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Abstract. Increasing soil organic carbon is promoted as a negative emission technology for the agricultural
sector with a potential co-benefit for climate adaptation due to increased soil water retention. Field-scale hydro-
logical models are powerful tools for evaluating how the agricultural systems would respond to the changing
climate in upcoming years and decades, for predicting impacts, and for looking for measures that would help
decrease drought-driven crop stress under current and future climatic conditions. We quantified how different
levels of soil organic carbon (SOC) additions at varied soil depths are expected to influence drought-induced
transpiration reduction (Treddry) in maize cultivated in Switzerland. Parameterization of the model based on a
pedotransfer function (PTF) was validated against soil moisture data from a long-term lysimeter experiment with
a typical Swiss soil, and the model was subsequently applied under climate forcing between 1981 until 2099,
representative of three distinct climatic sites of Switzerland. We used the same PTF to indirectly assess the ef-
fects of SOC additions at different depths on soil hydraulic properties. We found a threshold in both the added
amount of SOC (2 % added) and the depth of sequestering that SOC (top 65 cm), beyond which any additional
benefit appears to be substantially reduced. However, adding at least 2 % SOC down to at least 65 cm depth
can reduce Treddry in maize, i.e. increase transpiration annually but mostly at the onset of summer drought, by
almost 40 mm. We argue that SOC increases in subsoils can play a supporting role in mitigating drought impacts
in rain-fed cropping in Switzerland.

1 Introduction

Over the last few decades, scientific studies have increas-
ingly emphasized the need and explored potentials for soil
carbon sequestration in agricultural soils to mitigate climate
change (e.g. Lal, 2001, 2004; Minasny et al., 2017; Smith et
al., 2008). In this context, other possible impacts of increas-
ing soil organic carbon (SOC) on important soil functions
and services have also been highlighted (e.g. on soil biodiver-
sity, soil structure, and soil water retention and infiltration ca-
pacity; see Lal, 2004; Murphy, 2015). Management practices

such as the application of organic amendments (i.e. compost,
manure, biochar), cover cropping, crop diversification, and
the adoption of conservation tillage systems are commonly
considered to be beneficial for increasing SOC (Crystal-
Ornelas et al., 2021). With an increase in soil organic carbon
in terms of quantity, quality, and chemical diversity, soil com-
munities are promoted, and biotic–abiotic interactions are
enhanced, with positive impacts on the formation and storage
of soil organic matter (Zhang et al., 2021). Physical proper-
ties of the soil are altered directly by soil organic carbon in-
creases and indirectly through the activity of soil fauna (e.g.
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Arthur et al., 2015; Rivier et al., 2022; Nemes et al., 2005;
Rawls et al., 2004). Soil structure has a major influence on
the natural soil water retention capacity, an essential regu-
lating ecosystem service provided by soils that may play an
increasingly crucial role in mitigating drought-induced lim-
itations as climate change progresses (Liu et al., 2021). Soil
texture also strongly affects how soil hydraulic properties re-
spond to organic amendments, as shown by a meta-analysis
from Edeh et al. (2020), who reported decreased hydraulic
conductivity of sandy soils and increased hydraulic conduc-
tivity of clayey soils after biochar additions. A recent meta-
analysis performed for Europe has also shown that the adop-
tion of organic amendments and continuous living cover ben-
efit the soil water regulation functions (Blanchy et al., 2023).

With that in mind, the potential for achieving synergies
between climate mitigation and adaptation seem promising.
However, empirical evidence regarding the benefits of in-
creasing soil organic carbon for reducing drought limita-
tions in crops is inconclusive. For example, Minasny and
McBratney (2017) performed a meta-analysis with globally
distributed soil data combined with the development of pe-
dotransfer functions (PTFs) and found that a 1 % increase in
SOC has a minor effect on available water capacity (AWC),
with more pronounced differences in sandy soils than in fine-
textured soils. Libohova et al. (2018), however, evaluated the
effect of SOC on AWC using the National Cooperative Soil
Survey (NCSS) Soil Characterization Database and found
that a 1 % increase in soil organic matter content increased
AWC up to 1.5 % times its weight, depending on soil tex-
ture and clay mineralogy. Also, a global meta-analysis of 17
long-term field experiments conducted by Eden et al. (2017)
found that plant available water increased significantly with
the addition of organic material to the topsoil.

So far, only a few model-based analyses have explored the
benefits of SOC increases for soil water availability systemat-
ically. Thereby, the assumption regarding SOC influences on
soil hydraulic properties was based on evidence from pedo-
transfer functions (PTFs). Feng et al. (2022) applied the crop
model APSIM at a regional scale in China to model yield
variability of maize and identified a statistically significant
relationship between SOC and the temperature sensitivity of
maize yields, suggesting that SOC contributes to climate re-
silience. A different model-based study design was imple-
mented by Bonfante et al. (2020), who applied the SWAP
model (Kroes et al., 2017) to six different Italian soils with
assumed increased soil organic matter up to 2 %–4 % in the
topsoil. They found only minor increases in moisture supply
capacity to be achieved with additional organic matter in the
soil. In contrast to this, Ankenbauer and Loheide (2017), who
applied a 1-D variably saturated groundwater flow model,
found that increases in soil organic matter can contribute
as much as 88 mm to transpiration or 35 additional water-
stress-free days during a dry summer. Discrepancies in these
studies’ findings may be attributable to differences in pedo-

climatic conditions, as well as to model setups and the chosen
levels and depths of SOC increases.

A systematic analysis of the impacts of SOC increases on
drought stress reduction depending on the depth of the SOC
increase is lacking so far. It is thus the aim of this study to
systematically evaluate and quantify the potential benefits of
increasing SOC for drought limitations in a regional context
not only under current conditions but also under projected fu-
ture climatic conditions. As a study case, we chose to evalu-
ate how changes in SOC at different depths affect the drought
stress experienced by maize at the Swiss Central Plateau re-
gion, where agricultural land use dominates and for which
region climate projections suggest a decrease in summer pre-
cipitation and an increase in winter precipitation as climate
change progresses (CH2018, CH2018 Project Team, 2018).
Annual precipitation sums are expected to remain largely the
same over the projection period until the end of the century,
ranging from 997 mm in the southwest to 1013 mm in the
northeast. As previous studies have shown, drought stress is
already limiting grain maize productivity under current con-
ditions (Holzkämper et al., 2013, 2015b), and this limitation
is expected to become more significant as climate change
progresses. According to Holzkämper (2020), irrigation de-
mands for grain maize might increase by up to 20 % by the
end of this century in comparison with the reference period of
1981–2000, assuming that the duration of the growth season
remains constant. If late-maturing varieties would be grown,
given the possibility of an extended growth season with in-
creasing temperatures, irrigation water demand may even in-
crease by 40 % (Holzkämper, 2020). This raises concerns
about the availability of irrigation water in the Swiss Central
Plateau, where reoccurring irrigation bans have challenged
farmers more and more frequently in recent drought years
(BAFU, 2019, 2016). Solutions to make Swiss production
systems less reliant on supplementary irrigation are urgently
needed.

2 Data and methods

To systematically evaluate the benefits of increasing soil or-
ganic carbon (SOC) in terms of reducing drought limitations
in a typical agricultural soil in the Swiss Central Plateau, we
apply a field-scale agro-hydrological model that is deemed to
be a suitable tool for interpreting interactions between crops
and the environment (Maharjan et al., 2018). The soil com-
ponent of the model was parameterized using a recently de-
veloped pedo-transfer function, and the model setup is vali-
dated against measurements of soil moisture dynamics in two
lysimeters of a lysimeter station. Subsequently, the model is
applied based on downscaled climate projection data in com-
bination with scenarios of soil carbon increases.
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2.1 Agro-hydrological modelling with SWAP

The Soil Water Atmosphere Plant model (SWAP, ver-
sion 4.0.1) (Kroes et al., 2017) is a physically based agro-
hydrological model that simulates the transport of water, so-
lutes, and heat in the unsaturated (vadose) zone and, option-
ally, the upper part of the saturated (groundwater) zone, with
the upper boundary condition defined by atmospheric con-
ditions. Major arable crops and grasslands can be explic-
itly simulated in SWAP via incorporation of the WOFOST
(WOrld FOod STudies, De Wit et al., 2019) model or by us-
ing a simple crop module.

In interaction with the crop development, the model simu-
lates the heat and solute transport dynamics of variably satu-
rated soils by employing the Richards equation in the vertical
direction, including a sink term for root water uptake:

C (h)
∂h

∂t
=

∂
[
K (h) ∂(h+z)

∂z

]
∂z

− Sa (h) , (1)

where C(h) (cm−1) is the specific water capacity, the deriva-
tive of the soil water retention function θ (h), which describes
the relation between water content θ (cm3 cm−3) and soil wa-
ter suction h (cm, defined as positive at unsaturated condi-
tions); t (d) is time; K(h) (cm d−1) is the hydraulic conduc-
tivity as a function of h; z (cm) is the vertical spatial coor-
dinate (negative downwards); and Sa(h) (d−1) is a sink term
representing the rate of soil water extraction by plant roots.

The relationships θ (h) and K(h) are defined by the van
Genuchten (1980)–Mualem (1976) (VGM) equations:
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where θs and θr are the saturated and residual soil water con-
tent (cm3 cm−3); α (cm−1), n,m (m= 1−1/n), and l are em-
pirical shape parameters; Ks is the saturated hydraulic con-
ductivity (cm d−1); and the relative degree of saturation, 2,
is expressed as 2= (θ − θr)/(θs− θr).

In our study, the model used crop properties and atmo-
spheric conditions on a daily basis to calculate the poten-
tial evapotranspiration based on the Penman–Monteith equa-
tion. Water stress was evaluated according to the reduction
function by Hartge (1980), with the optimal root water up-
take in the h ranges of −325.0 cm (h3H) or −600 cm (h3L)
to −30 cm (h2), with oxygen stress linearly increasing for h
higher than −15 cm (h1) and drought stress linearly increas-
ing for h smaller than−8000 cm (h4). The crop growth mod-
ule considers how the actual transpiration can be reduced by
drought (too dry), αd(z); lack of oxygen (too wet), αo(z); or
too-saline conditions (physiological drought), αs(z) – these
factors are known to reduce crop growth. The actual root
water flux, Sa(z) (d−1), is then a function of all considered

stresses:

Sa (z)= αd (z)αo (z)αs (z)Sp (z) , (3)

where Sp(z) is the potential root water extraction rate at a
certain depth. The actual transpiration, Ta (cm d−1), is calcu-
lated by integrating the root water flux over the root zone:

Ta =

0∫
−Droot

Sa (z)∂z, (4)

where Droot is the root layer thickness (cm).
In our simulations, we did not consider stresses caused by

saline conditions and focused on the drought-induced tran-
spiration reduction (Treddry) as an indicator of drought stress
during the cropping period.

2.2 Climate data of three distinct study sites from
measured and projected scenarios

Typical Swiss agricultural conditions were evaluated at three
distinct sites distributed along the Swiss Central Plateau (the
main agricultural production zone in Switzerland): Nyon–
Changins (CGI), Zurich–Reckenholz (REH), and Wynau
(WYN). Measured climatic variables from meteorological
stations were obtained from MeteoSwiss. Table 1 contains
annual mean values of the meteorological variables required
by SWAP, while Fig. 1 presents their seasonal variation.
While the three sites have similar altitudes, on average, the
CGI site has the driest and warmest climate, with higher solar
radiation and wind speed. WYN is, on average, the wettest
and coldest. In all sites, the rainfall is relatively well dis-
tributed during the year, with higher precipitation, temper-
ature, and solar radiation in the summer season.

Future scenarios were evaluated using climate projec-
tions developed by the National Centre for Climate Services
(NCCS) in Switzerland (CH2018 Project Team, 2018). The
dataset contains transient daily time series for the period
1981–2099 for several variables at individual Swiss stations
(daily–local), produced by applying a statistical downscal-
ing and bias correction method (quantile mapping, QM) to
the original output of all EURO-CORDEX climate model
simulations employed in CH2018 (CH2018 Project Team,
2018). From all available projections with different repre-
sentative concentration pathways (RCPs), we selected the
ones that presented the dataset with all required input vari-
ables for SWAP, as listed in Table 1. In total, we used 22
projections for RCP8.5, 17 for RCP4.5, and 8 for RCP2.6.
For more details about the selected model chains, see the
Supplement (Sect. S1). Figure 2 presents an overview of the
projected climate variables for the summer (JJA) and winter
(DJF) months during the baseline (1981–2020), mid-century
(2031–2060), and end-of-century (2081–2099) periods for
each of the RCP8.5 projections. More details about the other
RCPs can be found in the Supplement (Sect. S2). With the
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Table 1. Site description and climatic variables based on mean± standard deviation values observed between 1981 and 2022 from Me-
teoSwiss.

Meteorological station

CGI REH WYN
(Changins) (Reckenholz) (Wynau)

Altitude (m) 455 443 422
Latitude 46◦24′ N 47◦26′ N 47◦15′ N
Longitude 6◦14′ E 8◦31′ E 7◦47′ E
Rainfall (mm yr−1) 997± 147 1013± 146 1117± 188
Tmin (◦C) 6.5± 5.7 5.1± 5.9 5.0± 5.9
Tmax (◦C) 14.8± 7.8 14.3± 8.0 14.3± 8.2
Solar radiation (MJ m2 d−1) 12 541.5± 7035.4 11 372.0± 6738.6 11 437.9± 6865.4
Vapour pressure (kPa) 0.98± 0.36 0.98± 0.38 0.99± 0.38
Wind speed (m s−1) 2.4± 0.2 1.8± 0.3 1.7± 0.3

Figure 1. Seasonal variability of climatic variables considering
monthly mean± standard deviation (shades and bars) values ob-
served at the meteorological stations between 1981 and 2022. Rain-
fall corresponds to monthly sums, while other variables represent
daily values averaged by month. Minimum (bottom lines) and max-
imum (upper lines) temperatures are presented.

most pessimistic assumption about the evolution of green-
house gas emissions (RCP8.5), climate projections estimate
lower precipitation, higher temperature, and higher solar ra-
diation for future summers, while they predict higher pre-
cipitation, higher temperature, and lower solar radiation for
winters at the end of the century.

2.3 Model reference data and setup

Reference information on soil water dynamics at four differ-
ent depths (10, 30, 60, and 90 cm) was available from lysime-
ters of 135 cm depth and 1 m2 surface area at the lysimeter

facility of Agroscope (Zurich–Reckenholz) (Prasuhn et al.,
2016). Soil moisture was monitored from 2009 to 2022 using
frequency domain reflectometry sensors (FDR; ThetaProbe
ML2x, Delta-T Devices) at the depths of 10, 30, 60, and
90 cm. In each of the lysimeters, two identical sensors were
installed at each depth with a time resolution of 1 h. We uti-
lize the data of two lysimeters that contain similar soil mono-
liths from a typical agricultural soil nearby (loamy-silty cam-
bisol above ground moraine (FAO, 2015); see Table 2 for the
soil profile description). The monoliths have a 15 cm layer
of purified quartz sand and gravel at the bottom, which helps
facilitate free drainage.

For the model setup, the measured physical and chemical
soil parameters (Table 2) were used in combination with the
pedotransfer function (PTF) developed by Szabó et al. (2021)
using the R package in which the euptfv2 is implemented
(Weber et al., 2020). The euptfv2 is a random-forest-based
PTF with various options for input and output parameters,
and it has proven to be one of the most accurate PTFs for
estimating soil hydraulic properties for Europe when tested
on diverse datasets (Nasta et al., 2021). As the standard setup
for all simulations, we used option PTF02, which requires the
depth of the soil layer, soil texture, and soil organic carbon
content (SOC) as inputs and estimates the VGM parameters
for the soil water retention (θ (h)) and hydraulic conductivity
(K(h)) functions (Eq. 2).

Table 3 presents the parameters of Eq. (2) at the evaluated
soil profile from the lysimeter station, calculated using the
chosen PTF. The soil water retention and hydraulic conduc-
tivity curves are visualized in Fig. 3.

The validation of SWAP with the lysimeter information in-
cluded three cropping periods with grain or silage maize in
2009, 2015, and 2020, with annual precipitation of 1018.9,
831.5 and 855.2 cm, respectively. A daily time step was
adopted, and vertically, the top soil layer up to 65 cm was dis-
cretized using 1.0 cm sub-compartments, while subsequent
layers were discretized with 5 and 10 cm sub-compartments.
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Figure 2. Summary of climatic variables considering monthly mean values at the stations Changins (CGI), Reckenholz (REH), and Wynau
(WYN) for the projections of RCP8.5. Summer was considered to be the months of June, July, and August, and winter corresponds to
December, January, and February. Reference period: 1981–2020, mid-century: 2031–2060, end of century: 2071–2099. Rainfall corresponds
to monthly sums, mean temperature is the mean between the maximum and minimum temperatures per day averaged by month, and solar
radiation corresponds to daily values averaged by month.

Table 2. Soil physical and chemical properties of the evaluated typical Swiss agricultural profile at the lysimeter facility at Agroscope Reck-
enholz. SOC: soil organic carbon, BD: bulk density, PD: particle density, CEC: cation exchange capacity. Soil class and horizon description
according to Prasuhn et al. (2016).

Horizon Depth Clay Silt Sand SOC BD pHH2O pHCaCl2 PD CaCO3 CEC
cm % % % % g cm−3 – – g cm−3 % cmol+ kg−1

Ahp 0–25 25 50 25 1.48 1.36 6.8 6.4 2.63 0.1 16.2
Abcn 25–32 24 54 22 1.09 1.44 7.1 6.6 2.68 0.2 15.67
Bcn(g)(x) 32–65 31 50 19 0.43 1.44 7.2 6.5 2.7 0.1 17.61
Bg 65–85 33 46 21 0.32 1.44 7.5 6.6 2.7 0.1 18.77
BCg 85–105 19 61 20 0.10 1.39 8.6 7.7 2.7 40.2 10.93
Cg 105–135 18 65 17 0.02 1.61 8.6 7.8 2.71 54.4 7.49

The boundary condition was set to free outflow at the soil–air
interface, which is considered to be a valid option for lysime-
ters. The evapotranspiration was calculated using weather
data and application of the Penman–Monteith equation. No
macropore flow, lateral drainage, or solute dispersion was
simulated. For the validation, the daily averaged values of
measured soil water content at each replicate sensor and
depth (eight time series per lysimeter) were compared to the
modelled values by SWAP. As validation metrics, we used
the root mean square error (RMSE) and the Pearson correla-
tion (r). See Sect. S3 in the Supplement for details regarding
the model setup.

2.4 Design of simulation experiments

In the absence of consistent and comparable data from long-
term and holistic studies that account for the impacts of man-
agement on soil hydraulic properties, pedotransfer functions
(PTFs) are seen as a suitable choice to systematically ac-
count for linkages between SOC and soil hydraulic proper-
ties. We thus used the chosen PTF to systematically capture
secondary effects of SOC instead of directly inferring the ef-
fects of specific drivers of change on the soil hydraulic prop-
erties due to the uncertain interaction effects between SOC,
soil type, climate, and management.

We assumed that management improvements have led to
increased SOC from the beginning of the simulation period
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Table 3. Soil hydraulic parameters calculated using the euptfv2 at the original soil profile considering option PTF02, which uses soil texture,
soil carbon content, and soil depth as input.

Soil Layer Depth θr θs α n Ks l

cm cm3 cm−3 cm3 cm−3 cm−1 – cm d−1 –

Reckenholz 1 0–25 0.053 0.483 0.034 1.215 35.61 −1.59
2 25–32 0.038 0.471 0.037 1.193 14.78 −0.70
3 32–65 0.059 0.435 0.015 1.196 10.41 −0.62
4 65–85 0.078 0.417 0.014 1.196 4.41 −1.23
5 85–105 0.034 0.422 0.011 1.370 3.34 0.23
6 105–135 0.026 0.424 0.005 1.441 1.77 0.09

Figure 3. Soil water retention (θ ) and soil hydraulic conductivity
(K) as functions of the soil water suction (h) at the evaluated soil
profile estimated by the euptfv2 (option PTF02).

and that SOC remained stable over the simulation period,
thereby testing different scenarios of successful carbon se-
questration. The model parametrization included three dis-
tinct depth scenarios: (i) changes in SOC occur only within
the top 0–25 cm, (ii) changes in SOC occur from 0 to 65 cm
depth, and (iii) changes in SOC are achieved for the entire
soil profile. In terms of SOC change, we simulated the ad-
dition of up to 4 % SOC to current SOC levels in 1 % in-
crements in the (i) and (ii) depth scenarios, but we applied
reduction factors of 0.8 and 0.6 for the 65–105 and 105–
135 cm depths respectively in depth scenario (iii). This ap-

proach considers it to be that obtaining greater SOC via man-
agement likely affects the topsoil more than the deeper soil
layers. The outlined depth and SOC level scenarios are listed
in Table 4 for easier comprehension.

It should be emphasized that the levels of SOC in the soil
are dependent on several factors including land use and man-
agement, climate, and geomorphology, which were consid-
ered as empirical relationships in this work.

To quantify the impacts of increasing SOC on drought
stress in maize under climate change, SWAP was applied to
the 22 climate projections at the three sites Changins (CGI),
Reckenholz (REH), and Wynau (WYN) in combination with
the scenarios of SOC increase listed in Table 4. We assumed
grain maize to be sown on 6 May (DOY 126) and harvested
on 17 October (DOY 290) as registered in the Swiss variety
trial data for a medium–late variety type (Agroscope, 2023).
The bottom boundary condition was set as free drainage, rep-
resenting a soil profile with deep groundwater levels. For de-
tails of general SWAP parameterization, see Sect. S3.

All simulations considered rain-fed conditions and were
performed using the simple crop growth module for a static
crop, which simulates a fixed development of leaf area in-
dex and rooting depth, independent of climatic conditions, in
order to keep the cropping period fixed for all scenarios. In
this study, we worked with 165 d of crop-growing period; the
crop component’s parameterization is described in Sect. S4.

Overall, we conducted a total of 990 simulation runs
(5 levels of SOC× 3 soil depths× 3 sites× 22 climate
projections) for the period 1981–2099 and used cumu-
lative amounts of drought-induced transpiration reduction
(Treddry) as an indicator of drought stress during the crop-
ping period. The 10-year moving average of Treddry was cal-
culated to represent decadal changes and to exclude interan-
nual variability. The range of Treddry values among the avail-
able climate projections were represented by the 0.05 quan-
tile (q0.05) and the 0.95 quantile (q0.95) as upper and bot-
tom boundaries respectively. The difference between man-
agement scenarios in terms of crop transpiration, defined as
the average transpiration gain (ATG) with SOC increase, was
calculated as the difference between the scenario with no ad-
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Table 4. Description of %SOC levels added per depth and final values of SOC considering the described scenarios (i), (ii), and (iii). Bold
values represent the layers where changes on SOC were applied.

Effective depth of changes (cm) (i) 0–25 (ii) 0–65 (iii) 0–135

Scenario Soil depth SOC added SOC final
(cm) (%) (%)

0 % 0–25 0 1.48 1.48 1.48
25–32 0 1.09 1.09 1.09
32–65 0 0.43 0.43 0.43
65–85 0 0.32 0.32 0.32

85–105 0 0.10 0.10 0.10
105–135 0 0.02 0.02 0.02

1 % 0–25 1 2.48 2.48 2.48
25–32 1 1.09 2.09 2.09
32–65 1 0.43 1.43 1.43
65–85 0.8 0.32 0.32 1.12

85–105 0.8 0.10 0.10 0.90
105–135 0.6 0.02 0.02 0.62

2 % 0–25 2 3.48 3.48 3.48
25–32 2 1.09 3.09 3.09
32–65 2 0.43 2.43 2.43
65–85 1.6 0.32 0.32 1.92

85–105 1.6 0.10 0.10 1.7
105–135 1.2 0.02 0.02 1.22

3 % 0–25 3 4.48 4.48 4.48
25–32 3 1.09 4.09 4.09
32–65 3 0.43 3.43 3.43
65–85 2.4 0.32 0.32 2.72

85–105 2.4 0.10 0.10 2.5
105–135 1.8 0.02 0.02 1.82

4 % 0–25 4 5.48 5.48 5.48
25–32 4 1.09 5.09 5.09
32–65 4 0.43 4.43 4.43
65–85 3.2 0.32 0.32 3.52

85–105 3.2 0.10 0.10 3.3
105–135 2.4 0.02 0.02 2.42

dition of SOC (0 %) and the one with the maximum addition
of SOC (4 %).

3 Results

3.1 Model validation

Using the soil hydraulic parameters from Table 3, we sim-
ulated soil water content in the lysimeter soil profiles and
compared them with moisture data measured by FDR sen-
sors. The lumped values of the two lysimeters, considering
all maize cropping periods (2009, 2015, and 2020) at all
depths (10, 30, 60, and 90 cm) with duplicated sensors, re-
sulted in a median (q0.5) RMSE of 0.066 cm3 cm−3 (q0.05 =

0.050 cm3 cm−3, q0.75 = 0.098) and a correlation median
correlation r of 0.79 (q0.05 = 0.68, q0.75 = 0.84). In general,

the simulations were more accurate for the deeper layers as
compared to the topsoil. At 10 cm, the RMSE was, on av-
erage, 0.11 cm3 cm−3, whereas it was 0.04 cm3 cm−3 at the
bottom.

3.2 Effect of increasing SOC on the soil hydraulic
properties and soil water balance

The effects of adding different amounts of SOC at different
soil layers (Fig. 4) are reflected in PTF estimates of soil hy-
draulic properties with updated SOC contents. The 0 % line,
corresponding to the VGM parameters in Table 3, represents
the properties of the different soil layers with current SOC.
For the soil water retention curve, the effects of the increase
in SOC reflected an estimated increase in pore space, whose
expression varied with soil depth and added SOC. In the top-
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soil, the differences between the addition of 1 % and 4 %
SOC were not as remarkable as in the subsoil layers, where
an addition of 1 % SOC lead to a substantial increase in esti-
mated pore space. For saturated hydraulic conductivity, the
overall trend was a reduction in conductivity with the in-
crease in SOC, with the biggest contrasts found in the top-
soil.

Considering the effects of adding SOC at different soil
depths, Fig. 5 presents an overview of the transient simu-
lations between 1980 and 2099 with the most unfavourable
climate scenario projections (RCP8.5). For each year of sim-
ulation, a range of values of Treddry was generated by the
22 climate projections, which are represented by a band de-
fined by the q0.05 and q0.95 quantiles, and the q0.5 quantile
(median) is represented by a line within that band. The av-
erage transpiration gain (ATG) line is the difference between
the median (q0.5) values of the original Reckenholz soil pro-
file (i.e. 0 % SOC addition) and the one that had 4 % SOC
added. The ATG can be interpreted as the amount of seasonal
transpiration gained in response to increased SOC. The abso-
lute increase in Treddry when comparing the reference period
with the end of the century was, on average, 269, 207, and
269 mm at CGI, REH, and WYN, respectively. Additional
results considering other representative climate projections
(RCP 2.6 and 4.5) are presented in the Supplement (Sect. S5).

According to the simulated scenarios, the main driver of
the absolute values of Treddry is the climate, with more
drought stress under the climate of the drier site (CGI) and
very similar stress levels under the climate of the other two
sites, REH and WYN, that are wetter and appear to resem-
ble each other somewhat. There was a clear tendency of in-
creased stress towards the end of the century, driven by more
unfavourable climatic conditions during the cropping period
(Fig. 2). The ATGs were very similar amongst the three con-
sidered climates, with maximum values around 60 mm yr−1,
and values slightly higher in the CGI climate. The ATG
slopes calculated between the beginning and the end of the
century were higher at REH and WYN, which are the sites
with less water stress under current conditions. This is an
implication of not considering a gradual build-up period for
increased SOC but considering the same levels of SOC addi-
tion for the entire simulation period.

The simulations were performed considering the addition
of SOC down to three different depths (25, 65, and 135 cm).
The addition of SOC to the top 25 cm seems to have a modest
effect on Treddry. The effects of increasing SOC all the way
to 135 cm are the greatest but are comparable to the inter-
mediate option of adding SOC till 65 cm depth. In general,
adding 2 % SOC already lead to considerable reduction in
Treddry and is a more realistic, easier-to-implement alterna-
tive to adding 4 % SOC.

3.3 Detailed soil water dynamics and drought stress
over the cropping period

Figure 6 depicts, as an example, how the soil moisture profile
develops and how the ATG in moisture deficit builds up dur-
ing the simulated 2015 cropping year at the REH site, with
the different increased SOC levels in the entire soil profile
(depth scenario iii). The addition of SOC leads to a clear
pattern of increasing soil water retention. The blue line de-
picts the daily simulated crop transpiration deficit (Treddry)
of the 0 % added SOC scenario, while the black lines depict
the same obtained for the relevant depth and SOC addition
scenario in each plot. Their difference, when cumulated for
the year, yields the transpiration deficit ATG for the given
year and scenario. The most remarkable seasonal ATGs were
observed in the beginning of the cropping season and could
be linked to increased soil water retention capacity combined
with the availability of water in that season. According to
Fig. 4, increased SOC content generally yielded increased
soil water retention capacity relative to the base scenario of
no SOC addition. In the early cropping season, this increased
capacity is capitalized on in the form of retaining more water
in the system by the end of the recharge period in the wet and
cold winter and spring seasons. The simulated extra amount
of water is clearly demonstrated in Fig. 6. During the early
part of the growing season, this excess water then becomes
available to the crop, dampening the effects of any drought
stress or at least delaying its onset. The soil will also not dry
out to the same degree during the later half of the season or,
at least, not to the same depth. Similar results for the other
evaluated sites are presented in the Supplement (Sect. S6).

4 Discussion

4.1 Increasing soil organic carbon reduces drought
stress in maize

We observed that, according to the predictions of the used
PTF, an increase in SOC has a small effect on (but generally
decreases) soil hydraulic conductivity (Fig. 4). This may be
counter-intuitive in that textbook knowledge connects greater
SOC content with better soil structure formation; greater
porosity; and, in turn, enhanced water transport properties
(hydraulic conductivity) (Nemes et al., 2005). However, sev-
eral studies have now emerged that correlated greater SOC
content with lower hydraulic conductivity. These studies in-
clude both experimental data and the mining of several ex-
tended databases using machine learning (Nemes et al., 2005;
Wang et al., 2009; Jarvis et al., 2013; Larsbo et al., 2016).
The rationale behind this notion is that, when SOC content
increases, there is enhanced porosity, but the tortuosity of
conductive pathways may increase due to enhanced micro-
bial activity and the formation of more complex aggregates,
resulting in better water retention but reduced hydraulic con-
ductivity. Some of these authors noted increased predicted
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Figure 4. Effects of SOC increase on the soil water retention (θ ) and soil hydraulic conductivity (K) as functions of the soil water suction
(h) as predicted by euptfv2, option PTF02.

water retention in the effective porosity (i.e. the range be-
tween field capacity and saturation), which supports the pro-
posed notion.

Results from this simulation study suggest that increases
in SOC would generally decrease drought stress in maize
cultivated in a typical agricultural soil in Switzerland. The
summer season precipitation amount at the evaluated sites
is expected to be decreased by around 60–65 mm till the
end of the century (Fig. 2). In this scenario, a 2 % addition
of SOC can reduce the drought stress of maize by 10.5 to
40 mm during the cropping season and potentially compen-
sate for part of the rainfall reduction with climate change.
Bonfante et al. (2020) suggest that the effect of SOC on
moisture supply capacity should be evaluated in more cli-
matic zones in order to obtain a broader picture of its po-
tential impact. What we observed in this work was that the
degree of decrease in Treddry was only minimally dependent
on regional climatic conditions, with the wettest site (WYN)
benefitting least from the SOC increases under current cli-

mate conditions. As conditions get drier, as projected with
climate change for the Swiss Central Plateau, the transpira-
tion gain increases but reaches a maximum at 60 mm with
SOC increases down to 135 cm.

Our study suggests minor benefits of increasing SOC in
the topsoil (maximum ATG reached is 15 mm, Fig. 5). How-
ever, if SOC was increased down to at least 65 cm, this ben-
eficial effect can be considerably higher (maximum ATG
reached is 45 mm, Fig. 5). Overall, the maximum ATG of
Treddry quantified in this study was 60 mm (at the end of
the century, with SOC increase down to 135 cm), suggesting
that, without supplementary irrigation, seasonal crop transpi-
ration can be up to 60 mm greater with increased SOC com-
pared to the reference situation. This amount is comparable
to 1–2 irrigation dosages and makes up for roughly 30 % of
the average theoretical irrigation water demand estimated by
Holzkämper (2020) for the region between Wynau (WYN)
and Changins (CGI). The productivity gain to be achieved
will strongly depend on the period in the cropping cycle
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Figure 5. Transpiration reduction due to drought stress (Treddry) (left axis, green band) for actual and future climate conditions considering
different levels of SOC increase in the soil at different effective soil depths and average transpiration gain, ATG, (right axis, coloured lines)
between 0 % and 4 % addition of SOC. Climate projections considered the RCP8.5 pathway and were averaged for every 10 years. The green
shaded area of Treddry refers to the values between the (dotted) quantiles q0.05 and q0.95 of the climate projections. ATG is interpretable as
average seasonal gain in transpiration due to SOC increase, and ATG slope refers to the slope of the ATG line between 0 % and 4 % SOC
addition.

when this extra water will be available. Considering that tran-
spiration benefits are greatest at the onset of drought during
early summer (Fig. 6), the productivity gains may be particu-
larly high if the effect coincides with the critical reproductive
phase of the crop. This might imply that transpiration gains
achieved with increases in SOC have a significant potential
to increase yield stability, particularly in situations where and
when irrigation is not an option.

The positive slopes of calculated ATGs of Treddry (i.e.
transpiration gained with SOC increase) in Fig. 5 suggest that
the benefits of SOC additions could slightly increase with
projected future climate change – especially at WYN, the
least water-limited site under current conditions. At the driest
site, CGI, the ATG (i.e. benefit of SOC increase) reached un-
der current climatic conditions is roughly at the same level as
it is at WYN at the end of the century. These findings imply
that the benefits of SOC accumulation may increase as wa-
ter input (precipitation) during the cropping period decreases
over time. However, there appears to be a threshold beyond
which benefits are not seen as Treddry further increases (the
ATG slope in Fig. 5 decreases from the wettest to the driest
site). The benefit of extra water availability comes from the
balance of two elements: available water and available stor-
age capacity. It appears that the available storage capacity

component is enhanced by the addition of some SOC (i.e.
2 % addition in our simulations), but the system becomes
water-limited by the end of the century. The extra storage
capacity that additional SOC may yield will not be filled up
by the actual water input, and the potential extra benefit can-
not be realized. The within-year occurrence of the same phe-
nomenon is observable in Fig. 6. The biggest reduction in
Treddry occurs in the beginning of the cropping season, when
the increased retention capacity was present at the same time
as when an ample amount of water was recharging the sys-
tem during and after the cold, rainy season with little or no
plant water uptake.

A similar balance is likely to apply when the outcome of a
135 cm deep application of added SOC is interpreted. When
simulating SOC addition to 135 cm depth vs. only 65 cm, the
added benefit in terms of reduced crop Treddry appears to be
limited. We argue that, while some excess water storage ca-
pacity is simulated, there is little actual benefit realized from
that given the reduced amount of predicted precipitation by
the end of the century. In addition, few, if any, crop roots
reach that depth, which means that the only way the crop has
a direct benefit from water stored in the deeper soil layers in
the growing season is if water is redistributed upwards via
capillary and vapour transport.
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Figure 6. Detailed profile of soil water content (left axis) and Treddry (right axis, black lines) according to the different added SOC levels at
the Reckenholz site (REH) in the year of 2015. The blue line represents Treddry for the original soil profile (0 % SOC). When cumulated for
the year, their difference yields the annual ATG in crop transpiration deficit that is due to the addition of carbon to the soil.

4.2 Possibilities to increase soil organic carbon

Results from our study suggest that the beneficial effects of
increasing SOC are small if SOC is only increased in the top
soil (0–25 cm), but these become more significant if SOC is
increased to only 65 cm depth by at least 2 %. We assumed
that such SOC increases can be achieved, while different
management adaptations and combinations thereof may be
suitable to reach this target. Commonly considered strate-
gies to increase SOC include additions of organic amend-
ments, planting of deep-rooting crops, cover-cropping, in-
tercropping, mulching with organic material, retaining crop
residues in the field, and reduced tillage or no till (Topa et
al., 2021; IPCC, 2022). No till or reduced tillage decreases
the carbon oxidation process and soil disturbance with the
loss of soil organic carbon and nutrient availability (Modak
et al., 2019; Kan et al., 2020). Also, Angers and Eriksen-
Hamel (2008) found that tillage affects the distribution of
SOC over the depth of the soil profile with important im-
plications in crop water availability. A meta-analysis on the
effects of tillage on SOC (Krauss et al., 2022) has shown
that it is not uncommon that depletion in SOC of a subsoil

layer co-occurs with increased SOC levels in the topsoil. We
tested this with the particular soil and PTF used in our study
and found that the hydrological effects of reducing SOC at
the depth of 25–32 cm were almost identical to the scenario
in which the same amount of SOC increase at the depths of
0–25 cm was simulated but without subsoil SOC depletion
(Fig. 5). We emphasize that, from the point of view of water
availability to plants with deep roots, management strategies
should aim to increase SOC content deeper than only in the
topsoil.

According to Bai et al. (2019), reduced tillage or no till
increases SOC mostly in the top 10 cm and also in the sub-
soil below 50 cm. The same study found that cover-cropping
could increase SOC down to 70 cm depth. Incorporation of
perennial grasses into crop rotations could help increase SOC
to 60 cm depth, beyond the plough layer (Carter and Gre-
gorich, 2010). Evidence of this under Swiss conditions was
provided by Guillaume et al. (2021, 2022). Overall, such
strategies were found to be most beneficial to SOC accu-
mulation near the soil surface (Bai et al., 2019). One man-
agement operation that could effectively contribute to an ac-
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cumulation of SOC in deeper soil layers is deep ploughing
(Alcántara et al., 2016). However, when the soil is loosened.
the SOC oxidation process is enhanced, and erosion may be
triggered, which has to be accounted for when planning such
interventions.

We have tested the scenario of incorporating extra amounts
of SOC in the soil down to a depth of 135 cm. This is a
scenario that would require similar strategies as the previ-
ously discussed scenario, but it is likely rather difficult to
implement, especially with greater amounts of SOC stored.
Our study showed that, in terms of water availability to the
(maize) crop, this scenario has little extra benefit to offer over
the scenario of having extra SOC sequestered to 65 cm depth.
Hence, any investment in sequestering SOC into such depths
should not be driven by a high expectation of hydrological
benefits.

4.3 Limitations and further work

Our study, as well as previous modelling studies exploring
the impacts of SOC additions on soil water availability (e.g.
Ankenbauer and Loheide, 2017; Bonfante et al., 2020; Feng
et al., 2022), builds on pedo-transfer functions that are be-
lieved to be best in estimating soil hydraulic parameters for
the study area based on levels of SOC and other soil proper-
ties. The selection of PTFs, however, may play a crucial role
in the outcome of simulated scenarios. While recent studies
confirm the validity of the equations used (e.g. Nasta et al.,
2021; Wagner et al., 2004), uncertainties in derived estimates
may still be large (Fatichi et al., 2020). PTF structure may
also have an influence in that more advanced (a.k.a. better)
PTFs are usually products of refined machine learning algo-
rithms that may produce strong results in general but may
have different estimation qualities in different parts of the
data domain. Since such local performance is rarely evalu-
ated, future work should thus explore the sensitivity of SOC
benefits via using an ensemble of PTFs. Moreover, measure-
ments of soil hydraulic properties in combination with SOC,
texture, and bulk density in long-term field trials investigat-
ing management alternatives affecting SOC would provide
very useful evidence to help disentangle the effects of land
use and management on the relationships between soil tex-
ture and hydraulic properties. By integrating management
and also local climate information in PTFs, their uncertain-
ties in predicting soil hydraulic properties in specific con-
text could be reduced (Van Looy et al., 2017). Many historic
records do not provide sufficient information on how certain
measurements were performed, or when the samples were
taken. Also, the timing of field sampling is likely to play a
role here as it is known that soil hydraulic properties vary in
time and are influenced e.g. by precipitation regime or land
use and management (Caplan et al., 2019; Lu et al., 2020).

In this study, we focused on transpiration reduction, which
is likely to imply biomass reduction but may not necessar-
ily imply yield reduction – depending on the timing of wa-

ter stress. Other studies have investigated the impacts of CC
on yields for grain maize in Switzerland (Holzkämper, 2020;
Holzkämper et al., 2015a), and it was found that yield trends
differ depending on the choice of varieties assumed to be
planted. In our study here, we focus on drought impacts
on crop transpiration alone. Subsequent yield formation will
be affected by crop transpiration but also by various other
drivers (e.g. temperature and radiation limitations, timing of
stresses, heat stress). In order to obtain a clearer view on the
impacts of SOC increases on crop transpiration, we elected
not to consider the multitude of such interactive effects in
the presented study. In future work, it will be interesting to
explore possibilities to further increase the benefits of SOC
additions by combining that strategy with other adaptations
of crop and soil management (e.g. earlier maturing varieties,
cover-cropping, mulching of soil to reduce evaporation). In
this context, it will be advisable to also account for a dy-
namic development of phenology and thus leaf area index to
account for possible interactions between crop growth and
soil moisture conditions.

While our study focused solely on the impacts of SOC ad-
ditions on soil water dynamics, SOC increases could have ad-
ditional benefits for crop productivity and yield stability by
feeding and supporting beneficial microbial communities in
the soil (e.g. rhizobacteria, nitrogen-fixing bacteria, and my-
corrhizal fungi), which increase the crops’ ability to take up
water and nutrients (Coban et al., 2022; Renwick et al., 2021;
Kallenbach and Grandy, 2011). Such aspects could be ad-
dressed in future field experimental studies. Beyond that, fu-
ture field- and model-based studies may also evaluate trade-
offs or synergies of SOC, promoting management strategies
with regard to other soil-related ecosystem service indica-
tors such as nitrate leaching, soil loss, or runoff generation
to provide insights regarding the possibilities to increase the
sustainability of agricultural production overall (Bonfante et
al., 2019). Alternative modelling approaches considering dy-
namic changes in soil hydraulic properties could also be ap-
plied in the future to investigate the influence of soil struc-
tural dynamics on the adaptation benefits of SOC accumula-
tion (e.g. based on Meurer et al., 2020a, b) as, to our under-
standing, current models do not facilitate the representation
of soil as a temporally variable medium.

5 Conclusions

Our study is the first to investigate the possibilities of reduc-
ing Treddry, an indicator of drought stress, in maize culti-
vated in the Swiss Central Plateau through increasing SOC in
the topsoil and subsoil. Our simulations showed that Treddry
in maize is expected to increase with climate change in the
Swiss Central Plateau region by around 60–65 mm irrespec-
tive of SOC increase. Increasing SOC in a typical agricultural
soil in Switzerland, however, is beneficial to reduce drought
limitations in maize, shown by consistently positive average

SOIL, 9, 545–560, 2023 https://doi.org/10.5194/soil-9-545-2023



M. E. Turek et al.: Sequestering carbon in the subsoil benefits crop transpiration 557

transpiration gains. These benefits are minimal if SOC is only
increased in the top 25 cm but become considerable if SOC
is increased down to 65 or 135 cm depth. With a 2 % addi-
tion of SOC down to 65 cm depth, a considerable average
transpiration gain of 40 mm can be reached. This scenario
can be achievable considering management adaptations such
as cover cropping or compost applications. It appears that a
greater or deeper SOC addition would not return substantial
extra benefits in terms of offsetting more crop drought stress
rooting in the changing climate.

Code and data availability. The source code of the SWAP model
can be downloaded at https://www.swap.alterra.nl/ (University of
Wageningen, 2023). Data evaluation scripts are included in the
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