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a b s t r a c t

The ability of portable Near Infrared Spectroscopy to determine apricot fruit quality has been studied.
Calibration models allowing the determination of soluble solids content (SSC), total acidity (TA) and
firmness (Fi) of apricots were carried out with variable precisions. Models were built for each variety and
global models combining different varieties were attempted. SSC was determined with a root mean
square error of cross-validation (RMSECV) comprised between 0.67 and 1.1 �Brix and R-values between
0.88 and 0.96. Concerning Fi, the accuracy of the prediction was variety dependant. These predictions
were correct for the varieties Kioto and Harostar with RMSECV-values between 6.2% and 13% (R-values
between 0.85 and 0.92) and unsatisfactory for Bergarouge (RMSECV¼ 24%). TA was predicted with
RMSECV-values between 0.79 and 2.61 g 100 ml�1 and R-values between 0.73 and 0.97. In a second
application, near infrared spectra were used to classify apricot fruits according to their variety and colour
intensity with correct efficiency. The results obtained in the present study showed that NIRS technology
could be applicable to apricot quality and that such portable devices could help to obtain a complete
follow-up of the fruits in orchards and during post-harvest.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades, the development of rapid and non-
destructive methods allowing the measurement of food quality has
increased (Chen & Sun, 1991). Concerning fresh apricot production,
the determination of fruit quality overcomes an important problem
of sampling. Apricot quality is particularly variable depending on
the variety, geographical origin, environmental factors and fruit
location on the tree. The influence of these numerous acting factors
in the orchard consequently creates significant variability at harvest
time, making the organization of fruits in homogeneous batches
difficult (Grotte, Gouble, Reling, Bogé, & Audergon, 2006). The
development of a non-destructive method could allow the analysis
of a larger number of fruit and so reduce the problems of sampling.
Also, to be efficient, such measurement must be rapid due to the
large number of fruits to be analyzed by the growers and industry.

The official standard of apricot quality only relies on the fruit
calibre. However, physico-chemical requirements are regularly
established for every new variety (Lurol, Hilaire, Lichou, & Jay,
2007). The two most important features measured on apricot are
the soluble solids content (SSC) expressed in �Brix and the firmness,
mps).

All rights reserved.
measured with a durofel device fitted with a 0.1 cm2 diameter
probe, expressed in DI10 (Durofel Indice). Such methods are
expensive, time consuming and require the analysis of a subset of
fruits that must be representative of a large batch.

Among the non-destructive methods applied to agriculture,
Near Infrared Spectroscopy (NIR) is probably the most studied
and accomplished one. Most studies focused on apple, mango and
kiwi fruit. On apple fruit, absorbance in the NIR range has been
correlated to consumer preferences or sensory panels to deter-
mine the organoleptic properties (Mehinagic et al., 2003) and the
physico-chemical features such as SSC, acidity and firmness
(Camps, Guillermin, Mauget, & Bertrand, 2007b; McGlone, Robert,
Martinsen, & Martinsen, 2002; Moons & Sinnaeve, 2000; Ventura,
De Jager, De Putter, & Roelofs, 1998; Zude, Herold, Roger, Bellon-
Maurel, & Landahl, 2006). Also, NIR has been used to determine
the optimal picking date of apple (Peirs, Lammertyn, Ooms, &
Nicolaı̈, 2000), to detect some internal fruit disorders (Clark,
McGlone, & Jordan, 2003) and to classify the apple fruit during
storage and a shelf-life period (Camps, Guillermin, Mauget, &
Bertrand, 2007a). Schmilovitch, Mizrach, Hoffman, Egozi, and
Fuchs (2000) established several correlations between NIR data
and various physiological parameters of mango fruit. Other
studies allowed to determine the internal quality of kiwi fruit
(McGlone, Jordan, Seelye, & Martinsen, 2002; McGlone & Kawano,
1998; Schaare & Fraser, 2000).

mailto:cedric.camps@acw.admin.ch
www.sciencedirect.com/science/journal/00236438
http://www.elsevier.com/locate/lwt


C. Camps, D. Christen / LWT - Food Science and Technology 42 (2009) 1125–11311126
Until now, few studies about the NIR application to apricot fruit
quality have been performed. In order to have a better follow-up of
fruit quality and maturity in pre-harvest and during storage,
a portable technology would be suitable. Only a few studies have
been carried out with such technology on apricot or on others
fruits. Carlini, Massantini, and Mencarelli (2000) who worked with
a laboratory NIR spectrometer reported correct levels of correla-
tions between SSC and NIR absorbance of apricot. Such results
show the potential for developing an NIR technology as a non-
destructive tool for measuring apricot quality.

Thus, the aim of the present study was to determine the quality
of three apricot varieties by non-destructive NIR spectroscopy,
using a portable device. Two approaches were tested:

� First, in order to determine the SSC, TA and Firmness values of
apricot, spectra and data obtained from destructive tests were
subjected to PLS regressions (Partial Least Square Regression).
� In a second approach, the NIR data as classification tool were

analyzed. Spectra were subjected to a FDA (factorial discrimi-
nant analysis) to classify the fruit according to the variety and
according to the coloured or non-coloured side.
2. Materials and methods

2.1. Apricot fruit

Three apricot varieties were analyzed in our study, Bergarouge,
Harostar and Kioto. Fruits were harvested in the experimental
orchards of the AGROSCOPE Changins-Wädenswil ACW Research
Station (Switzerland) in 2007. Fruits were packed in cartons directly
after harvest and brought to the laboratory and analyzed the same
day. Bergarouge (n¼ 66) and Harostar (n¼ 66) were picked on
a single day while two dates of harvest were necessary for the
picking of Kioto. The two dates defined two levels of fruit maturity
at the harvest moment. Therefore, Kioto fruits were separated into
two batches, Kioto (1) (n¼ 66) and Kioto (2) (n¼ 66), Kioto (2)
being harvested one week after Kioto (1). A total of 264 apricot
fruits were used for the experiment.
2.2. NIR spectroscopy

Spectra were directly acquired, in reflectance mode, on the
whole fruit using a Visible-NIR spectrometer (Costa, Fiori, &
Noferini, 2006). The portable NIR device consisted of a commercial
single-beam spectrometer (Ocean optics S-2000, USA) with
a standard diffraction grating (650–1200 nm, near infrared). A 10-
watt tungsten halogen lamp generated the light. The reflected light
was directed to the spectrometer via a bundle of 7200-mm optical
fibre linked to the probe end (Costa, Noferini, Fiori, Miserocchi, &
Bregoli, 2001).

Fruits were equilibrated at room temperature approximately
half a day before spectral acquisitions. A blank scan was carried out
before each set of analyzed sample. For each fruit, visible-NIR
measurements were carried out on opposite sides (coloured and
reverse (non-coloured) side) along the equator of the fruit. Two
spectral measurements per fruit were done, resulting in a total of
528 spectra.
2.3. Pre-treatment of spectral data

Two pre-treatments were applied to the spectra to cope with
the effects of uncontrolled baseline and intensity variations. These
pre-treatments were the following:
(1) The standard normal variate correction (SNV) method (Barnes,
Dhanoa, & Lister, 1989).

(2) A second derivative applied on spectra after SNV in order to
minimise the overlapping effect of absorption bands and vari-
ations due to radiation scattering (Moons & Sinnaeve, 2000).

2.4. Destructive analyses

Firmness (Fi) of apricots was measured using a durofel device
fitted with a 0.10 cm2 probe (Durofel, COPA-Technologie S.A./CTIFL).
Two measurements were performed per fruit, first on the coloured
side and then on the reverse side. The results were expressed in
DI10 (Durofel Indice, where the durofel device was fitted with
a 0.10 cm2 probe).

Immediately after Fi measurements, each fruit was mixed using
a juice centrifuge and the obtained juice was filtered using a filter
paper (S & S faltenfilter, LS 14.5, Schleicher & Schüll AG, CH-8714
Feldbach). The filtered juice was used to measure the soluble solids
content and total acidity. One measure of soluble solids content and
total acidity was performed per fruit.

Soluble Solids Content (SSC) of filtered juice was determined
using a refractometer (ATAGO, C.O., LTD, Model PR-1) and
expressed in �Brix.

Total Acidity (TA) has been measured by using a titrimeter
(Metrohm, 719S, Titrino). 5 ml of filtered juice was titrated with
NaOH (0.1 mol/L) and the results were expressed in meq 100 ml�1.

2.5. Factorial discriminant analysis (FDA)

FDA was carried out on the spectral data. A given spectrum
curve forms a vector xi of p wavelengths. The n spectra were
gathered into a matrix X dimensioned n� p. In FDA, the qualitative
groups to be discriminated were the varieties (Bergarouge, Har-
ostar, Kioto (1) and Kioto (2)) and the fruit side (coloured side: C
and uncoloured side: N).

A criterion of the FDA efficiency is the proportion of correctly
classified observations in validation sets. These validation tests
were carried out by dividing the data matrix, X, into a training
and a validation set. The FDA model was computed on the cali-
bration set. The observations of the validation set were then
classified using the established model. The correctly classified
observations were then counted and expressed in percentages.
Such validation tests were independently carried out ten times,
placing two thirds (2n/3) of the observations in the calibration set
and the remaining ones (n/3) in the validation set. FDA computes
a set of discriminant scores, which are linear combinations of the
original variables.

The discriminant scores are new ‘‘synthetic variables’’ calculated
so they can discriminate the observations. It is interesting to
examine the correlation between the discriminant scores and the
predictive variables. For this purpose, the correlation coefficients
between the discriminant scores and the original variables (600
steps of wavelength absorbencies) were computed. As it is impos-
sible to show 600 values of correlation coefficients, the correlation
values were graphically represented as curves giving the correla-
tion coefficient of the absorbance at each wavelength with a given
discriminant score. All the statistical procedures were carried out
using the Matlab 6.0 environment (The MathWorks, Inc., Natick,
MA USA).

2.6. PLS regression

Partial least square regressions (PLS) were carried out to
perform linear models of prediction between spectral data and the
values obtained from the destructive tests. In order to get efficient
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and reliable models, a minimum number of latent variables were
used in the models (Peirs, Scheerlinck, & Nicolaı̈, 2003). Cross-
validation procedures were used by placing [2/3] of spectra as the
calibration set and the remaining [1/3] as the validation set. The
accuracy of the predictions was discussed according to the corre-
lation coefficient value (R, Eq. (1)), the root mean square error of
calibration (RMSEC, Eq. (2)) and the root mean square error of
cross-validation (RMSECV, Eq. (3)).

R ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðycal � yactÞ2P
ðycal � ymeanÞ2

vuut [1]

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðycal � yactÞ2

n

s
[2]

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�
ypred � yact

�2

n

vuut
[3]

n is the number of spectra, yact the actual value, ymean the mean
value, ycal the calculated value and ypred the predicted value of the
physical parameter.

The interpretation of predictive models is known to be difficult
in terms of wavelengths importance. Because of the co-linearity of
the wavelengths, it is impossible to isolate a single one but the
interpretation of absorption bands remains possible (McGlone &
Kawano, 1998). Different interpretations of PLS models exist, either
according to the PLS factors or regression beta-coefficients. In our
study, the interpretation of the beta-coefficients is used to deter-
mine the relevant wavelengths regions of the models. An important
value of the beta-coefficient is interpreted as a relevant absorption
region for the considered predictive model. All PLS modes were
carried out using the Matlab 6.0 environment (The MathWorks,
Inc., Natick, MA USA)

3. Results and discussion

3.1. Apricot quality

Table 1 shows the values of quality features measured on each
apricot variety. SSC and Fi were significantly different for the three
varieties. No difference was measured between the fruits of the two
harvest dates for Kioto. Harostar presented the highest SSC and Fi
values and Bergarouge the lowest. Concerning TA, significant
differences were measured among all varieties but also between
Table 1
Values of firmness (Fi), soluble solids content (SSC) and total acidity (TA) measured
on apricot fruit. N: non-coloured fruit side, C: coloured fruit side and n: the number
of fruits.

Variety Analyzed fruit side Parameters of quality

Firmness Firmness SSC TA

Bergarouge (n¼ 60) N (n¼ 30) 48.43a 51.16a 11.52a 14.52a

C (n¼ 30) 53.88a

Harostar (n¼ 60) N (n¼ 30) 76.42c 77.11c 13.32c 25.47b

C (n¼ 30) 77.78c

Kioto (1) (n¼ 60) N (n¼ 30) 65.74b 67.73b 11.86b 29.46d

C (n¼ 30) 69.78b

Kioto (2) (n¼ 60) N (n¼ 30) 66.63b 66.89b 11.93b 27.59c

C (n¼ 30) 67.15b

Degree of freedom 7 3 3 3
F-value 70.23 154.18 79.88 1084.12
p-value <0.05 <0.05 <0.05 <0.05

Numbers with different superscript letters within columns by variety or fruit side
differ significantly (p< 0.05) by analysis of variance and Tukey test.
Kioto (1) and Kioto (2), Kioto presenting the highest TA-value and
Bergarouge the lowest.

Fi of coloured and uncoloured sides was also compared. No
significant difference was measured but it was noted that coloured
sides were slightly firmer than non-coloured ones for all varieties.
Significant differences measured among the three apricot varieties
allowed a large range of quality values to be determined. This large
range of values will be used in the following part of the study that
aims at building predictive models of apricot quality.

3.2. PLS prediction of SSC, TA and firmness

In order to determine the quality features of the three apricot
varieties (Bergarouge, Harostar and Kioto), PLS regression models
were built using a collection of 528 spectra. For the development of
predictive models, Kioto (1) and Kioto (2) were pooled in a single
batch (Kioto). First, calibrations were attempted paying particular
attention to choosing a relative small number of latent variables
(LV) to be introduced to the models. Limiting this number is
necessary in order to perform a reliable model. This choice was
carried out by performing artificial models in which a large number
of LV has been introduced. The optimal number of LV corresponds
to a compromise allowing a model presenting both the relative
lowest RMSECV-value and highest R-value. Fig. 1 shows an example
of an artificial model aiming at predicting SSC-values for Ber-
garouge. In this case, the optimal number of LV lies between 5 and
7, corresponding to the inflexion curves of both R- and RMSECV-
values as a function of LV number. In our study, the smallest
number of LV was always privileged, here corresponding to 5. A
similar procedure was performed to determine the number of LV of
all PLS models (Table 2).

SSC was reliably predicted regardless of the apricot variety. SSC
was particularly well predicted for Kioto with a coefficient corre-
lation value of 0.90 and an RMSECV-value of 0.67 �Brix, which
represent a precision of 5.7% (Table 2). Predictions were similar for
Harostar and slightly less efficient for Bergarouge which rose to
1.0 �Brix (9.2%).

Prediction of Fi was attempted and succeeded for two varieties,
Harostar and Kioto. Harostar PLS-values were particularly reliable
with RMSEC and RMSECV-values of 3.4% (2.7 DI10) and 6.2% (4.87
Fig. 1. Number of latent variables. Determination of the optimal number of latent
variables for the prediction of soluble solids content of the variety Bergarouge. R-values
(square symbols) and RMSECV-values (circle symbols) as a function of the number of
latent variables (LV) introduced in the PLS model. R-values: correlation coefficient,
RMSECV: root mean squares error of cross-validation.



Table 2
PLS-values for soluble solids content (SSC), total acidity (TA) and firmness (Fi)
models, B: Bergarouge, H: Harostar and K: Kioto and for the global models (all
varieties gathered in a single data set): BþHþK. LVs: number of latent variables, R:
correlation coefficient, RMSEC: root mean square error of calibration (relative
RMSEC), RMSECV: root mean square error of cross-validation (relative RMSECV),
Min: minimal value, Max: maximal value and mean: mean value.

Parameters Variety LVs R RMSEC RMSECV Min Max Mean

SSC BþHþK 8 0.90 0.6 (4.7%) 1.1 (9.32%) 8.7 16.3 12.2
B 5 0.96 0.25 (2.2%) 1.0 (9.2%) 9.40 13.10 11.35
H 3 0.88 0.38 (2.9%) 0.97 (7.2%) 10.5 16.3 13.32
K 4 0.90 0.29 (2.4%) 0.67 (5.7%) 10.1 13.2 11.93

TA BþHþH 7 0.91 2.47 (9.6%) 4.39 (17.5%) 11.36 40.88 25.06
B 7 0.97 0.3 (2.0%) 1.8 (12.9%) 11.36 17.58 14.43
H 3 0.90 0.95 (3.8%) 0.79 (7.1%) 20.38 30.06 25.47
K 5 0.73 1.61 (5.9%) 2.61 (9.4%) 23.42 34.46 27.58

Fi BþHþK 7 0.88 5.4 (7.9%) 10.9 (15.0%) 24 88 68.49
B 4 0.90 5.3 (9.8%) 13.0 (24.1%) 24 73 54.07
H 3 0.85 2.7 (3.4%) 4.87 (6.2%) 66 88 77.79
K 4 0.92 3.9 (5.9%) 8.9 (13.3%) 35 81 66.29

Fig. 2. PLS prediction of soluble solids content and firmness. Plots present the actual
vs. predicted values of soluble solids content (A) and firmness (B) of global PLS models
(all apricots varieties were gathered in a same data set). Full circles: calibration, white
circles: cross-validation.
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DI10), respectively (Table 2). Firmness of Kioto prediction remained
reliable with a RMSEC-value lower than 6% and about 13% for the
RMSECV-value. Fi prediction of Bergarouge was not satisfactory
with RMSECV exceeding 24% meaning about 13 DI10.

Global models of SSC, TA and Fi were attempted. SSC (Fig. 2a)
prediction remained correct with RMSEC and RMSECV-values of 0.6
and 1.1 �Brix, respectively (Table 2). Nevertheless, as it has been
already demonstrated in previous studies, models of SSC prediction
were more accurate and reliable when a single variety is considered
than global model pooling several ones (Golic & Walsh, 2006; Peirs
et al., 2000). The most relevant wavelengths to predict the SSC were
located in the vicinity of 1040–1100 nm (Fig. 3a). In this region,
absorbance is mainly related to the 2nd overtone of NH and the
combination of the OH chemical bond. In practice, previous studies
showed that absorbance in the vicinity of 1000 nm was correlated
to SSC in apple (Kawano, 1994; Renfu & Peng, 2005; Walsh, Golic, &
Greensill, 2004).

In the present study, the possibility to efficiently predict SSC of
three apricot varieties using a single PLS model was shown. Global
models of Fi prediction remained correct but the unsatisfactory
results of Bergarouge limited the accuracy of the model. Fi was
predicted with a precision of 15% (Table 2; Fig. 2b). This prediction
partly relied on the absorbance in the visible range, i.e. 695 nm and
710 nm, meaning that skin colour changed with the decrease of Fi
(Fig. 3c). McGlone, Robert, et al. (2002) and Zude et al. (2006) have
already shown that a relationship existed between a decrease in
chlorophyll content and apple firmness during storage or a shelf-
life period. Zude et al. (2006) suggested that such relationship
could be due to parallel metabolic processes of chloroplast degra-
dation and pectin conversion occurring during the fruit maturation.
Also, wavelengths in the vicinity of 990, 1050 and 1240 nm were
relevant. TA prediction was less accurate with RMSEC and RMSECV-
values of 9.6% and 17.5%, respectively (Table 2). Such predictions
relied on absorbance at 695 nm and absorbance in the large spec-
tral region comprised between 940 nm and 1140 nm (Fig. 3b).

Few studies have reported the ability of a portable NIR tech-
nology to determine apricot quality. Carlini et al. (2000) reported
promising results showing accurate relationships between visible-
near infrared absorbance and SSC of apricot. They showed that SSC
could be predicted with a 0.75 �Brix precision, a result comparable
to our model for Kioto and better than our other models. However,
these results were obtained by collecting visible-near infrared
spectra by using a NIRSystems 6500 (Silver Spring, MD, USA)
spectrometer that is a laboratory device and not a portable one.
Furthermore, such a device measures the absorbance in a range
between 400 nm and 2500 nm, a range of wavelengths which is,
with difficulty, transferable to a portable device.

Costa, Noferini, and Fiori, (2004) performed a preliminary
analysis aiming at predicting the SSC and firmness of two apricot
varieties: Bergarouge� (Arvine) and Goldrich, by using a portable
NIR device. In this study, the PLS models were built with a 30
spectra collection per variety. The authors presented a correct level
of prediction of SSC with a standard error of prediction (SEP) value
of 1.5 �Brix for both varieties. Firmness predictions were less
accurate with SEP values between 0.34 and 0.58 kg cm�2 in range
values of 0.2–2.2 kg cm�2 and 0.1–3.8 kg cm�2 for Bergarouge and
Goldrich varieties, respectively. In the same way, Bureau, Reich,
Marfisi, Audergon, and Albagnac (2005) built accurate predictions
of SSC of 13 apricot varieties but they met difficulties in predicting
firmness values (R2-value¼ 0.48).

Firmness prediction was variety dependent and a global model
could be considered if a preliminary selection of the variety to be
introduced is made. In agreement with Costa et al. (2004), the
results allowed us to confirm that firmness prediction of Ber-
garouge variety is particularly difficult.



Fig. 3. Relevant wavelengths of PLS models. Beta-coefficient values of PLS prediction of
soluble solids content (A), total acidity (B) and firmness (C) of the global models (all
apricots varieties were gathered in a same data set).
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Models of TA prediction have been established for the straw-
berry (Shao & He, 2008), the tomato (Pedro & Ferreira, 2007), the
mandarin (Gomez, Yong, & Garcia Perreira, 2006) and the apple
(Lammertyn, Nicolai, Ooms, De Smedt, & De Baerdemaeker, 1998)
with correct precisions. Concerning tomato, SEP was about 9.6%
what corresponds to the range of RMSECV-values obtained in our
study. However, the results obtained on apricot must be carefully
considered. Indeed, contrary to the variability of SSC and Fi, the
values of TA did not allow covering a continued range. Conse-
quently, studies have to be performed to reach a reliable and
accurate prediction of TA.
3.3. Classification of fruit according to the variety and the
analyzed side

In the first part of the study, the ability of visible-near infrared
absorbance has been used as potential non-destructive measure-
ment of SSC, Fi and TA of apricot. However, spectral data can also be
used to classify the fruits according to a given variability (i.e. vari-
eties, storage conditions, geographic origin, etc.).

In this second part, the ability of the visible-near infrared
spectra to classify the apricot fruit according to their variety and to
discriminate the two sides of the fruit was tested. The two sides of
a given fruit corresponded to the coloured (C) and the non-coloured
(N) side. In a first analysis, the fruit were classified according to the
varieties, each variety counting 60 fruits (Bergarouge, Harostar,
Kioto (1) and Kioto (2)). In a second analysis, the same fruits were
classified according to fruit side of each variety. In this last analysis
eight groups were classified (4 varieties� 2 fruit sides), each group
counting 30 fruits (Table 3).

Table 3 shows the matrix of confusion of the FDA performed on
spectra. The four groups corresponding to the varieties were
correctly classified with more than 86% accuracy. Harostar and
Kioto (1) were particularly well discriminated with 97% and 96%,
respectively. Bergarouge and Kioto (2) were correctly classified
with 86% and 92%, respectively, but some confusion appeared
between this two last groups. 12% of Bergarouge fruits were
assimilated to Kioto (2) and inversely, 8% of Kioto (2) fruits were
classified as Bergarouge ones. However, the level of classification
remained good and the confusion quite low. FDA maps allowed
discriminating Kioto (1) and Harostar from Kioto (2) and Ber-
garouge according to the first factorial score (Fig. 4a). The second
factorial score allowed differentiating Kioto from the two other
varieties. The correlation between the factorial scores and the
absorbance spectra at each wavelength step allowed the relevant
wavelengths to be determined. Therefore, Kioto (1) and Kioto (2)
were clearly classified according to absorbance in the vicinity of
Table 3
Matrix of confusion: Classification of apricot varieties by FDA performed on Spectral
data. C: coloured side, N: non-coloured side, V: correct classification of varieties,
V� S: correct classification of varieties according to their side.

Classification

Group Bergarouge Harostar Kioto (1) Kioto (2) Correct classification

C N C N C N C N V� S V

Bergarouge C 58 – – – – – 8 – 88% 86%
N 5 51 – – – – 2 8 77%

Harostar C – – 62 4 – – – – 94% 97%
N – 1 18 44 – 1 2 67%

Kioto (1) C – – – 1 61 2 2 – 92% 96%
N – – – 2 5 59 – – 89%

Kioto (2) C 7 – – – – – 59 – 89% 92%
N – 4 – – – – 10 52 79%



Fig. 4. FDA maps and relevant wavelengths. Discrimination of varieties (A), discrimination of fruit side (B); the groups to be discriminated are represented by the ellipses of
confidences of the centroı̈ds (threshold p� 0.05). Correlation between the factorial scores of the FDA and the absorbance spectra at each wavelength: discrimination of varieties (C),
discrimination of fruit side (D). The black line: correlation of the first factorial score, the grey line: correlation of the second factorial score.
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580 nm, which could correspond to a difference in colouration of
fruit skin, Kioto (2) presenting a blusher skin colour than Kioto (1)
(Fig. 4c). The difference between Kioto and the two other varieties
relied on absorbance between 700 and 1050 nm. Such absorbance
could be due to chlorophyll content but also to water and
carbohydrate content that classically absorbs in the vicinity of
950–1000 nm. Such absorbencies correspond to the second over-
tone of O-H and N-H, third overtone of C-H and combination of O-H
chemical bonds (Zude et al., 2006).

The classification of fruits according to the fruit side was also
correct. Coloured sides were generally more easily classified than
non-coloured ones. Confusion appeared for a part of non-coloured
fruit sides that were classified as coloured ones, about 14% and 8%
to Harostar and Kioto (2), respectively. The second factorial score of
the FDA map allowed discriminating the coloured fruit sides from
non-coloured ones while the first factorial score classified the
varieties (Fig. 4b).

The second factorial score was clearly correlated to absorbance
between 1080 and 1200 nm that correspond to the combination of
the O-H chemical bond, the fundamental bands being located in the
mid-infrared range (between 3000 cm�1 and 1700 cm�1) (Fig. 4d).
Such information could be due to a difference in biochemical
properties of the two fruit sides, the coloured ones being firmer and
with higher SSC than non-coloured ones. To confirm such
hypothesis, further analyses have to be performed.

4. Conclusion

A portable and non-destructive technique using the NIR infrared
absorbance was evaluated to determine the quality of apricot fruit.

Correct predictions of SSC and Fi of apricot were reasonably
possible. Furthermore, promising levels of predictions for SSC were
obtained when several apricot varieties were pooled in a single batch.
However, such a model remains less robust and models based on
a single variety have to be recommended. Fi predictions were correct
but appeared unsuitable for the development of global models. TA
models need complementary studies to be considered as correct.

NIR signature has been used as a non-destructive tool able to
classify the fruits according to their variety and differences were
detected between the two sides of the fruits. In this way, such NIR
portable device seems to be an interesting way to a rapid classifi-
cation of fruits according to a given variability (i.e. genetic, maturity,
etc.). Such classification was better with using coloured side to
perform spectral measurement. Nevertheless, further studies
including external validations and analyses of a bigger number of
fruits and varieties have to be performed before this technique is
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sufficiently efficient and robust enough. Finally, because the quality
is partially conditioned by the events occurring during the
pre-harvest period, developing a portable and non-destructive
technology is an important step for current and future research in
agriculture. Thus, new calibrations performed in the orchard during
the fruit growing period are now necessary.
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Fruits, 61(2), 135–147.

Kawano, S. (1994). NIR of fruits. Non-destructive NIR quality evaluation of fruits and
vegetables in Japan. NIR News, 5(6), 10–12.

Lammertyn, J., Nicolai, B., Ooms, K., De Smedt, V., & De Baerdemaeker, J. (1998).
Non-destructive measurement of acidity, soluble solids, and firmness of jon-
agold apples using NIR-spectroscopy. Transaction of the ASAE, 41(4), 1086–1094.

Lurol, S., Hilaire, C., Lichou, J., & Jay, M. (2007). Pêche – Abricot: De la récolte au
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