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A B S T R A C T

Canopy temperature (CT) estimates from drone-based uncooled thermal cameras are prone to confounding ef-
fects, which affects the interpretability of CT estimates. Experimental sources of variance, such as genotypes and
experimental treatments blend with confounding sources of variance such as thermal drift, spatial field trends,
and effects related to viewing geometry. Nevertheless, CT is gaining popularity to characterize crop performance
and crop water use, and as a proxy measurement of stomatal conductance and transpiration. Drone-based ther-
mography was therefore proposed to measure CT in agricultural experiments. For a meaningful interpretation of
CT, confounding sources of variance must be considered. In this study, the multi-view approach was applied to
examine the variance components of CT on 99 flights with a drone-based thermal camera. Flights were conducted
on two variety testing field trials of winter wheat over two years with contrasting meteorological conditions in the
temperate climate of Switzerland. It was demonstrated how experimental sources of variance can be disentangled
from confounding sources of variance and on average more than 96.5 % of the initial variance could be explained
with experimental and confounding sources combined. Not considering confounding sources led to erroneous
conclusions about phenotypic correlations of CT with traits such as yield, plant height, fractional canopy cover,
and multispectral indices. Based on extensive and diverse data, this study provides comprehensive insights into
the manifold sources of variance in CT measurements, which supports the planning and interpretation of drone-
based CT screenings in variety testing, breeding, and research.
1. Introduction

Canopy temperature (CT) of wheat (Triticum aestivum L.) is a proxy-
measurement of stomatal conductance (e.g., [1–4]) and transpiration
[5] that is negatively correlated with yield in well-watered conditions [3,
6–9], i.e. a lower CT is generally associated with higher yield. CT is more
sensitive to changes in the water status of plants than other optical
measurements such as the Normalized Difference Vegetation Index
(NDVI), and shows a faster response time to physiological changes in the
plant [10–13]. This makes CT especially interesting for measuring plant
performance in dry and/or hot conditions. Therefore, it was proposed to
be used in cereal breeding (e.g., [1–4,6,14–16]), in research and precision
agriculture (e.g., [17–19]), e.g., to detect water stress. Thermal infrared
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(TIR) cameras mounted on drones allow the efficient measurement of
many experimental units [2,15]. However, various sources of variance
can adversely affect TIR measurements and increase uncertainties when
estimating CT. Spatiotemporal and geometric patterns superimpose with
the effects of specific genotypes or treatments (e.g., [20]). Therefore, the
measurement and interpretation of CT data is not trivial [15]. Elaborated
measurement procedures and statistical methods are needed to disen-
tangle the sources of variance that influence CT measurements.

The most important sources of variance and their main drivers/causes
are summarized in Table 1. First, CT is sensitive to short-term changes in
environmental conditions. Solar radiation, air temperature, relative hu-
midity of the air, vapor pressure deficit (VPD), and cloud cover are all
interlinked and affect CT measurements directly by changing the heat
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Table 1
Overview on most important sources of variance of drone-based thermal measurements.

Variance source Variance driver/cause Temporal behavior Primary type of correction Reference

Solar radiation Weather Dynamic (short term) Temporal Reynolds et al. [4]

VPDa Idso et al. [21]

Wind Reynolds et al. [4]

Thermal drift Sensor temperature Dynamic (short term) Temporal Nugent et al. [22]

Non-uniformity effects – Nugent et al. [22]

Field heterogeneity soil water content, water logging, soil compaction etc. Stable throughout single flights Spatial Perich et al. [15]

Treatment effects Field management Stable throughout single flights Treatment Reynolds et al. [4]

Plant height Genotype/Field management Stable throughout single flights Genotype/Treatment Prashar et al. [23]

Soil cover Aasen et al. [24]

Stomatal conductance Reynolds et al. [4]

Phenology Prashar et al. [23]

Stay green Anderegg et al. [1]

Rooting depth (water availability) Reynolds et al. [4]

Vignetting Sensor/Optics Rather stable Geometric Aasen et al. [24]

BRDFb Viewing geometry Stable throughout single flights Geometric Schaepman et al. [25]

Apparent soil cover Pask et al. [8]

Atmospheric effects Berni et al. [26]

a Vapor pressure deficit (VPD).
b Bidirectional reflectance distribution function (BRDF).
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balance of the canopy, for example, by fluctuating radiation or indirectly
by impacting stomatal conductance [3,6,8,15]. Such environmental ef-
fects might mask more subtle plant responses [11]. To reduce distortions
by the environment, it is recommended to fly in stable conditions, i.e.
when there are no clouds or haze and wind speeds are low with no gusts.
However, also under stable conditions, solar radiation and VPD are
constantly changing, and the conditions may differ at the beginning and
the end of the flight, particularly for long-duration flights [27].

Due to a limited payload of drones, uncooled thermal cameras are
commonly used in field phenotyping. They often depend on Vanadium
Oxide (VOx) microbolometers, which are arranged in focal plane arrays
(FPA, e.g., [12,15,20,28–30]). Such cameras are prone to thermal drift,
where the measured temperature varies as a result of short-term tem-
perature fluctuations the FPA of the sensor and the camera optics are
exposed to [12,22]. This holds true for both radiometrically calibrated
and uncalibrated cameras. Thermal drift is known to be a significant
confounding source of variance in CT measurements, and the literature
proposes different approaches to correct for it in data pre-processing (e.g.,
[20,27,30,31] and analysis [29]. Kelly et al. [20] and Yuan et al. [30]
examined the importance of wind conditions on the sensor as an
important driver of sensor temperature and TIR readings. Kelly et al.
[20], Malb�eteau et al. [32] and Treier et al. [29] demonstrated how TIR
readings change with relative motion along the main flight direction of
the drone as a result of changing wind conditions the sensor is exposed to.

Thermal drift is not homogeneous throughout the FPA and leads to
non-uniformity effects (e.g., [22]). Other non-uniformity effects are
caused by dark signal noise and vignetting [24]. The latter describes the
alteration of the signal in dependence of the path of radiation through the
lens optics, leading to distortions where the edges of the image appear
darker (or cooler for thermography) than the central regions [20,24,30].

The viewing geometry also alters the TIR readings. The signal is subject
to surface anisotropy, that is, the signal is altered depending on the di-
rection from which it is emitted/reflected from the surface [15,24,33],
which can be described with a bidirectional reflectance distribution
function (BRDF) [25,34]. Additionally, viewing geometry alters the frac-
tion of soil visible between rows in row crops. At a more nadir-oriented
view, the fractional canopy cover (FCC) is at a minimum and increases
with more oblique viewing geometry, mainly perpendicular to the sowing
2

rows [35]. It is therefore recommended to measure at oblique angles [3,6,
8]. However, with drone-based cameras, this is not always possible, and
excluding nadir-oriented measurements comes with trade-offs. Just
including measurements from oblique angles is more canopy specific and
less related to FCC, but it also decreases the maximum number of mea-
surements that can be taken per plot when less oblique measurements are
excluded, which is deteriorating the consistency of themeasurements [29].

While the sources of variance of the TIR measurements considered so
far included instantaneous environmental conditions, the sensor, and the
viewing geometry, the experiment at observation itself constitutes an
important source of variance. In the case of wheat variety testing trials,
different genotypes are arranged in the field in blocks of multiple
randomly arranged replications which allow to disentangle effect of field
heterogeneity from genotype effects. Field heterogeneity might be
caused by differences in soil water content, soil depth, soil fertility, water
logging, soil compaction, root disease, and other factors (e.g., [2,3,36]).
For some studies, different field management practices, e.g., different
irrigation or fertilization regimens, are applied to the genotypes. Geno-
types, treatments, and field heterogeneity lead to distinct phenotypes,
and phenotype-specific CT differences might be explained by different
traits and not stomatal conductance alone, although phenotypic traits
often are interlinked with each other. Quantitative trait loci have been
shown to be often pleiotropic or co-located for CT and yield,
above-ground biomass, plant height, and other traits (e.g., [3], citet in
[6],[37]). CT is strongly affected by above-ground biomass, morpho-
logical parameters such as plant height, FCC, leaf area index (LAI),
rooting behavior, late senescence behavior, and consequently a larger
green area during later stages, and even by the spatial orientation of leafs
and spikes [1,3,4,15,23,38,39]. All of these sources are not independent.
FCC for example might be caused by the genotype but also the field
management or field heterogeneity, and an increased FCC might reduce
the impact of the viewing geometry as also at nadir view, little soil is
visible when FCC is saturated.

To observe the effects of genotypes and treatments on CT, un-
certainties of CT estimates must be mitigated by estimating and cor-
recting confounding sources of variance. For example Rebetzke et al. [3]
applied a mixed model and included the time of CT sampling as a fixed
linear effect. Treier et al. [29] proposed a multi-view approach in which
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CT estimates were derived from sequences of thermal images. Unlike
approaches where CT estimates rely on orthomosaics, multi-view
allowed for multiple CT estimates per plot and flight and to estimate
covariates related to trigger timing and viewing geometry for each single
measurement. The authors showed how the inclusion of trigger timing as
a random effect in linear mixed models was allowing to increase con-
sistency and genotype-specificity of the CT estimates. The aim of the
study at hand was to empirically demonstrate how the multi-view
approach can be used to disentangle multiple sources of variance and
to separate undesired sources of variance from desired sources in a first
step. A second aim was to show why these corrections matter with
respect to the interpretability of the data. To that end, the multi-view
method was applied in two wheat variety testing trials with contrasting
field management regimens in two consecutive years of contrasting
meteorological conditions. Complementary measurements were con-
ducted to test hypotheses on wind conditions on the sensor, canopy
cover, LAI, above-ground biomass, and plant height as important drivers
of the thermal signal.

2. Methods

2.1. Field experiments and data acquisition

TIR measurements were conducted in two winter wheat variety
testing experiments for two consecutive years (2020–2021 and
2021–2022) in the fields of the Agroscope agricultural research station,
Changins, Switzerland [46�23055.400N 6�14020.400E, 425 m. a.s.l., the
World Geodetic System (WGS) 84]. The soil of the experimental site is a
shallow Calcaric Cambisol [40,41].

One trial comprised 30 modern registered European winter wheat
varieties and is further referred to as the EuVar trial. The same varieties
were seeded for the two years in three different treatment regimes. In the
“maximal” regimen, one growth regulator and one fungicide treatment
were applied. In the “medium” regimen, there was only the growth
regulator application and not the fungicide application. In the “minimal”
regimen, neither a growth regulator nor a fungicide was applied (see
Tables S1 and S2 for more details). Fertilizers and herbicides were
applied in three splits and at equal rates to all treatments according to the
Proof of Ecological Performance (PEP) certification guidelines [42],
which represent a minimal standard for best-practice for conventional
agriculture in Switzerland. Each variety-treatment combination was
repeated on three plots. Within single plots, eight sowing rows of the
same wheat genotype were sown with a spacing of 15 cm between them,
resulting in an observable canopy of about 1.25 m � 6.7 m each. Within
blocks of 3 by 10 plots, the genotypes were randomly distributed, and
these blocks were randomly nested within three treatment replicates.
Each replicate contained three blocks, and each block was treated with
one of the three treatments. The 270 plots of the experiment span over 27
rows (which followed the tractor track direction) and 10 columns
(Fig. S1). This experiment, the TIR data acquisition and multi-view
processing were first described in Treier et al. [29], where the same
authors demonstrated the robustness of the multi-view approach and the
method was shown to outperform commonly used orthomosaic-based
approaches. The Methods are partially described here and in the Sup-
plementary Materials for clarity, but for more information, it is referred
to the study mentioned.

The second trial, further denoted SwiVar, comprised modern winter
wheat genotypes and mixtures of two genotypes. The genotypes included
registered varieties and candidate lines for inscription in the Swiss list of
recommended wheat varieties. In the first year, there were 34 pure ge-
notypes and two genotype mixtures. In the second year, there were 35
pure genotypes and one mixture. 31 genotypes and one mixture stayed
the same between the two years. This performance trial included two
different nitrogen treatment regimens. In one regimen, nitrogen fertil-
ization was carried out according to common local agricultural practice
following the PEP guidelines. In the second fertilizer regimen, no
3

nitrogen fertilizer was applied. Herbicides were applied in both treat-
ments according to the PEP guidelines. Each genotype was repeated in
each treatment three times, resulting in 216 plots with the same row
spacing as in EuVar and a canopy of about 1.25 m � 4.3 m each. Within
the treatments, the plots were arranged in a randomized complete block
design and the treatments were grouped into two separate blocks of 6 x
18 plots due to restrictions in available space and for simplifying nitrogen
management (Fig. S2). In 2021, a sowing error occurred in three plots of
one replication of SwiVar, which were seeded with the variety of the
border plots and for these three genotypes, there were just two replica-
tions in the fertilized regimen (Fig. S2). The three plots were included in
the analysis as genotype “border”. SwiVar22 received an irrigation of 30
mm on 2022-05-23 due to lack of rain (Fig. S5).

The different experiment-year combinations are further referred to as
EuVar21, EuVar22, SwiVar21 and SwiVar22 according to year of harvest.
Tables S1 and S2 give an overview on the different treatments, fertilizer
applications and the most important field interventions while Table S3
displays details on the chemical products used.

Air temperature, rainfall, radiation, wind speed, wind direction,
relative humidity and VPD were obtained by a weather station of
Meteoswiss which was located about 800 m from the experimental site at
Changins [46�2403.700N 6�13039.600E, 458 m. a.s.l., WGS 84].

2021 was a relatively cool year with almost 700 mm precipitation
between the beginning of the year and harvest, while there were just 280
mm of precipitation for the same period in 2022. The temperature was on
average 2.9 �C warmer from May to harvest for 2022 compared to 2021,
and wheat developed faster in 2022 with the heading occurring 6 days
earlier (Fig. S5). Harvest was 20 days earlier for EuVar22 compared to
EuVar21. SwiVar22 was harvested 13 days before SwiVar21.

Flights were carried out between the onset of flowering and mid-
senescence. In 2021, flights were conducted on two dates in each trial.
In 2022, flights were conducted on four dates on EuVar22 and on six
dates on SwiVar22 respectively. On specific dates, multiple flights were
conducted at different time slots. To account for short-term variability,
within each time slot at least two, mostly three flights were conducted
with the same settings. A group of flights that were conducted at one time
slot and date is further called a flight campaign. In total, 39 flights were
performed on EuVar and 60 on SwiVar (for more details, see Supple-
mentary Materials sections S4 & S5). Drone flights generally took place
under close to optimal conditions with relatively low wind, although
conditions in 2022 were more optimal than in 2021, when high and
semitransparent cloud layers led to fluctuating light intensities for some
flights in 2021 (Fig. S6 and S7).

The drone flew over the plots at a height of approximately 40 m,
which allowed for a ground sampling distance (GSD) of about 5.2 cm/
pixel. With a plot width of 1.5 m, this GSD resulted in more than 20 rows
of pixels within the plots after excluding the border areas of the plots,
while still allowing for relatively short flights. The heading of drone and
TIR camera was set to remain stable throughout the flight and did not
change with changes in flight path direction. The resulting flight duration
was between 6 and 9 min depending on the wind conditions and the total
area recorded. The settings used resulted in an image pattern in which
each spot in the trial was recorded on at least nine images from different
perspectives. The camera was pointing toward the ground orthogonally
(i.e. in nadir orientation). An uncalibrated DJI Zenmuse XT TIR sensor
(SZ DJI Technology Co. Ltd., China) was used and a detailed description
of the equipment and the settings used and of flight planning can be
found in Supplementary Materials section S6. The experiments were
neighbored by border plots and other experiments. To increase the
number of measurements available for trend estimation, the flights
covered not just the experiments but all wheat plots in the respective field
surroundings, that is, border plots and other experiments on the same
field. This helped reduce border effects by improving temporal and
spatial corrections, as described in Treier et al. [29]. Supplementary
Materials section S10 summarizes the pre-flight procedure. In short, the
camera was turned on at least 15 min before each flight to allow the



S. Treier et al. Plant Phenomics 7 (2025) 100046
temperature signal to stabilize. The TIR images were saved as radio-
metric JPEG format. Following the protocol of Treier et al. [29], no
radiometric calibration was applied for later processing and only the
internal calibration provided by the manufacturer was used.

For post-processing in the Structure-from-Motion-based photogram-
metry software Agisoft Metashape (Agisoft LCC, St. Peterburg, Russia)
and to allow time series analysis, thermal ground control points (GCPs)
were distributed in the field in an evenly spaced shifted grid pattern (for
more details, see Supplementary Materials section S11).

For the multi-view approach, digital elevation models (DEM) were
needed on which the images could be projected. DEMs were based on
both, TIR images and RGB images. For more details on the creation of
DEMs, refer to Supplementary Materials section S7.

2.2. TIR image pre-processing

From radiometric JPEG format, 14-bit TIFF files were derived, rep-
resenting temperature in �C x 1000 by using a Python 3.8 script [43], a
modified version of the Flir Image Extractor (https://github.
Fig. 1. By knowing the position of the sun, the position of the plot and the position a
relations can be calculated. The position directly below the drone is in nadir orientatio
the elevations of drone and sun respectively. The azimuth of the sun is the clockwise
The position of the plot can be described as planar distance between drone and plo
describe the positon of the plot relative to the drone is by viewing angles as is sho
direction. Elements in the principal optical planes in drone or sun direction are in br
covariates are in orange. Small black angle marks and short parallel black lines indi
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com/ITVRoC/FlirImageExtractor).
The 14-bit TIFF files of the radiometric images as well as the RGB

images were aligned in the structure-from-motion-based software Agisoft
Metashape Professional (Agisoft LLC, St. Petersburg, Russia) and geore-
ferenced (for details, see Supplementary Materials section S12). Plot
masks were created for each plot in Qgis 3.16 [44], to determine the
regions of interest (ROIs) from which the data was used for analysis. A
buffer of at least 25 cm was applied on plot width and length to account
for inaccuracies in georeferencing.

The image information was reduced to a single value for each plot in
each image by using the optimal percentile of all pixel values within each
plot in each image. The procedure for finding an optimal percentile was
described in Treier et al. [29]. In short, for each percentile, heritabilities
were calculated from a mixed model with the R package SpATS [45]. The
resulting percentile-heritability relations were plotted for graphical
comparison and optimal percentile selection. The same percentile was
used for the aggregation of all flights on one experiment within one year
(for more details, see Supplementary Materials section S8).
nd orientation of the camera when an image is triggered (a), different geometric
n. The vertical angle at which drone and sun are seen from the observed plot are
horizontal angle at which the sun is seen from the observed plot from north (b).
t in direction of the sun (b) or in sowing row direction (c). Another option to
wn for angles relative to sun direction (d), but not shown for the sowing row
ight blue, cardinal direction in dark blue. The dimensions of interest and related
cate perpendicularity and parallelism respectively.

https://github.com/ITVRoC/FlirImageExtractor
https://github.com/ITVRoC/FlirImageExtractor
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2.3. Multi-view pre-processing

The single images were projected on the RGB DEMs by ray tracing as
described in Roth et al. [35], Roth et al. [46] and Treier et al. [29]. This
allowed the projection of geographic coordinates (e.g. EPSG:2056 refer-
ence system) to image coordinates. As a result, plot masks of ROIs were
created for each trigger position (i.e. for each image), where at least one
plot was entirely inside the field of view (FOV) of the camera. For each
plot on each TIFF file, all percentiles were extracted with a Python 3.8
script.

As plot-wise data was extracted for each image, the trigger timing
could be determined from image meta data. The trigger timing of each
image and the position of the experiment was known while the position
of the sun was determined for each measurement as azimuth and
elevation angle in Python using a script by John Clark Craig (https://leve
lup.gitconnected.com/python-sun-position-for-solar-energy-and-resear
ch-7a4ead801777, 2021). As Cartesian (i.e. orthogonal) coordinates
were used and the position of the sun, the position of the plot centers and
the position and orientation of the camera at the moment when the image
was triggered were known, this allowed to calculate the geometric re-
lations between sun, plot and drone by trigonometry as listed in Table S5
and illustrated in Fig. 1 (for more details, see Supplementary Materials
section S9).
2.4. TIR data post-processing

After data extraction, the contribution of the different sources of CT
variance to the total CT variance was estimated and CT was corrected for
confounding sources of variance. Although the sources of variance might
differ, they might be corrected by the same type of correction (Table 1).
For example, while variance sources related to weather are ideally
avoided by flying without wind and clouds, they still might affect the
measurements in a temporal pattern. Such temporal variation mixes with
Fig. 2. Flow-chart depicting the process of step-wise TIR measurement correction.
cessed in different steps (purple rectangles) to derive estimates of plot-wise canopy
related to trigger timing and viewing geometry (yellow/dotted-border parallelogram
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the thermal drift, and is thus corrected by the same type of correction
[27]. Correction for the different types of correction was achieved in a
two-step approach (Fig. 2), as the computational burden of a one-stage
approach was too heavy for multi-view data [29], and stage-wise ap-
proaches are proposed for the analysis of complex agricultural trials [47].
In a first stage, the TIR measurements were corrected for non-geometric
sources of variance. The residuals of the first stage were then analyzed to
reveal the importance of geometric effects in a partial least squares
regression (PLSR) analysis in a second stage. A plot-wise mean was
calculated as a reference baseline. In the following, the two-stage
approach is described in detail.

2.4.1. Mixed model
The multi-view method provided several CT estimates for each plot

(originating from different images). For each measurement, covariates
related to trigger timing and viewing geometry were available which
were used to analyze sources of variance and to correct the TIR
measurements.

A mixed model (Eq. (1)) was fitted in ASReml-R [48] to correct for
temporal and spatial trends and experimental design factors (experi-
ments, genotypes, treatments, replications). ASReml-R was chosen over
other mixed model software due to its capability to model complex
variance structures, which was important for the best possible consid-
eration of nested structures (e.g. border plots) and temporal trends in this
study. This mixedmodel used was introduced and tested for robustness in
Treier et al. [29], where the single terms are explained in detail and
mentioned here for clarity. Plot-based repeated CT measurements θijknp
for the ith genotype, jth trigger event, kth treatment, nth replication, and
pth plot were decomposed in factors related to genotypes (θi), treatments
(τk), replications (rn) and plots (ϕp) within a field. A temporal trend was
modeled as a smooth spline fspl(λj) along the sequential trigger events λj,
where a trigger event j corresponds to a specific thermal image. A spatial
model comprised two one-dimensional autocorrelation parts in row
TIR measurements and covariates (blue/solid-border parallelograms) were pro-
temperature and residuals (red/dashed-border parallelograms) as well as trends
).

https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
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direction fAR(1)(r(p)) (following tractor tracks) and column direction
fAR(1)(c(p)), where fAR(1) is a first order autoregression function of
respective rows and columns at positions of plots in row direction r(p)
and column direction c(p). In addition, a two-dimensional spatial auto-
correlation fAR(1)�AR(1)(c(p), r(p)) was included in the spatial model. eijknp
are measurement specific residuals. Genotypes and treatments were
given unique IDs for each experiment covered in one flight, so the same
genotype or treatment ID did not appear in the experiment of interest
(i.e., either EuVar or SwiVar) and also surrounding experiments or border
plots at the same time, reducing the complexity of data structure to be
handled by the models. The k experiment-specific treatments therefore
also implicitly describe the different experiments. An interaction be-
tween the ith genotype and the kth treatment (θτ)ik was applied only to
the experiments of interest. For parts of other surrounding experiments
and border plots, a simple additive effect was assumed for genotype and
treatment for simplicity and to reduce computational capacity needed.
ASReml-R allows to specify model terms for subsets of data with the
“at()” statement, and the data could be processed differently for plots
belonging to different experiments and border plots with the same
ASReml-R model. The interaction between the kth treatment and the nth
replication (τr)knwas just applied to EuVar, as the treatments were nested
within the replications in EuVar, but not in SwiVar.
θijknp ¼ θi þ τk þ ϕp þ rn þ ðθτÞik þ ðτrÞkn þ ðDesign� FactorsÞ
fARð1Þ�ARð1ÞðcðpÞ; rðpÞÞ þ fARð1ÞðcðpÞÞ þ fARð1ÞðrðpÞÞ þ ðSpatial� AutoregressionÞ
fsplðλjÞ þ ðTemporal� TrendÞ
eijknp ðResidualsÞ

(1)
2.4.2. Estimate the temporal trend
Mixed models decompose variance into variance components and the

different components can subsequently be included in models to predict
the effects of individual variables. The temporal trend was estimated as
the effect of the jth trigger event/image along the duration of a single
flight, modeled with a smooth spline fspl(λj) in Eq. (1).

2.4.3. Plot-wise CT estimates

After fitting the models by Eq. (1), single plot-wise CT values ðbθpÞ
were estimated with different prediction models to estimate the effect
and importance of different variables within the mixed model.

To have a baseline for comparison, the mean plot temperature bθmean
p

was calculated on the measurements of the individual images j available
for one plot p without applying the mixed model or considering any
covariates,

bθmean

p ¼ meanðθjpÞ: (2)

A first mixed model-based prediction model included all variance
components of the mixed models except for the temporal trend λj (Eq.
(3)). It estimated the individual plot-wise CT values as the sum of ge-
notype effects (θi), treatment effects (τk), plot effects (ϕp), row rp, column
cp and replication effects (rn) at the position of plot p,

bθ t_c

p ¼ bθ ikprðpÞcðpÞn ¼ θi þ τk þ ϕp þ rp þ cp þ rn: (3)

By discarding the temporal trend in the prediction, the plot-wise es-

timates were plot-wise means bθ t_c

p adjusted along the temporal dimension
and therefore temporally corrected (t_c). In the next step, the spatial
trends of row rp and column cp were discarded in prediction,
6

bθ ts_c

p ¼ bθ ikpn ¼ θi þ τk þ ϕp þ rn: (4)
The plot-wise estimates bθ ts_c

p of Eq. (4) were temporally and spatially
corrected (ts_c). To consider possibly strong treatment effects, for each
flight, the mean treatment temperatures were calculated and subtracted

from bθ ts_c

p ,

bθ t_defl

p ¼ bθ ipn ¼ bθ ikpn � meanðτkÞ: (5)

The plot-wise estimates bθ t_defl

p represent the sum of a genotpye, a
genotype-treatment interaction, a plot, and a replication effect after
subtracting a mean treatment effectmean(τk), leaving out all other effects
of Eq. (1). They are temporally and spatially corrected, and treatment
effects were deflated (t_defl), meaning that only a possible genotype-
treatment interaction is left in the estimate, but not the main treatment
effect.

Predictive models (Eq. (3), Eq. (4) & Eq. (5)) just comprised plots
belonging to EuVar or SwiVar. As uncooled and uncalibrated TIR cameras
provide a low absolute temperature accuracy, just relative temperature
differences between the plots were analyzed from this stage onward [20,
49].
For a comparison of the effects of the single variables, the variance of
the plot-wise estimates derived from the different prediction methods
(Eq. (2) - Eq. (5)) was calculated for all flights.

2.4.4. Multispectral measurements
The trials were also monitored with an airborne Micasense RedEdge-

MX Dual multispectral camera (MicaSense Inc., Seattle, Washington,
USA) throughout the growing season. With multispectral data, vegeta-
tion indices (VI) were calculated to obtain approximative estimates of LAI
and biomass. The images were aligned in Agisoft to generate 10 band
orthophotos covering all the experiments. Details on the spectral prop-
erties of the 10 bands of the sensor are described in Table S6. Based on
these bands, four VIs were calculated. DVI, SAVI and EVI (see Table 2 for
full names and equations) are commonly used VIs to estimate the LAI of
wheat [50] while SAVI was also shown to be correlated with
above-ground biomass [51]. NDVI was calculated as a reference to the
emissivity [52] of the plants. The same masks as for the TIR images were
used to mark ROIs on the multispectral orthomosaics. The 50th percen-
tile (median) was used to aggregate VI values within single ROIs to single
values with a Python 3.8 [43] script for subsequent analysis (for more
details, see Supplementary Materials section S15).

VIs were recorded onmultiple dates and the VIs were correlated to CT
that was measured at the date closest to the VI recording.

2.4.5. Estimate the spatial trend
The spatial trend of the plots p across the field in row c(p) and column

c(p) direction bθrðpÞcðpÞ was estimated as the difference between the plot-

wise CT estimates after a temporal correction bθ t_cp and after a temporal

and spatial correction bθ ts_cp ,

bθrðpÞcðpÞ ¼ bθ t_c

p � bθ ts_c

p ¼ bθ ikprðpÞcðpÞn � bθ ikpn: (10)



Table 2
Multispectral VIs used to approximate biomass (DVI, SAVI, EVI) and LAI (SAVI) and as a reference to the emissivity (NDVI).

Index Full name Formula Reference

DVI Difference Vegetation Index DVI ¼ NIR842 � Red668 (6) Tucker [53]
EVI Enhanced Vegetation Index

EVI ¼ 2:5 � NIR842 � Red650
NIR842 þ 6 �Red650 � 7:5 �Blue444 þ 1

(7)
Huete et al. [54]

NDVI Normalized Difference Vegetation Index
NDVI ¼ NIR842 � Red668

NIR842 þ Red668
(8)

Rouse et al. [55]

SAVI Soil Adjusted Vegetation Index
SAVI ¼ 1:5 � NIR842 � Red650

NIR842 þ Red650 þ 0:5
(9)

Huete [56]

Table 3
Covariates with evident trends were identified among all orignial covariates and
transformations were applied to linearize the trends. Several trends can describe
the same spatial dimension (e.g. Lateral in direction of sowing rows).

Linearized covariates Dimension Transformation Name in
Model

Sine of the elevation angle
of the drone

Elevation of the
drone

Sine Drone-
Elevation-
sin

Lateral distance in
direction of sowing rows

Lateral in
direction of
sowing rows

None RowDir-lat-
Dist

Absolute lateral distance in
direction of sowing rows

Absolute value RowDir-lat-
Dist-abs

Cosine of lateral angle in
direction of sowing rows

Cosine RowDir-lat-
Angl-cos

Absolute value of lateral
angle in direction of
sowing rows

Absolute value RowDir-lat-
Angl-abs

Longitudinal distance in
direction of sowing rows

Longitudinal in
direction of
sowing rows

None RowDir-lon-
Dist

Absolute longitudinal
distance in direction of
sowing rows

Absolute value RowDir-lon-
Dist-abs

Cosine of longitudinal
angle in direction of
sowing rows

Cosine RowDir-lon-
Angl-cos

Absolute value of
longitudinal angle in
direction of sowing rows

Absolute value RowDir-lon-
Angl-abs

Lateral distance in
direction of the sun

Lateral in
direction of the
sun

None SunDir-lat-
Dist

Absolute lateral distance in
direction of the sun

Absolute value SunDir-lat-
Dist-abs

Cosine of lateral angle in
direction of the sun

Cosine SunDir-lat-
Angl-cos

Absolute value of lateral
angle in direction of the
sun

Absolute value SunDir-lat-
Angl-abs

Longitudinal distance in
direction of the sun

Longitudinal in
direction of the
sun

None SunDir-lon-
Dist

Absolute longitudinal
distance in direction of
the sun

Absolute value SunDir-lon-
Dist-abs

Cosine of longitudinal
angle in direction of the
sun

Cosine SunDir-lon-
Angl-cos

Absolute value of
longitudinal angle in
direction of the sun

Absolute value SunDir-lon-
Angl-abs

Interaction between
longitudinal distance in
direction of the Sun and
sine of the elevation
angle of the drone

Interaction
SunDir-Drone-
Elevation

None Interact.-
SunDir-
Drone

Trigger timing Time None Trigger-
time

Total distance between
drone and plot

Distance None Dist-tot
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Assuming the consistency of spatial effects between flights, these plot-
wise spatial trends would be correlated between flights. As a larger
number of observations per plot is assumed to increase the repeatability
of the estimations [29], spatial trends were calculated for all flights
individually, but also for all flights within a campaign simultaneously.
With at least two flights per campaign, this was increasing the number of
observations per plot at least two-fold.

2.5. Geometric effects

As shown in Table 1, multiple sources of variance have a geometric
effect on CT readings. They can be caused by vignetting, viewing
geometry-related effects, atmospheric effects, and geometric emission
and reflectance patterns (i.e. BRDF).

Two different methods were applied to account for geometric effects.
In a first approach, the covariance of the residuals eijknp of the mixed
models (Eq. (1)) with geometric covariates was examined by PLSR with
the R-package PLS [57].

The linear relations between geometric covariates (Table S5) and
residuals were visually identified in an exploratory data analysis and
where necessary, trigonometric transformations were applied to angular
covariates for linearization. Covariates with an apparent linear rela-
tionship to the residuals (Table 3) were included in the PLSR model. In
addition, the interaction between the longitudinal distance in the di-
rection of the sun and the sine of the elevation angle of the drone was part
of the PLSR analysis, as it describes the path of light from the sun to the
drone. The inclusion of the two terms without interaction does not
describe the path adequately as positions in front and behind the drone in
the direction of the sun get the same values.

The PLSR coefficients were calculated for each covariate and each
flight to determine which covariate explained the most of the variance of
the residuals eijknp from the pre-processing model (Eq. (1)). Several
linearized covariates in the PLSR model described the same spatial
dimension (Table 3). With the aims of avoiding redundancy and
simplifying the model, the model was reduced to contain only relevant
dimensions. Relative PLSR coefficient magnitudes βrel,i were calculated
within each flight and each covariate as:

βrel;i ¼
jβijPn
i¼1jβij

; (11)

where βi denotes the PLSR coefficient of the ith of n covariates. To
determine the least descriptive covariates, the medians of relative
magnitude of the covariates βi over all flights j were calculated.

βmed;i ¼ medfjβrel;i;jjg (12)

Covariates with the lowest median were skipped in a supervised
backward feature elimination until the most descriptive transformation
types and dimensions were left in the model (similar to methods sum-
marized in [58]).

In a second approach to account for geometric effects, a generalized
ex ante vignetting correction was applied as described in Treier et al.
[29]. A generalized vignetting correction image was created in an indoor
experiment, with its pixel values representing a mean vignetting effect as
7
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relative temperature difference within an image under controlled con-
ditions. The pixel values of the correction image were then subtracted
from the corrsponding pixels of all TIR images (for more details, see
Supplementary Materials S16).

Subsequent analysis with mixed models and PLSR analysis was per-
formed on TIR images with and without vignetting correction.

2.6. Reference measurements and complementary experiments to better
understand phenotypic variability, viewing geometry and thermal drift as
sources of CT variance

The mixed model allowed estimation of the contribution of geno-
types, experimental treatment regimens, spatial trends, and thermal drift
to the overall variance. With the PLSR models, the contribution of
viewing geometry to the overall variance was examined. To demonstrate
the relationship between CT and the phenotypic variability of genotypes
and treatment regimens, reference measurements were made on wheat
phenotypes similar to Das et al. [28]. CT was compared with grain yield,
FCC, plant height, flag leaf rolling, flag leaf senescence, and multispectral
indices as approximations of LAI and above-ground biomass (Table 2) by
means of Pearson correlation. Complementary experiments were con-
ducted to demonstrate the impact of apparent soil cover and wind on TIR
readings qualitatively.

2.6.1. In-field reference measurements of phenotypic traits
Grain yield was measured with a combine harvester. The water

content of the grain was determined with a Dickey-John GAC 2100 grain
moisture tester within 24 h after harvest and the grain yield per ha was
noralized at 15 % gravimetric water content.

Plant height was measured with a measuring rod in five randomly
chosen spots within each plot, and the mean taken as plot-wise plant
height. It was measured from the soil to the tip of the ears without
considering awns.

With dry conditions, leaf rolling was observed in season 2022 and
visually rated in the field according to Pask et al. [8]. Leaf rolling ratings
ranged from 0 to 3 where 0 corresponded to no rolling, 1 to a loosely
rolled leaf (< 33 % of leaf rolled), 2 to a moderately rolled leaf (34–66 %
rolled) and 3 to a tightly rolled leaf (> 67 % rolled). Flag leaf rolling was
compared with the CT measurement performed on a date closest to the
rolling scoring date, and the CT differences between the groups were
examined with a Wilcoxon signed-rank test.

On the second flight date of EuVar21, senescence had already pro-
gressed. Therefore, flag leaf senescence ratings are presented for both
EuVar21 measurements dates but not for the other trials. Flag leaf
senescence was rated according to Chapman et al. [59] and the ratings
correspond to the proportions of senescent yellow leaf area of the flag
leaf. 0 % corresponds to a fully green leaf and 100 % corresponds to a
fully senescent leaf.

2.6.2. Qualitative demonstration of impact of apparent soil cover
A handheld calibrated high-resolution thermal camera (VarioCAM

High Definition, Jenoptik, Jena, Germany) was used to demonstrate the
influence of apparent soil cover qualitatively. This camera also included
an RGB sensor which allowed a comparison of visible color images with
thermal images of the very same scene.

2.6.3. Multi-view analysis of FCC from RGB data to demonstrate the
correlation with CT

To examine the relationship between apparent CT and apparent
canopy cover, the FCC was estimated based on RGB images as proposed
by Deery et al. [6]. On June 6, 2022, a flight with a DJI Air 2S drone (SZ
DJI Technology Co. Ltd., China) was performed in both experiments. The
flight height was 20 m and the speed was limited to 3 m s�1. The front
overlap was 65 % and the side overlap was 85 %. These settings resulted
in a GSD of�5.5 mm.While such a GSDmay be considered too large for a
very detailed examination of apparent soil cover, it is sufficient to
8

demonstrate general trends.
Images were saved in 8-bit JPEG format and 16-bit DNG raw format.

The DNG files were transformed to TIFF file format in Python 3.8 [43].
Using the interactive image analysis tool Ilastik [60], pixels of the TIFF
images were segmented into three classes: green plant, senescent plant,
and background. With these classes, FCC could be calculated as:

FCC ¼ PNgreen plant þ PNsenescent plant

PNgreen plant þ PNsenescent plant þ PNbackground
; (13)

where PN denotes the number of pixels of a specific class in an area of
interest. Multiple plot-wise FCC values were fitted with the same mixed
model in ASReml-R as CT (Eq. (1)) but replacing CT by FCC. Adjusted
means for plot-wise FCC were estimated, and the FCC residuals were
analyzed with respect to viewing geometry.

2.6.4. Geometric patterns of atmospheric effects
TIR readings are also affected by atmospheric effects which depend

on the path length between the sensor and the target [26,61]. To
demonstrate the geometric nature of this effect, a simple data simulation
was performed. Assuming a perfect nadir orientation of the sensor, the
point directly below the drone is closer to the drone than points toward
the edges of the image, i.e. the path length between sensor and plot is
increased, which increases attenuation of TIR radiation and decreases
transmittance of the atmosphere. Taking a simplified assumption of an
attenuation of 0.001 K m�1 through the atmosphere [61], we calculated
the theoretical attenuation effect at two flight heights (40 m and 300 m).

2.6.5. Fan experiment to determine the influence of wind
Kelly et al. [20] and et al. [30] described a strong relation between

temporal drift of TIR measurements and wind on the sensor. To confirm
this link for our sensor, we set up a fan experiment inspired by these two
studies. The sensor was placed indoors in a dim environment at room
temperature, pointing at a uniform hard foam PVC sheet. A fan and a
lamp were used to cool and heat the sensor respectively. The apparent
temperature of the PVC sheet and the standard deviation of the pixel-wise
temperature were analyzed. To examine whether sudden and strong
temperature gradients have a sustained influence on subsequent TIR
readings, warm and hot disturbance objects (hands at body temperature
and a water cooker with boiling water) were introduced into the scene
several times for several seconds each (for more details, see Supple-
mentary Materials S17).
2.7. Treatment deflation for correlation estimates

Strong treatment effects can be dominant and mask genotype effects,
especially when values are compared by correlations, and themain driver
of correlation is a treatment effect. To avoid inflated correlations of
possibly dominant treatment effects, correlations were calculated on
original data, on data after temporal and spatial correction, and on data
after a treatment effect correction. The treatment effects were corrected
for by subtracting the mean treatment effects from the plot-wise values
after temporal and spatial correction.
2.8. Correction of reference measurement and correlation with CT

In-field reference measurements (yield, plant height, FCC, multi-
spectral indices) were fitted with mixedmodels as done with CT. A model
similar to Eq. (1), but without a temporal component was fitted in
ASReml-R to correct for spatial trends. CT values before spatial correction

(bθmean
p & bθ t_cp ) were correlated with uncorrected reference measurements.

CT after spatial and temporal correction bθ ts_cp was correlated with
spatially corrected reference measurements and treatment deflated CT

bθ t_deflp was correlated with treatment deflated reference measurements.
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3. Results

3.1. Percentile choice to aggregate pixel values into uncorrected data

For EuVar21, EuVar22 and SwiVar21, the 50th percentile (median)
was chosen to aggregate all pixel values within a ROI into a single value.
For EuVar22, the biomass in the non-fertilized part of the experiment was
low, leading to large proportions of visible soil in the thermal images.
Therefore, the 25th percentile was chosen as it better represented CT,
containing fewer background signal from the soil (Fig. S8). The resulting

uncorrected plot-wise CT estimates bθmean
p (Fig. S9 & Fig. S15) contained

strong temporal and spatial trends.
3.2. Correcting for temporal and spatial trends

The mixed model (Eq. (1)) allowed the estimation of the impact of
sources of variance not related to viewing geometry. Fig. 3a shows an
example of the temporal trends fspl(λj) estimated for the three flights of
the SwiVar22 campaign flown on 2022-06-14 at 13:00. All three flights
of the campaign were processed with the mixed model at once. The color
of the line indicates the motion of the drone in the direction of the main
flight path. The pattern of increasing and decreasing temperature seemed
to be switching with the direction of motion of the drone, but this trend
did not seem to be persistent, as it can be seen especially with the third
Fig. 3. Sources of CT variance not related to viewing-geometry: Thermal drift of TIR
contextualized with the motion in the direction of the main flight path (a). The three
motion in the direction of the main flight path. Purple indicates flights in one direction
gray points, thermal drift was estimated on the basis of the mixed model, while there
estimation of the trends, all three flights were included in the same mixed model (Eq.

for EuVar (b) and SwiVar (c). After correcting the first flight of the campaign show

significant, apparently spatial trends (d). After correction, CT estimates for temporal a

and plot effects (e). When also subtracting mean treatment temperatures (bθ t defl
p , Eq.

treatment and genotype (f).
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flight, where the patterns of temperature and flight direction did not
coincide anymore. Temporal trend estimates for all flights can be looked
up at Fig. S10 and Fig. S16 for EuVar and SwiVar respectively. The

resulting estimates after removing temporal trends bθ t_cp (Eq. (3)), still
contain strong spatial patterns that are not consistent within campaigns
(e.g. Fig. 3d for the first flight of the same campaign as in Fig. 3a, Fig. S11

and Fig. S17 for all estimates bθ t_cp of EuVar and SwiVar, respectively).
3.3. Estimating the effect of experimental treatments

After correcting for temporal and spatial trends (Eq. (4)), plot esti-

mates bθ ts_cp containing genotype, treatment, and plot effects could be

derived. When looking at bθ ts_cp for the same flight as Fig. 3d, a strong
treatment effect was evident between the left and right sides of the
experiment, where the cooler left side corresponded to the fertilized part
of the experiment and the hotter right part to the unfertilized part (see

Fig. S12 and Fig. S18 for all estimates bθ ts_cp of EuVar and SwiVar,
respectively).

Mean treatment effects were estimated for all flights of EuVar
(Fig. 3b, Fig. S14) and SwiVar (Fig. 3c, Fig. S20) as deviation from the
mean experiment temperature. Within both experiments, the treatment
effects were consistent for the two years, but stronger in 2022. However,
measurements for the three flights of the campaign on 2022-06-14 at 13:00 was
rows are the three individual flights within the campaign. The colors indicate the
, and yellow indicates flights in the opposite direction of the flight path grid. For

was no corresponding measurement of motion along the main flight path. For the
(1)). The box plots indicate the mean treatment effects for all flights in both years

n in (a) for temporal trends, the adjusted estimates bθ t_cp (Eq. (3)) still contain

nd spatial trends (Eq. (4)), plot estimates bθ ts_cp contained the genotype, treatment,

(5)), just genotype- and plot-effects were left and the interaction effect between
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for EuVar, the treatment effects were small, with a maximum difference
of ~0.15 �C in 2021 and ~0.32 �C in 2022. The “minimal” regimen
featured the lowest temperature, followed by the “maximal” and “me-
dium” regimen. The differences between the cooler fertilized and the
warmer non-fertilized treatment regimen of SwiVar were larger. In 2021,
the maximum difference was around ~0.38 �C while for 2022, strong
treatment effects were observed with a maximum difference of approx-
imately ~4.8 �C.
3.4. Estimating the effect of genotypes and genotype-treatment interactions

When also removing mean treatment effects (Eq. (5)), estimates were
corrected for spatial, temporal, and main treatment effects. On an

experiment scale, estimates bθ t_deflp did not contain strong spatial trends or
treatment effects anymore and appeared relatively flat. The variance

between the plot-wise estimates bθ t_deflp as seen in Fig. 3f corresponded to
Fig. 4. Variance of CT estimates after different corrections steps and relationship bet
uncorrected plot-wise estimates (Eq. (2)) over all flights with CT estimates after corr
between correction steps are indicated based on a pair-wise t-test. Significance levels
that a logarithmic scale is used! The CT estimates without and with correction were
height and (d) FCC. Just correlations significant at p � 0.01 are shown. The number a
respective box plots.
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genotypic effects and genotype-treatment interactions without the main
treatment effects (see Fig. S11 S13 and Fig. S17 S19 for all estimates

bθ t_deflp of EuVar and SwiVar respectively).
3.5. Impact of correction for non-geometric trends on variance of estimates

Confounding sources of variance, mainly temporal and spatial trends,
contributed significantly more to total variance than experimental
sources of variance related to the phenotypes.

When correcting plot-wise CT estimates for temporal effects ðbθ t_cp Þ,
temporal and spatial effects ðbθ ts_cp Þ and finally also deflating treatment

effects ðbθ t_deflp Þ, the variance of the adjusted plot estimates was constantly

decreasing (Fig. 4a). The variance of bθ t_deflp , which still comprised geno-
typic variance, variance of genotype-treatment interactions, and plot
effects, was orders of magnitude smaller than the initial variance of
ween CT and in-field reference measurements: (a) Comparison of the variance of
ecting with the mixed model (Eq. (3), Eq. (4) & Eq. (5)). Significant differences
: ns: p > 0.05; *: p � 0.05; **: p � 0.01; ***: p � 0.001; ****: p � 0.0001. Note
also correlated to in-field reference measurements, namely (b) yield, (c) plant

bove the boxplots indicates the number of significant correlations included in the
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uncorrected plot estimates bθmean
p . The mean variance decreased from

2.74 K2 to 0.09 K2 for EuVar21 and from 8.40 K2 to 0.42 K2 for EuVar22.
For SwiVar21, variance decreased from 2.75 K2 to 0.02 K2 and from 7.68
K2 to 0.32 K2 for SwiVar22.

The greatest variance reduction occurred with the temporal and
spatial correction, after which the variance was below 0.5 K2, except for

SwiVar22. The variance was similar for bθ ts_cp and bθ t_deflp for all experiments
but for SwiVar22, where the variance decreased a lot by treatment
deflation, indicating a mild treatment effect for EuVar21, EuVar22 and
SwiVar21 but a strong treatment effect for SwiVar22.
3.6. Impact of correcting CT for non-geometric trends on correlation
between CT and phenotypic traits

Yield, plant height, four multispectral indices (DVI, EVI, NDVI, SAVI)
and in 2022 also FCC were measured as phenotypic reference traits, as
they represent possible physiological sources of CT variance for EuVar
(Fig. S21 and S22) and SwiVar (Fig. S23 and S24). In EuVar21, senes-
cence ratings were performed. Flag leaf rolling was rated in 2022 as an
indicator of drought stress. In-field reference measurements were
compared with CT of corresponding flights by Pearson correlation. Un-
corrected CT values were correlated with the uncorrected reference
measurements. Corrected CT was correlated with corrected reference
measurements and treatment deflated CT was correlated with treatment
deflated reference measurements. For yield, plant height, and FCC, a
general overview of the correlations with CT is presented in Fig. 4b–d.
For each trial in each year, two flights conducted at two distinct dates
Fig. 5. Pearson correlation of genotypic CT with genotype specific in-field reference
year, CT of two distinct dates was correlated with yield at 15 % gravimetric water con
were calculated on CT after a spatial and temporal correction according to Eq. (4)
reference measurement by subtracting mean treatment effects (b, d, f, h). Dates an
measurements and FCC estimates. FCC estimates were just done in 2022.
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were analyzed for each experiment before treatement deflation (Fig. 5a,
c, e, g) and after (Fig. 5b, d, f, h).

3.6.1. Correlation between CT and yield
Yield at 15 % gravimetric water content was correlated with CT in

conditions with and without water limitation and in the presence of
weaker and stronger treatment effects. Significant correlations tended to
be more consistent over all flights after applying different corrections.

Correlations were increased by the different corrections in the wet
year 2021 for the relatively heterogeneous set of genotypes of EuVar21.

Uncorrected CT bθmean
p was significantly correlated with yield only for 7

out of 22 flights and correlations were negative and weak to moderate

(Fig. 4b). After correction ðbθ ts_cp Þ, correlations were weak to strong and
significant for all 22 flights (p � 0.01).

For the same genotypes in the dry year (EuVar22), uncorrected CT for
15 out of 17 flights was significantly and negatively correlated with yield
with weak to strong correlations. After temporal and spatial correction,
only 6 flights showed a weak significant correlation with yield. There-
fore, the correlation between CT and EuVar22 yield was mainly driven by

spatial trends. For both trials of EuVar, deflation of treatments ðbθ t_deflp Þ
had little effect.

For the less heterogeneous genotypes of SwiVar, the trends were
similar for both years. Initially, SwiVar21 and SwiVar22 showed a very
broad range of correlations between yield and uncorrected CT values
bθmean
p . After correction ðbθ ts_cp Þ, more correlations were significant and

mostly negative, except for SwiVar21, where two correlations were
measurements for EuVar (a–d) and SwiVar (e–h). For each experiment in each
tent, plant height and three multispectral indices DVI, EVI and SAVI. Correlations
(a, c, e, g) and after deflating treatment effects on CT estimates as well as on
d flight times are indicated for CT measurements and dates for multispectral



Fig. 6. Impact of flag leaf rolling and senescence on CT. Corrected CT differences from mean were grouped for campaigns on specific dates and flight times by their

flag leaf rolling rating for EuVar on 2022-06-10 (a) and SwiVar on 2022-06-10 (b) and on 2022-06-17 (c) before ðbθ ts_cp Þ and after ðbθ t_deflp Þ applying a treatment deflation
on CT estimates. The numbers above the individual columns indicate the flight number of the flights within the campaigns of CT measurements. For EuVar on 2022-
06-10 and SwiVar on 2022-06-17, all ratings were larger than 0. Leaf rolling ratings were conducted on the same day as flights or the day before. The significance of
differences between groups of leaf rolling ratings was highlighted in red. Significance levels: ns: p > 0.05; *: p � 0.05; **: p � 0.01; ***: p � 0.001. Senescence ratings
of EuVar21 for 2021-06-11 were compared with the CT of 2021-06-12 at 17.00 (d) and the senescence ratings for 2021-07-02 were compared with the CT of 2021-07-
01 at 13.45 (e).
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positive. For SwiVar22, all 32 flights were significantly and negatively
correlated with yield. However, after deflating the treatment effects

ðbθ t_deflp Þ, correlations were no longer significant for SwiVar in both years.
The differences between the data with and without vignetting

correction were small, except for the bθ ts_cp values of EuVar22, where
correlations with yield were relatively random. To have a more robust
estimate of the reliability of these correlations, CT was also estimated
based on all flights within campaigns (Fig. S25) and then correlated with
yield. The general pattern of correlations was similar to that based on
individuals flights.

Correlations of selected flights (Fig. 5) are in accordance with this
general pattern with strongest and most highly significant correlations
for EuVar21 (p � 0.001). The correlation in SwiVar was strongly driven
by treatment effects, and the correlations were no longer significant after
deflating treatment effects.
12
3.6.2. Correlation between CT and plant height
Significant correlations between CT and plant height were negative

for all flights (Fig. 4c). For all experiments, the correlations became
stronger and more flights became significantly correlated with plant
height after the corrections. After correcting for temporal, spatial and
treatment effects, all flights were significantly correlated with plant
height except four EuVar21 flights. Deflating treatment effects did not
change the correlations much for EuVar, but led to more negative cor-
relations for the less heterogeneous genotypes of SwiVar in both years,
but especially during the hot season of SwiVar22.

Looking at selected flights (Fig. 5), the correlation between CT and
plant height was weaker and less significant in the trial with heteroge-
neous genotypes during the wet year (EuVar21), compared to all other
trials, which showed all highly significant correlations (p � 0.001),
except for SwiVar22, where this was the case only after treatment
deflation.
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3.6.3. Correlation between CT and FCC
As for plant height, the correlations with FCC became more signifi-

cant and stronger with the corrections applied (Figs. 4d and 5). For
EuVar22 and for SwiVar22, CT of all flights was significantly correlated
with FCC after temporal and spatial correction. For EuVar22, treatment
deflation did not much change the correlations. For SwiVar22, correla-
tions became stronger with treatment deflation, indicating a genotypic
effect as the driver of the correlation between CT and FCC, partially
masked by a strong treatment effect.

3.6.4. Correlation between CT and multispectral vegetation indices
VIs were negatively correlated with CT for all trials (Fig. 5) and the

correlations were highly significant (p � 0.001) except for SwiVar21
before treatment deflation (p > 0.01). Correlations were always higher
with the CT measurements taken closer to the date of the VI
measurements.

3.6.5. Impact of flag leaf rolling on CT
When grouping CT estimates according to flag leaf rolling ratings of

the dry year 2022, significant differences of CT could be observed for
some flights. For EuVar22 flights on 2022-06-10 at 12:00 (Fig. 6a), CT
was significantly different between leaf rolling rating groups for CT es-

timates before and after applying a treatment deflation on CT values (bθ ts_cp

& bθ t_deflp ). For SwiVar flights on 2022-06-10 at 13:00 (Fig. 6b), differences
Fig. 7. Pearson correlations between estimates of spatial trends bθrðpÞcðpÞ for individual c
EuVar22, (c) SwiVar21 and (d) SwiVar22. Estimates were based on all flights within in
(e). Significance levels:*: p � 0.05; **: p � 0.01; ***: p � 0.001.
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were significant before treatment deflation ðbθ ts_cp Þ but not after ðbθ t_deflp Þ
and lower flag leaf rolling ratings were associated with higher temper-
atures. The differences were only significant after treatment deflation for
the flights on 2022-06-17 at 16:40 (Fig. 6c) but not before. The differ-
ences between the flag leaf rolling rating groups after treatment deflation
were generally small (< 0.40 K). For most other dates, differences were
not significant (Figs. S32–S34).

3.6.6. Impact of senescence on CT
Flag leaf senescence was just rated for the two dates of EuVar21. The

senescence ratings for 2021-06-11 were compared with the CT of 2021-
06-12 at 17.00 (Fig. 6d) but the correlation was not significant. The
senescence ratings for 2021-07-02 were strongly correlated (r ¼ 0.69, p
� 0.001) with the CT of 2021-07-01 at 13.45 (Fig. 6e).

3.7. Phenotypic correlations between reference measurements

Correlations between in-field reference measurements with CT were
discussed above, yet possible correlations between reference measure-
ments as summarized in Fig. 5 must also be considered.

Plant height and yield were never correlated except for weak but
significant correlations in SwiVar22 prior to treatment deflation (p �
0.01).

Yield was only weakly correlated with VIs for EuVar21 and for
SwiVar22 before treatment deflation (p � 0.001), but significant
ampaigns. Spatial trends were estimated according to Eq. 10 for (a) EuVar21, (b)
dividual campaigns. The variance of estimates of spatial trends is summarized in
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correlations were always weaker than correlations between yield and CT
for corresponding dates.

FCC and yield showed a weak but significant correlation (p � 0.001)
in EuVar22 and in SwiVar22 before treatment deflation (p � 0.01).
3.8. Spatial CT trends in the field

Based on estimates of single flights, the spatial field trend estimates
bθrðpÞcðpÞ were not consistent. The sign of the correlations between flights
Fig. 8. Geometric trends of CT estimates of first flights of SwiVar campaigns on 2021-
model (Eq. (1)) are plotted with respect to lateral and longitudinal distance of the plo
the position of the plot center on the focal plane array of the TIR sensor, i.e. the x/y co
for two different flight heights (g) 40 m and (h) 300 m. (i) Shows the PLSR coefficie
importance of the covariates in PLSR modeling to explain the variance of the CT resid
(multiple for each plot in each flight) and after PLSR modeling expressed as % of in
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changed randomly, (Fig. S26 - Fig. S31). Spatial trend estimates based on
all flights within campaigns appeared random for EuVar21 (Fig. 7a,
Fig. S36a and S38) but more consistent for EuVar22, SwiVar21, and
SwiVar22. For EuVar22 (Fig. 7b, Fig. S36b and S39) spatial field trends of
campaigns were positively correlated except for the campaign on 2022-
06-11 at 15:15 and correlations were highly significant. SwiVar21 flights
(Fig. 7c, Figs. S37a and S40) showedmoderate to very strong correlations
within the 2021-06-19 flights. Within 2021-06-28, the correlations were
positive and negative, while the positive correlations were stronger and
06-19 at 12:30 (a–c) and on 2022-06-18 at 11:40 (d–f). CT residuals of the mixed
t seen from the drone in sowing row direction (a & d), sun direction (b & e) and
ordinates of the thermal images (c & f). A theoretical atmospheric effect is shown
nts of the 9 selected linearized geometric covariates which indicate the relative
uals after the mixed models. (j) Summarizes the variance after the mixed models
itial variance.



Table 4
Explained variance of residuals eijknp by PLSR fitting after pre-processing with the
mixed model (Eq. (1)). PLSR fitting was done with all 20 lineralized covariates
and a reduced set of nine selected covariates. Mean and median values were
calculated over all PLSR models of the two experiments EuVar and SwiVar for
data with and without vignetting correction (VC) over the two years.

Number of
covariates

Explained variance of residuals (%)

2021 2022

without
VC

with
VC

without
VC

with
VC

EuVar 20 mean 30.9 20.8 50.8 42.9
median 30.4 21.5 47.5 39.2

9 mean 24.4 17.8 48.6 41.1
median 20.3 18.6 45.9 37.6

SwiVar 20 mean 62.6 45.3 51.3 40.9
median 65.3 43.9 56.0 45.6

9 mean 57.6 41.9 47.9 37.7
median 59.2 41.1 52.3 42.3

Fig. 9. TIR drift (a) and standard deviation of pixels-wise temperature on the
PVC sheet (b) during the fan experiment. During the stabilization period, warm
objects were introduced into the FOV three times (first three vertical blueish
shadings), and then hot objects were introduced into the FOV for three times
(subsequent three larger shadings). At about 75 min, the heating lamp was
turned on (first vertical purple line). The fan was then turned on (red lines) and
off (yellow lines) three times before the lamp was turned off (second vertical
purple line).
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more significant. The correlations between flights on 2021-06-19 and
2021-06-28 were positive for 16 out of 20 correlations and were weak to
strong and highly significant inmost cases. The four negative correlations
were very weak to weak and significant at p � 0.001 just in two cases.
Within SwiVar22 (Fig. 7d, Fig. S37b and S41), the correlations ranged
from strong to very strong (p � 0.001) within days and from moderate to
strong between different days. Weaker correlations were often not sig-
nificant at p � 0.05. Two correlations were negative but significant at p
� 0.001.

The variance of the spatial trend estimates within flights varðbθrðpÞcðpÞ Þ
was much stronger in 2022 compared to 2021 for both trials (Fig. 7e).

The mean varðbθrðpÞcðpÞ Þ was 1.09 K2 for EuVar21 and increased to 2.87 K2

for EuVar22. The mean varðbθrðpÞcðpÞ Þ was lower in SwiVar but also
increased from 0.32 K2 for SwiVar21 to 0.76 K2 for SwiVar22.

3.9. PLSR modeling of TIR residuals to better understand geometric sources
of variance of apparent CT

3.9.1. TIR residuals and geometric trends
After pre-processing with the mixed model in ASReml, the residuals

were analyzed for geometric patterns. Looking, for example, on the re-
siduals of the flight of the SwiVar campaign on 2021-06-19 at 12:30
(Fig. 8a - c), a gradient along the lateral “distance in direction of sowing
rows” (Fig. 8a) can be seen. The dimensions “distance in direction of sun”
(Fig. 8b) and “distance on the sensor” (Fig. 8c) showed very similar
patterns and the main difference was a rotation around the origin of the
respective dimensions. For the first flight of the SwiVar campaign on
2022-06-18 at 11:40 (Fig. 8d - f), distinct patterns can be seen with
respect to the dimensions “distance in direction of sowing rows”
(Fig. 8d), “distance in direction of sun” (Fig. 8e) and “distance on the
sensor” (Fig. 8f). The residuals were more positive below the camera and
more negative with more oblique viewing geometries and patterns were
very similar again between the dimensions with a rotation around the
origin. Although these patterns were not always the same between the
flights, they were always very similar between the three dimensions of
one flight. Also, after vignetting correction, the patterns remained very
similar to patterns before vignetting correction (not shown).

The theoretical atmospheric effect was almost zero for a flight height
of 40 m (Fig. 8g) but became larger at a flight height of 300 m (Fig. 8h).
The pattern at flight height 300 m was very similar to the geometric
trends at 2022-06-18 (Fig. 8d - f) but also to the vignetting effect
(Fig. S3). While the real atmospheric effect could not be described within
this study, this demonstrates the point-symmetric nature of this effect but
also its negligible order of magnitude at low flight heights.

3.10. PLSR modeling of geometric CT trends

The residuals eijknp of the mixed model (Eq. (1)) were used as input of
the PLSR model. Table 4 summarizes how much of the variance of eijknp
within single flights could be explained using geometric covariates in
PLSR.

Of the 20 initial covariates included in the PLSR models (Table 3), 9
were selected in a supervised selection for use in further processing. The
relative PLSR coefficient magnitudes βi of the selected covariates are
shown in Fig. 8i. The four covariates “RowDir-lat”, “RowDir-long”,
“SunDir-lat” and “SunDir-lon” were the most important in PLSR, fol-
lowed by “Interact.-SunDir-Drone”. The absolute values of the four
covariates (“RowDir-lat-abs”, “RowDir-long-abs”, “SunDir-lat-abs” and
“SunDir-lon-abs”) were less important in PLSR for most flights with
values around 0 %. However, for some flights, especially in 2021, they
reached values of up to 10 %.

The median values of the explained variance ranged from 20.3 % to
59.2 % when just including 9 covariates and not applying vignetting
correction. They were generally highest in SwiVar21 while they were
lowest in EuVar21. EuVar22 and SwiVar22 showed intermediate values.
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When only using 9 instead of 20 covariates, the explained variance was
4.0 % lower on average. The explained variance without ex ante
vignetting correction was on average 10.9 % higher compared to data
with vignetting correction applied. The differences without and with
vignetting correction were greater for SwiVar than for EuVar.

Fig. 8j compares the residual variance of mixed models and PLSR to
initial variance of CT values and variance of initial CT values corresponds
to 100 %. The proportion of variance explained with mixed models was
always larger when ex ante vignetting correction was applied, while the
variance of the initial CT values was very similar (Fig. 4a). This holds also
true for the variance explained after PLSR but the differences between
data with and without vignetting correction became smaller. The mean
proportion of residual variance after mixed models ranged from 2.98 %
to 9.61 %. After PLSR, the mean proportion of residual variance ranged
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from 2.46 % to 3.51 %, i.e. by combining mixed models and PLSR, 97.54
% – 96.49 % of initial CT variance could be explained on average. Details
for the reduction in variance of single flights are shown in Fig. S42 -
Fig. S45.
3.11. Reference measurement to better understand the sources of variance
in apparent CT

3.11.1. Fan experiment to determine the influence of wind
The fan experiment showed a strong reaction of the sensor to heating

and cooling (Fig. 9). The apparent temperature of the PCV sheet dropped
immediately by more than 20 �C upon switching on the lamp and rose
again to a temperature of about 10 �C below the previous temperature.
During the next 15 min, it slowly increased. As soon as the fan was turned
off, the temperature rose by more than 30 �C and immediately decreased
again and continued to decrease for 5min until the fan was turned off and
the temperature dropped again until the fan was turned on again. The
same pattern was repeated three times until the lamp was finally turned
off and the temperature stabilized anew. Strong temperature gradients
between monitored objects themselves did not cause any drift. The
introduction of warm and hot objects did increase the standard deviation
of the pixel-wise temperature as long as the objects were within the FOV
but did not appear to cause a drift of the apparent temperature or an
increased standard deviation for any longer than the period during which
disturbance objects were present inside the FOV.

3.11.2. Qualitative demonstration of impact of apparent soil cover on CT
For most situations, soil was warmer than the vegetation which was

especially evident when looking into the rows perpendicularly (e.g.
Fig. 10a & b). From an oblique viewing angle, the FCC decreased and so
did the average apparent CT in the respective area.

3.11.3. Multi-view residuals of FCC from RGB data to demonstrate viewing-
geometry dependency of CT

The apparent FCC showed a distinct pattern with a lower apparent
FCC in the center and a higher apparent FCC toward the edges of the
images (Fig. 10c) which is related to the more oblique viewing angles.
After fitting the FCC values for design factors in a mixed model (Eq. (1),
but for CT instead of FCC), the residuals showed a distinct pattern with
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regard to position relative to row direction (Fig. 10d). They were lowest
when following a line parallel to row direction directly below the drone
(lateral distance in the direction of sowing ¼ 0). When diverging
perpendicularly from this line in both directions (i.e. with increasing
lateral distance perpendicular to the direction of sowing), the residuals
became more positive, i.e. FCC increased. A similar yet less distinct effect
could be observed along this line with increasing residual values when
diverging from the position on the soil directly below the drone (with
increasing longitudinal distance parallel to direction of sowing). Areas
with low FCC coincided with warm areas, and spatial trends were often
very similar between the two traits (cf. Fig. 10d and Fig. 8d–f).

4. Discussion

This study used the multi-view approach [29] to discuss the manifold
sources of variance in airborne thermal imaging, based on data from two
very different wheat variety testing trials followed over two seasons,
characterized by very contrasting meteorological conditions. The dis-
cussion of the different sources is structured according to the primary
type of correction (Table 1).
4.1. Temporal correction of CT

Temporal trends contributed the most to the total variance of CT
estimates. Fig. 3a illustrated themagnitude of temporal trends, which can
be several times larger than genotype-specific differences (e.g., [20,27,
29]). Temporal correction reduced the variance of CT estimates the most
(Fig. 4a) which is in line with Wang et al. [27]. This demonstrates the
importance of proper handling of temporal trends in thermal measure-
ments, as has been highlighted in several publications (e.g., [20,27,29,30,
32]). Wang et al. [27] elaborated on the distinction between thermal drift
and the temporal variation of land surface temperature (LST). Thermal
drift is caused by the thermal camera when the temperatures of FPA, lens,
and camera body change. The wind on the sensor cools them and expo-
sure to sunlight as well as the sensor's electronic heats them, leading to
fluctuation temperature readings even when facing toward a target with
an actual constant temperature (e.g., [12,20,27,29,62]). This interaction
was confirmed for the sensor used in this study with a fan experiment
(Fig. 9). In accordance with findings in Kelly et al. [20], the warming of
Fig. 10. FCC trends in relation to viewing geometry:
The same scenery is shown on an RGB image (a) and a
TIR image (b). This shows how the soil is warmer than
the plants. To demonstrate how the apparent frac-
tional canopy cover (FCC) changes with viewing ge-
ometry, RGB images were labeled in Ilastik software
to segment images into plant (purple) and background
(yellow) (c). The resulting images were analyzed by
the multi-view method to get FCC for each plot in
each image. The FCC values were fitted with a mixed
model (Eq. (1), but for CT instead of FCC) for design
factors. The residuals of the model are shown in (d) in
relation to the position of the plot relative to the
sowing row direction for SwiVar22.
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the sensor led to a decrease in the apparent temperature of the target and
vice versa. As internal processes of TIR cameras are proprietary infor-
mation of the manufacturers, the reasons for this are difficult to deter-
mine [20,63]. The thermal signal reacted within seconds after a change
of wind conditions (fan) or thermal radiation (heating lamp). In contrast
to thermal drift, temporal variation corresponds to actual changes in the
temperature of a given target that can be caused by wind, changing air
temperature, VPD, solar illumination, changing water status of the plant
and the plants physiological response to such changes (e.g., [3,4,15,21,
27]). The impact of temporal variation was reduced in this study by
flying in weather conditions that were rather stable throughout single
flights (Fig. S6 and S7) [20]. Nevertheless, also in stable conditions, LST
changes, but these changes are comparably slow and if measurements are
taken within a short interval, e.g., within 30 min, the temporal variation
in LST is relatively low [27]. A typical flight time in this study was 7–9
min, a 3 flight campaign lasted about 25 min, and therefore a large
proportion of temporal trends can be assumed to be thermal drift, and
temporal variation contributed relatively little to total variance of CT
estimates.
4.2. Spatial correction of CT

Thermal imaging was proposed to estimate spatial field heterogeneity
caused, for example, by variability of soils, soil water content, or soil-
borne pathogens, and to improve the interpretability of other pheno-
typic measurements (e.g., [2,6,12]). In contrast to hand-held infrared
thermometers, many experimental plots and larger areas can be
measured simultaneously and repeatedly in a short period with airborne
thermography. Handheld infrared thermometers are also prone to ther-
mal drift, but with just one measurement taken at a time, the temporal
and spatial trends are challenging to separate from each other in a sta-
tistical analysis [6]. Revisiting the same spot multiple times in a short
interval (e.g. 30 min) improves the estimation of the real relative tem-
perature of the spot and thus of spatial trends, since the temporal vari-
ation of the CT can be assumed to be relatively small and temporal trends
are mainly thermal drift [27]. When working with uncorrected images in
orthomosaic approaches, each plot is measured multiple times. The
temporal and spatial effects are reduced by leveling them out in ortho-
mosaic blending. Perich et al. [15] accounted for the remaining temporal
and spatial variance together in a mixed model, and they stated that it
remains challenging to unravel the two. Multi-view offers an opportunity
to alleviate this limitation as measurements are analyzed individually
[29], but as shown in this study, a spatial trend estimate based on a single
flight showed little reliability (Fig. S28 - Fig. S31). As claimed by Wang
et al. [27], increasing the number of observations per plot led to a more
consistent estimation of the spatial trends (Fig. 7a–d). To further improve
the estimation of spatial trends, it is proposed to conduct at least two
flights over the field with different flight paths, orthogonal to each other.
This reduces the probability of artifacts due to the repeated occurrence of
similar temporal patterns when following the same flight plan.

In 2022, the spatial trend bθrðpÞcðpÞ was more pronounced than in 2021.
Thus, the variance of the spatial trend was greater in 2022 than in 2021
(Fig. 7e), indicating a stronger expression of the spatial trend. 2021 was a
wet year and a sufficient water supply can be assumed throughout the
growing season. Spatial trends were therefore relatively weak. Such weak
trends aremore difficult to reproduce, as little differences in the estimation
lead to different trends. In such homogeneous conditions, the multi-view
approach might fail to detect the weak spatial trends reliably. At the
same time, the correct estimation of weaker trends is also less important
because their impact on final results becomes negligible. 2022was hot and
dry, and spatial trends in water status were observed in the field. A more
pronounced spatial trend can be estimated more easily and reliably.

However, simultaneous accounting for temporal and spatial trends
was shown to lead to highly consistent CT estimates even when based
only on a single flight [29].
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4.3. CT variance reduction by temporal and spatial trends

After the temporal and spatial correction, the experimental effects
remained, i.e., the effects of genotypes and treatments, as well as the
effects of viewing geometry.

The added variance of these effects was much smaller than the initial
variance of the temperature estimates, with the exception of SwiVar22,
which showed a strong treatment effect (Fig. 4a). Agricultural research is
usually interested in the effects of genotypes and treatments. This shows
the importance of reducing the effects of unwanted sources of variance.
Only through the appropriate consideration of large confounding in-
fluences, more subtle effects actually under observation within an
experimental setup can truthfully be estimated [11].

4.4. Correlation of CT with in-field reference measurements of phenotypic
traits

In accordance with the literature [3,4], yield and CT were negatively
correlated in conditions without water limitation. This was only the case
in 2021 as 2022 was a hot and dry season. The correlations were stronger
and more significant in EuVar21 compared to SwiVar21. While the effect
of fertilizer application in SwiVar21 was rather small, it appeared to be
the main driver of the correlation between corrected CT and yield. In the
EuVar trial, a relatively diverse set of European genotypes was tested,
while in SwiVar, varieties of the Swiss variety list and candidates for
registration in the variety list were tested. It can be assumed that the
phenotypic variability between the varieties was greater in EuVar than in
SwiVar. With more pronounced differences between estimates, stronger
correlations are more easily achieved.

There was a consistently negative correlation between CT and plant
height. This could in part be caused by effects related to canopy archi-
tecture, e.g. increased LAI and a stronger exposure to wind (e.g., [27]),
but also by genetic co-locations of quantitative trait loci for CT and plant
height (e.g., [3]). The correlations were more pronounced in SwiVar after
treatment deflation, indicating a masking effect of fertilizer treatment on
the genotypic correlation between CT and plant height.

Although just measured in 2022, the trends for FCC were similar to
those of plant height, with stronger correlations after treatment deflation.
The constant correlation between FCC and plant height also indicates
that they can be interlinked. Furthermore, with decreasing FCC, the ef-
fect of mixed pixels can be expected to increase, especially if the GSD is
larger than the size of the plant organs [64], shifting the CT estimate
toward the temperature of the soil background.

The flag leaf rolling is a protective mechanism of wheat to reduce
transpiration losses. It reduces the amount of incident radiation inter-
cepted by the plant and traps air within the leaf, reducing the VPD at the
border layer [8]. It was used as an indicator of the level of drought and
heat stress to which the wheat was exposed. Although CT differences
between groups of different flag leaf rolling ratings were significant for
some dates, these differences remained relatively small (< 0.40 K) after
treatment deflation. Differences before treatment deflation were large for
SwiVar on 2022-06-10 (Fig. 6b) and lower flag leaf rolling ratings were
associated with higher CT estimates, which is counter-intuitive. To un-
derstand this, the interaction between CT estimates, water use, and
above-ground biomass must be analyzed. In 2022, it was evident from
field observations that the above-ground biomass in the unfertilized part
of SwiVar was much lower than in the fertilized part. The lower biomass
was confirmed by reference measurements, as FCC but also multispectral
indices that approximated above-ground biomass and LAI were lower in
the unfertilized part (Fig. S24). At the same time, flag leaves expressed
stronger rolling in the fertilized part compared to the unfertilized part
(Fig. S35), indicating the plants experienced a stronger water deficit in
the fertilized part [8]. The lower biomass presumably led to a lower total
transpiration in the unfertilized part and saved soil water, which in turn
allowed plants to maintain unrolled leaves longer into the season
compared to the fertilized part, where available water was exhausted
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earlier. This illustrates well the complex interactions between pheno-
types, water status, transpiration, and CT. At the same time, this high-
lights the importance of environments for the contextualization of the
expression of CT as a trait. In 2021 almost the same set of genotypes was
sown as in 2022 and the treatments were identical, but led to a much
more pronounced treatment effect in 2022 with lower FCC,
above-ground biomass and LAI.

The correlation between CT estimates and reference measurements
was strongest between CT and multispectral vegetation indices (Fig. 5).
This correlation was strongest in EuVar21, when the correlations be-
tween CT and yield were also strongest. CT was often negatively corre-
lated with yield and plant height, but yield and plant height were not
correlated except for a weak correlation in SwiVar22. The impact of the
treatments on correlations was small for EuVar21, EuVar22 and
SwiVar21. These results support the findings of Pask et al. [8], Rebetzke
et al. [3] and Roche et al. [9], that CT and yield are especially correlated
when conditions are not water limited.

Multiple sources of phenotypic variability, genetic or related to
treatment, are associated with CT, and this must be taken into account in
the analysis [3,18]. It was demonstrated how correlations can be driven
or masked by the treatment effect. For example, yield was only correlated
with CT before treatment deflation in SwiVar22 but the genotypic cor-
relation between plant height and CT only became evident after treat-
ment deflation. The correlation of CT with plant height and FCC was
consistently stronger than the correlation with yield, except for EuVar21.
This might indicate that a plant height effect was masking the yield effect
on CT in many cases. It remains unclear why plant height and CT showed
a weaker correlation in EuVar21 but the FCC measurement of 2022 were
consistently correlated with plant height. FCC was not estimated in 2021
but canopies were observed to be very dense in this season. This might
have led to saturated FCC with values near 1 (i.e. 100 % canopy cover),
which might have reduced the effect of plant height on CT, unmasking
the correlation between CT and yield.

Although FCC and CT were correlated, the treatment effect of FCC in
SwiVar22 was not as evident as for CT (cf. Fig. S24g and Fig. S15). This
was possibly caused by saturation of the FCC where the canopy appears
largely closed even on the unfertilized part, with an FCC near 1, but is still
less dense than the canopy of the fertilized part. Through the less dense
canopy, the soil background could have a larger impact on CT [2,8,65],
making the nadir-oriented measurements appear hotter compared to the
more oblique measurements [15]. The interactions of CT and
soil-background can change with increasing temperatures throughout
the day. The soil may be cooler than the plant in the morning and warmer
later in the day [6].

For the second EuVar21 flight date on 2021-07-01, senescence had
progressed for some genotypes while it was still in early stages for other
genotypes (Fig. 6e). The strong correlation between senescence ratings
and CT underlines the importance of considering phenology in the timing
of CT estimates [3,38,66]. However, the 2021 season was characterized
by frequent precipitation, and days with optimal conditions for CT esti-
mates (no clouds, little wind) were rare. For logistical reasons, it was
therefore not possible to conduct the second measurement day earlier
and with a less pronounced senescence. Such meteorological and logis-
tical constraints avoiding optimal measurement timing are a common
problem in agricultural research, breeding, and variety testing. However,
CT measurements during intermediate leaf senescence stages also
showed similar correlation patterns, notably with yield, and with mea-
surements taken earlier in the season [29]. Although measurements
taken at the same phenological stage are optimal, this is indicating that
conclusions drawn from CT show a certain robustness, even when the
sample population shows some phenological heterogeneity, e.g. in cases
where measurement before onset of senescence is not possible.

The correlation with yield was always stronger for CT than for the
multispectral indices (DVI, EVI, SAVI). Now, the indices were chosen as
approximate measurements of above-ground biomass and LAI and not
yield. In addition, correlation with NDVI was not shown, yet NDVI was
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closely associated with the indices used (Figs. S21–S24). Nevertheless,
this underscores the potential of airborne CT for yield prediction in
remote sensing, also for temperate climates.

4.5. Estimating geometric effects by PLSR modeling

Geometric effects on CT within one image were cited to be as high as
3.5 �C [15] and the range of residual values with geometric patterns were
larger than 4 �C in this study (Fig. 8). The geometric patterns of the re-
siduals were in some cases point-symmetric (e.g. Fig. 8d–f) and some-
times looked similar to those of vignetting (Fig. S3) and path-length
dependent atmospheric effects (Fig. 8h) or FCC (Fig. 10d). These three
effects were very similar in shape and they are all possible causes for
these patterns, however, they cannot be disentangled further with this
method. The causes and effects of vignetting are well presented in
literature (e.g., [20,24,30]). Atmospheric effects might be negligible
when flown at low altitudes [12,67], however, at higher altitudes they
might become important [26], as shown in Fig. 8g & h. This study
assumed an oversimplified length-dependent model. For higher altitudes,
the attenuation could be estimated based on MODTRAN radiative
transfer models [26,68–70]. In addition to flight height, the strength of
the atmospheric effect on the measured temperature depends primarily
on atmospheric pressure, air temperature, and humidity [61,71]. FCC
residuals showed a similar spatial pattern as CT residuals after processing
with a mixed model (Eq. (1)) and it is likely that FCC also contributed to
CT variance, where CT associated with a lower FCC appeared higher. FCC
therefore affected the genotypic variability of CT as was shown with
correlation between CT and FCC, but also the residual FCC pattern.
Geometric effects on CT can be expected to be more pronounced for
canopies with lower FCC, as their apparent FCC changes from low to
almost closed canopy for oblique viewing geometries. In contrast, for
almost closed canopies with an almost saturated FCC towards 1, this
change is very limited (Fig. 10c). Like plant height, FCC is a structural
trait of the wheat canopy, and structural traits interact with CT. Other
structural traits not considered in this study but with a potential impact
on CT include LAI or leaf angle [2,6,13,18].

Often, the residuals also contained more axisymmetric and contin-
uous trends. Such trends could be caused by BRDF or unilaterally
warmed spikes. However, such trends usually feature a gradient parallel
to the principal plane of the sun [15,72]. This was not always the case
(see, e.g., Fig. 8a–c). This could possibly be caused by an interaction of
sowing row direction and incident sunlight, where the spacing between
the sowing rows allows light to penetrate the canopy and warm the plant
from one side, but not from the other (e.g., [73]). Another possible
explanation is the camera orientation not being perfectly nadir. With a
slightly tilted camera, some geometric effects would still be concentric
with the image center (e.g. vignetting), while other effects like FCCwould
not align with the center of the image anymore. The concentric and
eccentric patterns would then combine into a less point-symmetric
pattern with a more continuous appearance.

In PLSR modeling, covariates without absolute value transformation
are better suited to describe continuous effects, while covariates after
absolute value transformation rather correspond to point-symmetric ef-
fects. Based on PLSR coefficient magnitudes, continuous effects (initial
covariates without absolute value transformation) were generally more
important in explaining residual variance than point-symmetric effects
(absolute covariate values) and PLSR coefficient magnitudes for point-
symmetric effects were close to zero for most cases (Fig. 8i).

PLSR modeling allowed the explanation of a significant proportion of
residual variance (Table 4) as geometric effects. It should be noted that
the proportion of variance that can be explained by PLSR also depends on
the magnitude of the initial variance. However, in this study no clear
correlation between initial variance and variance explained by PLSR
could be shown. Yet, it is hypothesized that the relatively large propor-
tion of residual variance explained by PLSR in SwiVar2021 was due to
the relatively low overall variance in this trial, which increased the
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proportion of residual variance in overall variance. The proportion of
explained variance was consistently greater on data without vignetting
correction, indicating that vignetting correction and PLSR were reducing
initial variance of the same geometric dimensions, i.e. PLSR was also
modeling vignetting. The proportion of variance that was accounted for
by vignetting correction could therefore not be explained by PLSR, which
was decreasing the proportion of residual variance explainable by PLSR.

However, the contribution of residual variance to total variance was
relatively small (Fig. 8j). Especially point-symmetric effects such as
vignetting and FCC seemed to have little impact on total variance, as
demonstrated by the low importance of absolute coefficient values in
PLSR modeling. The relatively small impact of vignetting correction was
also supported by the low difference of the proportion of residual vari-
ance explained by PLSR between the data with and without vignetting
correction. This difference in explainable residual variance was only
10.9 % and it is hypothesized that this percentage is also an approxi-
mation of the total importance of vignetting correction. Furthermore,
vignetting correction had little impact on total variance (Fig. 4a) but also
on the correlation of CT with other phenotypic traits (Fig. 4b–d). The
contribution of residual variance to total variance might vary depending
on the cropping system under observation. A row crop with a larger inter-
row spacing or a poor plant development associated with a lower FCC
might feature more pronounced FCC patterns and therefore stronger
geometric trends of CT. Kelly et al. [20] and Perich et al. [15] report that
such geometric effects are more important when analyzing CT based on
single images. When CT analysis uses multi-view or orthomosaics, plot
estimates are based on multiple images or selected for most
nadir-oriented views, both reducing the geometric impact on plot-wise
estimates.

4.6. Unexplained residual variance of CT

The sequential application of mixed models and PLSR models could
explain a large proportion of variance. But there will always remain
unexplained residual variance and though the contribution of residual
variance to total variance might be negligible, some possible causes of
residual variance are mentioned in the following. Residual variance
could be caused by non-geometric non-uniformity effects that neither the
vignetting correction nor the PLSR could account for. Also, non-
continuous effects impacting CT, like temporal CT inconsistencies due
to gusts, might not be accounted for as well as the sensor noise beyond
thermal drift, i.e., dark signal noise Aasen et al. [24]. The canopy may
also feature holes, caused, for example, by heterogeneous emergence,
damage from rodents, or previous sampling events, which could have
different impacts on CT estimates depending on viewing geometry [6].

4.7. Emissivity and CT variance

An important determinant of CT variance that is often ignored in
airborne thermography of crops is emissivity. Emissivity compares the
TIR radiation emitted by a surface with the TIR radiation emitted by a
black body at the same temperature [12,74,75]. Two objects of different
materials can have the same temperature, but if they have different
emissivities, they appear to have different temperatures in thermal im-
ages. Messina et al. [12] summarizes multiple factors that influence
emissivity: color, chemical composition, surface roughness, moisture
content, field of view, viewing angle, spectral wavelength, etc. [75–77].
The emissivities cited in the literature vary, but in general, for healthy
leafy vegetation, an emissivity of 0.99 can be assumed [52], where for
dry vegetation, emissivity from 0.88 to 0.94 were reported. Water has an
emissivity of 0.99 and dry soil an emissivity of around 0.92 [61,75,78].
Stressed vegetation generally has a lower emissivity than healthy vege-
tation, and plant emissivity is highly sensitive to water content [17]. Diaz
et al. [52] assumed an emissivity of 0.99 when the NDVI of the respective
pixel was above 0.5. NDVI was below 0.5 for some measurements at the
last measurement date of EuVar21 (Fig. S21c) and SwiVar21 (Fig. S23c).
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Therefore, different emissivities would have to be assumed for different
plots of the same measurement flight. This would come with the neces-
sity of estimating the correct emissivity for the specific plot, which can
lead to large differences in CT estimates. For example, when an object has
a temperature of 20 �C, under the assumption of an emissivity of 0.99, it
would appear to be 293.15 K*0.99 ¼ 290.22 K or 17.07 �C. Assuming an
emissivity of 0.98, the apparent temperature would be 293.15 K*0.98 ¼
287.29 K or 14.14 �C. The difference between the two emissivity as-
sumptions of only 0.01 corresponds to 2.93 �C, which is about the range
of genotype-specific differences in the experiments of this study and is
therefore far too large to study genotype-specific differences of CT.

To avoid the introduction of errors by estimating erroneous emissivity
values for individual plots, it might thus be more appropriate to assume a
constant emissivity for all measurements, when no absolute CT values are
needed. The absolute value of CT is particularly important for physio-
logical investigations, where absolute values are needed to approximate
physiological quantities such as transpiration rate or gas exchange. If, on
the other hand, relative CT is compared, the absolute value plays a lesser
role. For this study, for example, an emissivity of 1 was assumed. A
stressed vegetation, in most situations, would have a higher CT and at the
same time a lower emissivity. The effect of assuming a too high emissivity
would thus lead to a too low estimate of temperature on the thermal
image, and the question remains whether differences of apparent CT on
thermal images arise from differences in CT or from a varying emissivity.

In addition, emissivity might also be affected by FCC and LAI. The
emissivity of soil can be significantly lower than the emissivity of healthy
vegetation, and low FCC, or low LAI, even at a relatively high FCC, might
impact the emissivity of a plot, biasing the CT estimates. Cheng et al. [79]
demonstrated for satellite data that the error of emissivity estimates is
lower when the emissivity of the soil background is closer to the emis-
sivity of the vegetation, and when the LAI of the vegetation is higher.
Sorbino et al. [80] explored the dependence between emissivity and
viewing angle and described that the level of the angular dependency is
related to LAI.

However, measuring emissivity in the field is a very tedious task that
cannot be easily implemented [81]. It must be measured at night [82], or
by shielding the vegetation with boxes to exclude environmental radia-
tion from the surroundings [83]. Thus, in many field studies, the emis-
sivity is ignored [1,2,6,15] while other assume a fixed emissivity (often
1), as in this study [81,84,85].

For satellite-based estimates of LST, model-based approaches to
determine emissivity were proposed [79,80,86], e.g. based on NDVI es-
timates. To the best of the authors knowledge, there are no similar studies
for drone-based CT estimates. Yet, the study of Treier et al. [29] provides
the tool to estimate CT in dependence of viewing geometry. In addition,
Roth et al. [35] used the multi-view approach to determine the LAI of
soybean. These two approaches could be combined with emissivity es-
timates to promote a more robust understanding of the interaction of CT,
emissivity, viewing geometry, and LAI.

5. Conclusions

Canopy temperature is affected by manifold sources of variance which
interact with each other. Multiple sources of variances were reviewed
based on extensive field data and by using the previously suggested multi-
view approach in this study. Experimental sources of variance (genotypes
and treatments) were impacted by meteorological conditions in the
growing season. To reveal the relation between CT and other traits, cor-
rections for confounding sources of variance (e.g. thermal drift, spatial
trends, geometric effects) were applied. Temporal trends were consistently
the most important confounding source of variance, followed by spatial
trends. Estimation of spatial trends and their disentanglement from tem-
poral trends remain a challenge, but a path to an improved estimation of
the spatial trends by flying multiple times with different flight paths was
proposed. Phenotypic relationships can be masked or result from artifacts
of random but concurrent instantaneous trends. After correction for
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disturbing trends, the correlation between phenotypic traits was accentu-
ated. Not applying such corrections might thus entail misleading conclu-
sions on phenotypic relationships with CT. Plant height and FCC were
shown to be important phenotypic drivers of CT in many situations and
were more correlated with CT than yield, except for well-watered condi-
tions and a diverse set of genotypes. However, CT was constantly more
correlated with yield than multispectral proxy measurements of above-
ground biomass and LAI. Although other CIs may be better suited to esti-
mate yield, this highlights the potential of CT to enhance in-season yield
estimates in temperate climates, for example, to avoid losing all the in-
formation of an experiment due to a hail storm close to harvest. Flag leaf
rolling had a relatively small but significant impact on CT. Complex in-
teractions of above-ground biomass, flag leaf rolling as drought symptom,
water use by the canopy, and CTwere demonstrated. Treatment effects can
be considerable and modify other phenotypic traits and their interaction
with CT. Geometric trends were shown to have distinct patterns for flights
and campaigns, but they explained a relatively low proportion of total
variance. Temporal, spatial, genotypic, treatment related and geometric
effects together explained the largest part of the initial variance, leaving
just a small proportion unexplained. It is hypothesized that many insights
on the sources of variance of uncalibrated airborne thermography that
were gained in this study are transferable to other crops and other climatic
conditions (especially hotter). In cooler conditions, the correlation be-
tween CT and yield might be limited due to lower transpirational demands
of the plants, leading to lower genotype specific differences of CT. As the
studywas conductedwithwheat, a row cropwith relatively large inter-row
spaces, following the rationales outlined in this study should also lead to
meaningful results in the analysis of other crops with low FCC. At the same
time the rather ephemeral character of CT and its strong interaction with
the environment should always be kept in mind, as they entail a limited
transferability of CT information between different environments. Never-
theless, within the different environments in this study, multi-view ther-
mography served as a means to foster a comprehensive and empirically
backed understanding of variance components in drone-based CT esti-
mates. This facilitates the planning, conduct, and interpretation of drone-
based CT screenings in variety testing and breeding.
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