avoid this bias. This would require
sufficiently rich data sets for chemicals with either narcotic or
any of the specific modes of action so as to investigate robust
slopes (due to data richness) in relation to subgroups and/or all
tested species in separate or overall SSDs. Such data are,
however, not yet available (Oginah et al., 2023).

An aspect that therefore deserves particular attention in the
future is the question around the potential bias introduced by
the focus of current ecotoxicological tests on a limited number
of species. Species selection bias is defined as the bias that
results from systematic, or random, trends that appear to have
occurred in the collection of test data for particular species, in
comparison to the diversity of species representing aquatic life
forms. This may be a random process, whereby researchers
happen to test some species and species groups, as well as
chemicals and chemical groups, more than others (Gustavsson
et al., 2017; Kristiansson et al., 2021). But it may also be the
systematic result of a policy‐requested minimum set of tested
species, such as the algae, daphnia, fish (ADF) minimum triplet
for European Union chemical safety assessments under the
REACH regulation. Such species selection bias may be helpful to
characterize and rank chemical safety in a standard way when
evaluating potential hazards of chemicals to be judged for
market entry but may counter the representativity of SSDs to
cover the biodiversity of field species assemblages, with an ef-
fect on slope for the compounds currently studied. Such species
selection bias has been discussed previously in relation with ICE
estimates (Golsteijn et al., 2012) and is also reflected by the
QSARs available especially for the ADF test species triplet. This
species selection bias and its potential implications on the dif-
ferences between HC20EC10 were not further investigated in the
present study. The species selection bias was, however, a likely
explanation for the higher HC20EC10 estimated from the fixed‐
slope extrapolation compared to raw data–driven SSDs.

The present study focuses on the ecotoxicological
impacts on freshwater ecosystems—the most commonly ad-
dressed type of ecosystem in both ecotoxicity testing and
therefore practices such as LCA. As next steps, we recom-
mend addressing additional ecosystems, such as terrestrial,
for which the problem of lacking measured effect data is
probably even larger than for freshwater ecosystems (Li
et al., 2023).

Despite including several approaches to estimate eco-
toxicity data for chemicals and comparing them in a system-
atic way, we could not reflect the entire breadth of in silico
approaches available. The approaches for deriving SSDs from
data is an ever‐evolving field of research. For example, while
QSAR‐based SSDs were evaluated, approaches like that in
Hoondert et al. (2019), where the per‐chemical median and
standard deviation of the log‐normal SSDs themselves were
directly estimated from those of data‐rich chemicals, were
not. Expanding on these per‐chemical methods can be done
not only with the methods of the present paper but also with
more overarching methods in which larger parts of the
available ecotoxicity data are used at the level of EC10 of
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individual species as well as directly at the SSD level of, for
example, HC50EC50 (Hou, Jolliet, et al., 2020; Hou, Zhao,
et al., 2020). Multichemical data (or the whole database) can
be used to characterize the ecotoxicity of a data‐poor
chemical. Building on earlier research at the Dutch National
Institute for Public Health and the Environment (Notenboom
et al., 1995), we can refer to this as quantitative species
sensitivity relationships (QSSRs), which can currently be
based on describing such patterns. Promising results are
currently being obtained, exploring such QSSRs. Among
others, such methods might help address chemicals with no
measured effect concentrations (no data) at all, which were
not addressed in the present study.

CONCLUSIONS AND RECOMMENDATIONS
The approach proposed in the present study derived EC10‐

based SSDs and estimatedHC20EC10 values and their uncertainty
from them for 9862 chemicals, including data‐poor chemicals.
The approach proposed is compliant with the current consensus
approach for the ecotoxicological impact assessment in LCA.
The explicit quantification of uncertainty allows LCA assessors to
set criteria for their specific assessment condition, allowing, for
example, for higher uncertainty in exploratory and lower un-
certainty for decision‐related settings. This way, insight is pro-
vided into the ecotoxic potential of more chemicals emitted
from product systems at field‐relevant exposure concentrations,
and it is possible to account for their potential impact in as-
sessment methods relying on SSDs. This was possible following
three hierarchical steps: (1) intraspecies extrapolating effect data
to estimate EC10 from other test endpoints, (2) using QSAR
approaches to reach five effect data from three species groups,
or—if those are lacking—(3) assuming a set slope of 0.7 to derive
HC20EC10. A comparison of the estimated HC20EC10 with EFs
being defined from SSD‐EC50 showed that these covary closely
and so support the adoption of these recommendations. In fact,
extensive studies on contemporary ambient exposures have
shown that chemical concentrations in surface waters do not
reach theHC50EC50 level, whereas the concentrations expressed
asHC20EC10 are in a more realistic range (see Rorije et al., 2022).
We conclude that the approach to derive SSDs and EFs devel-
oped in the present study, using measured chronic EC10 when
available or relying on intraspecies extrapolations, QSARs, and
an average‐slope approach when not, covers the main effects in
a relevant way and can be considered scientifically robust. The
choice and use of in silico methods are namely supported by the
empirical evidence in the present study based on the most re-
cent database of measured effect data available so far and align
with published literature.
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