FORUM 89 # RHÔNE-POULENC FILMS MALAGA 26-27-28 Avril 1989 CONTROL AND ANALYSES OF THE PRESERVATION OF PACKED FOODS # CONTROL AND ANALYSES OF THE # Preservation of packed foods Proceedings of a Seminar held at Malaga (Spain) from 26 to 28 April 1989 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopy, recording or otherwise, without the prior written permission of the Rhône-Poulenc Films Company. Publisher RHONE-POULENC FILMS 129, rue Servient 69003 LYON October 1989 RPF-Pub RC LYON 602 060 287 B - Printed in FRANCE # **HEADSPACE ANALYSIS OF PREPACKED FOODS:** a review of present techniques and development a new gas chromatograph with termal conductivity detector - INTRODUCTION - AN REVIEW OF THE AVAILABLE METHODS OF ANALYSIS AND ANALYSERS - DEVELOPMENT OF A NEW ANALYSER - . Operating principle - . Instrumentation - . Operating procedure - . Experimental results - . Typical applications - CONCLUSION - SUMMARY - BIBLIOGRAPHY Dr J.O. BOSSET*- Dr M. COLLOMB Mme SPAHNI-REY - M R.GAUCH Station Fédérale de Recherches Laitières 3097 LIEBEFELD-BERNE (Switzerland) #### INTRODUCTION The conservation of many prepacked foods depends on the présence in the headspace of gases like oxygen (02), carbon dioxide (CO₂), amonia (NH₃), hydrogen (H₂) and nitrogen (N₂). Therefore, inert gases are often used to improve resistance to oxidation (1-11). The presence of Oxygen can lead to oxidation and photo-oxidation of fats, vitamins, sulphur containing amino-acids. As a result, many different undesirable substances like peroxides, adehydes, ketones and oxycholesterol can be produced. Moreover, it is an indispensable element for the growth of yeasts and moulds. Most of the oxygen induced reactions reduce the nutritional characteristics of foods, their flavour or the colour (23). The change even concentration of carbon dioxide in the headspace, can be considered as an indicator of degradation of foods by bacteria. However, its acidic chemical and moulds or aerobic physical characteristics can also behave as a protection or simply displace the oxygen or other gases (9-24). The presence of hydrogen can result from the action of coliform or butyric bacteria, or it can be evidence for corrosion of the metallic can (25-26). Finally, the chemically and biochemically inert gaz Nitrogen, is often used to control the atmosphere around the product to be stored (27). These few examples show the importance of having simple, fast, quantitative and specific analytical methods, that can be used to analyse the atmosphère surrounding the prepacked foods. # A REVIEW OF THE AVAILABLE ANALYTICAL METHODS OF ANALYSIS AND ANALYSERS Several methods of headspace analysis of food packages are presently used. Some analytical procedures are very specific for a certain component of the headspace. On the contrary, other methods are expecially useful for their non-specificity, and can be used to determine several components by a single measurement. The specific measurement of Oxygen is done by using the following methods (28-30): - the particularly high paramagnetism of this molecule (31-32), can be measured by using the following analysers:(a) HELOS KV and KVS (HELANTEC AG 4106 Therwil, Switzerland), (b) MODELS 570A, 574 and 1400/1451 SERVOMEX LTD (Crowborough, Sussex TN6 3DU,UK), (c) Oxymeters EC 18 G,EC 180, HM 18 N (HERMANN MORITZ, CHASSANT -28480 France) - the polarographic measurement of oxygen diffusing through the membrane of the so called Clark's electrode (33), a technique applied for instance by the following analysers: (a) OXY 211 (ANATOP SCIENTIFIC INSTRUMENTS-ANATOP SA, Hünenberg 6331 SWITZERLAND) or TECAN U.S. LTD, (North Carolina 27514 USA), (b) Inpack 507 (INGOLD ELECTRODES, INC Wilmington, MA 01887, USA), (c) 340FBS (TELEDYNE ANALYTICAL INSTRUMENTS City of Industry, CA 91749 USA); - the measurement of Nernst's potential generated by a solid electrolyte type electrode containing zirconium and yttrium oxides at high temperature (approx. 700°C). This principle is used by the analyser LC-700F by TORAY (P. Lippke GmbH & Co. D-5450 Neuwied 1) and also by the Head Space Oxygen Analyser ZR 891 SYSTECH INSTRUMENTS Ltd (Thame Oxfordshire- OX9 3 BX, England). Many different methods of analysis of carbon dioxide have been proposed. The most promising one is probably the non-dispersive (absorption) photometry in the infrared (34). This physical principle has been applied by high performance specific analysers, usually dedicated to typical "on-line" measurements. of re-circulating gas flows. The only analysers this type which without gas circulation, thus operate requiring only a few ml of gas sample are probably both models PA 404 SVS and 1400/1451by SERVOMEX LTD (Crowborough, TN6 3DU, England). Moreover, these instruments enable simultaneous analysis of both oxygen and carbon dioxide. the The same principle has been applied to the "one-line" specific determination of **Ammonia**. This gas is relatively uncommon in the headspace of food products and is rarely analysed. As far as **hydrogen** is concerned, specific sensors are also available, and they are mainly used as "leak sensors" for the security of installations, but they cannot be used without any modifications for the analyses of headspace of food products. Finally, a commercially available instrument for the specific determination of Nitrogen does not exist. However, for ammonia, hydrogen and nitrogen $(NH_3 H_2 \text{ and } N_2)$, only gas chromatography with thermal conductivity detection (TCD) (35-36) can be taken into consideration. mass-spectrometric methods by using (a) Quadruvac PGA 100 (EYBOLF-HERAEUS GmbH. - 5000 West Germany) or (b) spectromass (Congleton, Cheshire CW 12 4XR, UK) or (c) Dycor M/MA Quadrupole Analyser (AMETEK, Thermox Instrument Division - Pittsburg, PA 15238). Analysers of this type cannot be found "turnkey" on the market : only basic equipment (GC, valves, columns etc...) that have to be modified and adapted to the specific application can be found (37-44). The present study illustrates an analyser designed and assembled for the headspace analysis of prepacked diary products, such as milk powder milk, condensed milk, cheese in can or packed with plastic films, as well as yoghurts. #### DEVELOPMENT OF A NEW ANALYSER ## - Operating principle The described system is based on the gas-solid separation of the components of a gaseous mixture (H_2, N_2, O_2, CO_2) or/and NH_3 (45) using a modified gas chromatograph (Perkin-Elmer model Sigma 300), equiped with three columns and a thermal conductivity detector (fig. 1 to 4). This type of configuration, called "Gas Sampling with Column Sequence Reversal", includes an automatic 10 ports valve connected to two chromosorb 103 columns (C_1 and C_3), mounted in series that can separate the polar gases (CO_2 and NH_3). In addition there is a molecular sieve column (C_2) for the separation of permanent gases (H_2 , O_2 , N_2). The ten ports valve is driven by a pneumatic system that switches between the two positions: - (Pos.B: C_1 -> C_2 -> C_3 <=> Pos. A: C_2 -> C_1 -> C_3). The sample to be analysed is introduced by means of a sample loop. (47). This variable configuration avoids the problems derived from the practically irreversible adsorption of the polar gases on the molecular sieves. Therefore, the permanent gases flow twice through the chromosorb C_1 column: the first time (Pos.B) they are not separated (air), the second time (Pos.A), they flow already separated by the molecular sieve column as hydrogen, oxygen and nitrogen. presence of a third column not common: is this modification has been done in order to improve the separation of the positive peak of carbon dioxide, from the negative peak resulting from a pressure instability during the switching of the ten-ports valve (see fig. 5A). The molecular sieve column cannot separate argon from oxygen. This limitation can be overcome by considering that the ratio Ar/No is constant (=0.0119). In fact, in most cases, it is possible to evaluate the argon concentration in an unknown mixture on the basis of the measured nitrogen concentration. is generally used as Helium а carrier gas, (48).limitations can be found for a precise and accurate determination of the concentration of hydrogen. As pure hydrogen presents a thermal conductivity than helium, it should theoretically greater peak. In fact, the polarity of the produce negative а depends on hydrogen concentration. At a concentration of approximately 10% of hydrogen in helium, the signal positive. Madison (49) refers this behaviour to the existence of a minimum point of the thermal conductivity of the $\rm H_2/He$ mixtures. In relationship with the different concentrations, negative or even double peaks can be observed. In order to avoid difficulties of this kind, it is advisable to use argon as carrier gas whenever is important to establish the hydrogen concentration. The described system allows the determination of the relative composition (% vol/vol) of the gases if the sample is injected a gas syringe (the pressure in the syringe is generally unknown). It also allows the determination of the absolute the sampling is done directly into the composition. if headspace of a rigid package (for instance a metal can), using adequate sample collecting device. In this case, the "true" volume of the determination of the pressure and the headspace of the package are both important and necessary. The determination of certain constituents, like carbon dioxide and ammonia, can markedly depend on the environment of the gaseous sample (pH, water content, ionic strength and composition of the matrix). These parameters have to be taken into account when results are evaluated. #### - Instrumentation The analyser is constituted by the following parts (in alphabetical order): - AS: sampling loop of 0.1 or 0.5 or 1.0 or 5.0 ml capacity (Perkin-Elmer item number 0332-4901 or 0332-4902 or 0332-4903 or 0332-4904 respectively) - C1: column filled with chromosorb 103 (Supelco part number 2-0217; 80 / 100 mesh; 1.25m; stainless steel 1/8") - C2: column filled with molecular sieves 5A (Supelco part number 2-0301; 45 / 60 mesh; 4.50m; stainless steel 1/8") - C3: column for both improved separation and additional retention or delay, filled with chromosorb 103 (Supelco part number 2-0217; 80 / 100 mesh; 1.80 m; stainless steel 1/8") - C4: uncoated capillary column to limit backflow (typically 10 cm; fused silica or glass 0.21 mm ID) - DE: vacuum system equipped with a vacuum pump (AEG AD71N24) - DP: sampling device for metallic cans (Nestec SA, part number 853000, 1800 Vevey, Switzerland) or equivalent - FD: exponential dilution flask (Varian, part number 96-000038-00) (36) - HWD or TCD: glass-coated filament type, thermal conductivity detector (Perkin-Elmer, part number 0331-AC00). Bridge current adjusted to 65 mA for Ar and to 240 mA for He - IE: electronic integrator (Perkin-Elmer LC! 100) - MN: pressure gauge (0-2000 mbar) with digital display (Leybold-Heraeus: PIEZOVAC pressure gauge,part number PV 111 with measurement cell EDA 420-311.215 A 15) - R₁ to R₄: two-port valves (Supelco part number 2-2139) - R₅, R₆: three-port valves (Varian, part number 88-730900-00) # S₁: gas syringe: - 10 ml capacity (1010TTL Supelco, part number 2-1000) with valve and side opening needle (part number 2-1743) for the collection of samples in flexible packages - 500 ml capacity (Varian, part number 89-988965-00) for calibration S₂: gas-tight syringe for the injection for a volume V2 of gas into the system (for example 25 ml;1025TTL Supelco,part number 2-0683) TF: flexible hose (Approx. 2 cm) for connection to syringe S1 or to dilution flask FD VC: ten-ports valve with pre-programmed pneumatic switching (Valco part number A60), for use at ambient temperature Calibrating gas: N₂, Carbagas, grade 52, class I O₂, Carbagas, grade 48, class I H₂, Carbagas, grade 57, class I CO₂, Carbagas, grade 48, class I NH3, Carbagas, grade 45, class I as well as different calibration mixtures of these pure gases, as desired. ## Operating procedure - Loading the sampling loop with a gas syringe (Fig. 1): After having sticked a self-adhesive septum onto the package (Gummi Maag, 3172 Niederwangen, Switzerland, part number 128078), the sample is collected using sampling syringe S₁ which has previously been purged using the carrier gas. This syringe, which contains a volume V₁ of gas to be analysed, sufficient to purge the circuit indicated in thick lines in fig.1, is connected to the valve R₁ by the flexible hose TF.The switching valve VC is in position A. The capillary tubing C4 serves as a vent, which brings the sampling loop AS to atmospheric pressure, thus avoiding practically all air blackflush. This operation produces a momentary over-pressure. The sample in the sampling loop AS can be injected into the GC as soon as the pressure MN indicates atmospheric pressure again (acceptable difference is approx. 10 mbar). - Loading the sampling loop from the metallic can (Fig.2) First of all, the complete circuit indicated in thick lines in fig. 2, has to be evacuated by using the vacuum system DE (residual acceptable pressure is 5 to 10 mbar approx.). The switching valve VC is in position A. The sampling device DP must be in tight contact with the cover of the can. (*) Once the vacuum is established, the valve R_3 is closed in order to monitor the sealing of the system. The lid of the can is pierced using the device DP. The pressure is measured when it settles again. Its value can be, theoretically, above, equal—or lower than the atmospheric pressure, depending on the pressure found inside the can to be analysed. The valves R_5 and R_6 are commuted so that they are connected, but leaving the sampling loop—isolated (see fig.3). The loop—is filled and ready for injection into the gas-chromatographic system. - Chromatographic separation (Fig. 3 and 4): After the manual loading of the sampling loop AS, the analysis driven by the microprocessor of the GC. First of all, the valve VC is switched on to the position B (= time t₁ see fig.3). The carrier gas, then, carries the sample through the column C₁, where the polar gases are separated (CO₂ or NH₃). The permanent gases (H2, O2, N2) run very quickly through the column without being separated. As soon as the permanent gases reach the column C_2 (= time t_2),the pneumatically switched back to its initial position A (fig. which avoids trapping the polar gases in a irreversible manner on the molecular sieves contained in the column C2. ^(*) A few drops of glycerine deposited on the lower surface of the rubber plug will improve the adherence of the piercing device onto the lid of the can. The ideal moment t_2 for switching is empirically determined by the injection of the air as a sample. t_2 has to be increased gradually up to the disappearence of the "air" peak which must be entirely resolved into the peaks of nitrogen and oxygen. An additional increase of t_2 can lead to a systematic error, deriving from the elimination of some peaks of the polar gases, especially the carbon dioxide. Separation is performed under the following conditions: - Injector loop temperature: 150°C - Oven temperature (with columns C₁, C₂ and C₃): isothermal at 95°C - Detector: Catharometer or thermal conductivity type (HWD): 200°C - Switching time: $t_1 = 0.01$ min; $t_2 = 0.90$ min - Carrier gas flow through the columns: 20 ml/min (He or Ar) - Carrier gas back-pressure at GC inlet: 380 kPa Fig. 5 shows an example of the chromatographic separation obtained under the conditions mentioned above (CO₂ and NH₃ injected separately). The optimisation of the chromatographic conditions can be by trial and error, on the basis of the separation of the peak of ammonia, which is very temperature dependent. This peak must be located between carbon dioxide and hydrogen. All peaks of the polar gases present a certain "tailing" effect. especially remarkable at low temperature for ammonia and high temperature for carbon dioxide. - Determination of volume Vx and pressure Px in the headspace of the can (fig.4): During or after chromatographic separation, it is possible to determine the "real" volume Vx in the headspace of the can being analysed. This headspace includes the apparant and intersticial volumes powders and other solid materials contained in the can. For this purpose, the valve R_4 is opened and the volume V_2 is introduced into the circuit indicated in thick lines in fig.4 (can included) using the syringe S_2 . This volume could be constituted by air for example. The pressure increases, from P1 to P2 (read after equilibration). The volume of gas injected must be at least in the order of 20 to 30% of the volume Vx to be determined. By applying Boyle-Mariotte's law twice, both Vx, and Px can be successively calculated, where Py is the original pressure in the can before piercing. Calculations are shown below. During this procedure, the system must be completely sealed, sampling device PE included (*). #### - Calibration If the size of the sample is large enough, it is useful to start with a preliminary analysis, just before a more accurate calibration of the analyser. Otherwise, it will be sufficient to use the regression coefficients (Table 1) of the calibration curves (fig. 6, A and B) calculated for each individually gas following the method of the external standard. Up to concentrations of about 10% vol/vol, the calibration curve is established by using a dilution flask (36), which works on the principle of the exponential dilution. $$C_t = C_0 e^{-Qt/V}$$ where: C_t = concentration at time t C₀= concentration at time zero (injection of gas into dilution flask) Q = flow of carrier gas through the dilution flask V = volume of dilution flask ^(*) A few drops of glycerin deposited on the lower surface of the rubber plug will improve the adherence of the piercing device onto the lid of the can. The dilution flask FD is directly connected to the flexible hose TF (fig.1) instead of to the syringe S1. More adequate calibration techniques have been proposed (50-51) for concentrations higher than 10 or 20%. For this study, we have used a simple technique consisting in collecting successively known volumes of different pure calibrating gases, where the pressure has been reduced to atmospheric through an opening T (vent).By simple diffusion into the syringe, gas can be mixed in any proportion. This syringe allows loading of the sampling loop AS (S_1 in fig.1). #### - Calculation procedure The **relative concentrations** (% vol/vol) are calculated using the 100% peak normalisation technique by applying regression coefficients as in Table 1. The **absolute** concentration (mmol/l) is calculated after having previously determined the real volume Vx and pressure Px of the headspace of the package. For this purpose, Boyle-Mariotte's law is applied several times. We assume that this is valid for all analysed gases: Determination of V: $$P_1 (V_{pc} + V) + P_{atm} (V_2 + V_{junct}) = P_2 (V_{junct} + V_{pc} + V_x)$$ (before the injection of V_2) (after the injection of V_2) #### Where: V_x = real volume of headspace to be determined V_2 = volume of gas (air) injected into V_{pc} and V_x using syringe S_2 V_{junct} = dead volume of the connection S₂-R₄, determined by filling it with water and weighting V_{pc} = volume of the small circuit indicated in thick lines in fig.4, delimited by R₄, R₃, R₂, MN, R₅, R₆ and DP (see below) P₁ = pressure read on digital pressure gage MN before injection of V₂ P₂ = pressure read on the digital pressure gauge MN after the injection of V Patm = atmospheric pressure ## Determination of Px: $$P_X (V_X) + P_O (V_{gc}) = P_1 (V_{gc} + V_X)$$ (before piercing) (after piercing) #### Where: P_X = internal pressure of the can before it is pierced P_o = residual pressure after evacuating the large circuit by using the vacuum system PE. P_o is considered as negligeable in this calculation if the vacuum is sufficient (tolerance: 5 to 10 mbar) V_{gc} = volume of the circuit indicated in thick lines in fig 1, which corresponds to the small circuit V_{pc} of fig. 4 and additionally the loop located between R_5 and R_6 , passing through the sampling loop AS (see below) # Determination of the total amount of gas "n": Px and Vx having been calculated, it is possible to calculate the total amount of gas "n" (in moles) contained in the head space of the can, by using the law of gases. Then, the quantity of each component in the mixture and its relative concentration can be determined. A more accurate calculation can be accomplished by taking into account the partial molecular volumes of each gas in the mixture. Determination of V_{pc} and V_{gc} : The volumes of the small circuit V_{pc} and the large circuit V_{gc} are definitely determined by using again Boyle-Mariotte's law: For the small circuit: P_{atm} ($V_{2}+V_{junct}+V_{pc}$) = P_{3} ($V_{junct}+V_{pc}$) For the large circuit: P_{atm} ($V_{2}+V_{junct}+V_{gc}$) = P_{4} ($V_{junct}+V_{gc}$) where P_{3} and P_{4} are pressures read on the pressure gauge after injecting volume V_{2} into the small circuit (fig. 4) and respectively, into the large circuit (fig. 1). These determinations do not require a can, but must performed with accuracy. In fact, both volumes V_{pc} and V_{gc} appear in the course of all calculations for V_{x} and P_{x} . At least ten measurements should be preferably done. V_{gc} depends on the size of the sampling loop being used. # Experimental results Calibration Figures 6 (A and B) show calibration curves obtained separately for carbon dioxide, ammonia, hydrogen, nitrogen oxygen in helium (fig.6A) and in argon (fig.6B) as carrier gases. Calibration mixtures are prepared using a syringe ml capacity, according to the technique (S1) of 500 recommended for high concentration (>10%: fig.1). Tables 1 and 2 indicate the linear regression coefficients (α , β) and quadratic (a, b, c) coefficients calculated for the calibration curves. The coefficient of the quadratic term (c) could be neglected for certain gases (N_2 and O_2 in Ar, or possibly in He). This would eventually allow the use of the first order coefficient b only, or its reciprocal 1/b, the response factor of the detector. An approximation of this nature is more accurate whenever is possible to interpolate within a more restricted range defined by two consecutive points. This is the reason why it is useful to perform a preliminary tentative analysis, if enough volume of the headspace is available for a few analysis. Nevertheless, it is generally preferable to employ more precise quadratic regressions by using modern calculators. Figures 7 (A, B) show the calibration curves obtained with helium as carrier (fig.7A) and argon (fig. 7B). The exponential dilution flask FD was used according to the technique recommended for low concentration levels (less than 10%: fig. 1). Tables 3 and 4 indicate the corresponding linear and quadratic coefficients. Except for the calibration curve of oxygen in helium as carrier gas, it can be verified that the simple linear regression is not sufficient to evaluate the results of the analyses. #### **Detection limits:** Detection limits can be established by injecting decreasing concentrations of single pure gas into the carrier gas. They correspond approximately to a signal/background noise ratio of 10 (Table 5). The most restrictive factor for the detection limit, as well as for the repeatability of the measurements, is the contamination by ambient air, especially during sampling. # Repeatability The repeatability has been calculated on the basis of triplicate determinations (Fig. 6 and 7). Best values are obtained for high concentration levels: the coefficient of variability ranges from 0.1 and 1.0% relative, for concentrations above 40% vol/vol. For concentration below 40% the coefficient of variability ranges from 1 to 4% relative. The best repeatability has been obtained using pure calibration gases (100% vol/vol). This indicates that the main source of errors is the preparation of the calibrating mixture, not the measurement itself. #### Typical applications: A first example of application consists in the analysis of the composition of the headspace of yoghurts during storage for 3 weeks at 7°C. The application of this new technique to the measurement of the partial pressure of oxygen pO₂ in viscous product of this type (52) generates some interesting considerations: - does yoghourt consume oxygen and does it produce carbon dioxide in the course of this type of storage? - is the mass of yoghourt in a state of equilibrium with its headspace? In order to answer these questions, the yoghourt samples have been stored under the previously mentioned conditions and the headspace measured before and after having vigorously shaken identical pots (Table 6). Due to the fact that a diffusion of the gases through the packaging material (constituted by a sheet of polystyrene) is possible, this sheet was covered by a bonded aluminium sheet, in order to create an air-tight complex. The conclusion that can be drawn from these experiments are: - the yoghourts continue to consume oxygen of the headspace even at this temperature, but do not produce carbon dioxide as long as no yeast or moulds appear on the surface; - due to the very slow diffusion of the gases from or into the mass of the yogourt, this does not reach a state of equilibrium with its headspace. The second example of application concerns the analysis of gases present in the headspace in a can made of tin. The appearence of this container was suspect because it was markedly blown out, and contained 1kg of melted cheese .The following concentrations (% vol/vol) have been found: CO_2 : 22.9 NH_3 : absent H_2 : 63.6 N_2 : 11.1 O_2 : 2.4 The ratio $O_2/N_2 = 0.216 < 0.268$ (in air) indicates a slight consumption of oxygen in the course of the alteration of the product. One can observe a remarkable production of carbon dioxide and hydrogen, both deriving from butyric bacteria degradation. Their presence has been confirmed later by a GC analysis of the content of butyric acid in the cheese itself. #### CONCLUSIONS The use of commercial sensors mentioned at the beginning of this study is certainly a very convenient solution for the determination of a single gas, for instance O_2 . Analysers of this type are in fact: specific of fast response, relatively inexpensive, compact and even portable. They can thus be used directly in the production plant itself. They are designed for general routine controls (on-line quality control). The ease of use does not require specialized personnel. The analyser proposed in this study, does not substitute the mentioned sensors, but only constitutes a complementary technique. In fact, it enables the simultaneous determination of several gases in the same sample. Moreover, it is dedicated to more complex analyses and to research and development programs. For most dairy products, the simultaneous determination of several gases (O $_2$, CO $_2$, H $_2$ and N $_2$, possibly NH $_3$) can produce interesting data about possible degradations and the probable cause (coliform, propionic, butyric bacteria, corrosion can) (9, 25, 26). It allows verifying the oriain and the development of the microbial flora (bacteria, yeasts, moulds). For this purpose, the determination of nitrogen allows calculating balances $(O_2 + CO_2 + H_2 + N_2)$ and the both the $(O_2/N_2,CO_2/N_2,\ H_2/N_2)$ of the individual components, in which considered as a non-variable element (" internal nitrogen is standard"). The analyser recently proposed by Bertoli et al. (53) is designed to take into account the deformations that metallic cans may present if they are partially filled under vacuum (550 to 850 mbar). This is usually not necessary with dairy products, which are generally packaged under controlled atmosphere (CO_2, N_2) at a pressure close to atmospheric. The proposed analyser can also be used for many other applications, like the determination of gas composition into the eyes of cheese, or into large enclosures (cheese cellars, bioreactors and fermenters). The selection of the adequate sampling syringe for each specific situation is important. #### SUMMARY having briefly mentioned the positive and negative effects deriving from the presence of certain gases $(O_2, CO_2,$ NH3 and N2) in the headspace of some prepackaged food products, this study provides an overview of the principles of measurement of these gases, and the related commercially available analysers. These sensors are designed applications in large batch analysis with advantages deriving from their high rates of specificity and rapid measurement, reasonable price, limited usage of space, but they can only dose one single component at a time in the gas mix, two at the utmost. study new proposes а analyser that provides the possibility of analysing simultaneously all above mentioned gases.lt is based on a gas/solid chromatographic separation with catharometric sensing TCD). The adopted configuration particularly dedicated to the analysis of dairy products such as canned condensed milk, cheese in can or powder milk and packaged under plastic film, and yoghourt in pots. After explaining the operating principle of the analyser, the study describes the design, the use, the optimisation of the operating parameters, the calculation of the results and the calibration techniques. Detection limits and repeatability of measurements are documented. The analyser can be used for many other applications, like the determination of the gas composition in the eyes of cheese, in the cellars, bioreactors and fermenters, provided an adequate sampling syringe is used in each situation. # Acknowledgments The authors thank Dr Vittorio RAVERDINO for the excellent translation of their paper in english language Eg. 5: Examples of chromatograms obtained with helium (A) and argon (B) as carrier gas. note: Composition of the gas mixture: 20% vol/vol each Ammonia (in dotted line) is injected separately The arrow indicates the position of the negative peak due to the change of pressure during injection (t1) Fig. 6: Calibration curves obtained by using helium (A) and argon (B) as carrier gas, and sampling with the calibrating syringe Fig. 7: Calibration curves obtained by using helium (A) and argon (B) as carrier gas, sampling with the exponential dilution flask Table 1: linear $^{1}(\alpha, \beta)$ and quadratic $^{2}(a, b, c)$ regression coefficients as calculated from the calibration curves obtained using helium as carrier, by injecting with the calibration syringe S1 (Fig.7A) | Gas | HELIUM | | | | | | |-----------------|---------|--------|---------|--------|-------|--| | | α | ß | a | ь | С | | | CO_2 | 82'200 | 44'100 | -80'000 | 53'300 | -84,7 | | | NH ₃ | 135'000 | 28'100 | -28'900 | 37'300 | -85,4 | | | H ₂ | 8'000 | 565 | 3'430 | 824 | -2,38 | | | N ₂ | 34'900 | 39'900 | 58'900 | 38'100 | 17,1 | | | 02 | -38'900 | 37'900 | 6'500 | 34'600 | 32,5 | | These coefficients have been calculated for the following types of regressions: - 1) linear: $y = \alpha + \beta x$ et - 2) quadratic: $y = a + bx + cx^2$ where y is the area of the peak as determined by GC (arbitrary units), and x is the relative concentration of the component (as % vol/vol) Table 2: Linear ¹ (α,β) and quadratic² (a,b,c) regression coefficients calculated from the calibration curves obtained using argon as carrier, by injection with the calibration syringe S1 (Fig. 7B) | Gas | ARGON | | | | | | |-----------------|--------|--------|--------|--------|--------|--| | | α | ß | а | b | С | | | co ₂ | 1'450 | 3'320 | -2'650 | 3'610 | -2.93 | | | NH ₃ | 7'560 | 12'800 | -2'680 | 13'600 | - 7.32 | | | H ₂ | 69'500 | 41'600 | 10'300 | 47'200 | - 57,5 | | | N ₂ | 3'860 | 4'000 | 1'420 | 4'190 | - 1,74 | | | 02 | 2'510 | 5'340 | -24,5 | 5'520 | -1,81 | | These coefficients have been calculated for the following régression types: - 1) linear: $y = \alpha + \beta x$ and - 2) quadratic: $y = a + bx + cx^2$ where y is the area of the peak as determined by GC (atbitrary units), and x is the relative concentration of the component (as % vol/vol) Table 3: linear ¹ (α, β) and quadratic² (a, b, c) regression coefficients calculated from the calibration curves obtained using helium as carrier, by injecting with the exponential dilution flask (Fig. 8A) | Gas | HELIUM | | | | | | |-----------------|-------------------|-------------------|-------------------|-------------------|---------|--| | | α | В | a | b | С | | | co ₂ | 503 | 60'500 | -1'450 | 57'200 | 1'250 | | | инз | 3,880 | 38.000 | -859 | 45'900 | -1'460 | | | Н2 | n.d. ³ | n.d. ³ | n.d. ³ | n.d. ³ | n.d.3 | | | N ₂ | -419 | 67'000 | -1'820 | 86'400 | -34'900 | | | 02 | 258 | 47'50 | 230 | 47'700 | -136 | | These coefficients have been calculated for the following regression types: - 1) linear $y = \alpha + \beta x$ et - 2) quadratic $y = a + bx + cx^2$ where y is the area of the peak determined by GC (arbitraty units), and x is the relative concentration of the component (as % vol/vol) - 3) not determined Table 4:linear $^{1}(\alpha, \beta)$ et quadratic $^{2}(a, b, c)$ regression coefficients calculated from the calibration curves obtained using argon as carrier, by injecting with the exponential dilution flask (fig.8B) | Gas | ARGON | | | | | | |----------------|--------|--------|-------|--------|--------|--| | | α | В | а | b | С | | | CO2 | 1'870 | 3'970 | 717 | 5'800 | -332 | | | NH3 | 3'390 | 13'900 | 723 | 22'900 | -3'310 | | | H ₂ | 12'700 | 55'700 | 5'590 | 78'600 | -8'340 | | | N ₂ | 1'840 | 5'310 | 2'050 | 5'080 | 38,8 | | | 02 | 3'110 | 5'730 | 1'240 | 8'680 | -535 | | These coefficients have been calculated for the following regression types: - 1) linear $y = \alpha + \beta x$ et - 2) quadratic $y = a + bx + cx^2$ where y is the area of the peak determined by GC (arbitraty units), and x is the relative concentration of the componen (as % vol/vol) Table 5: Détermination of détection limits obtained using the described method | | T | | | |-----------------|--------------------------------|--------------------|--| | Gas | detection limit
(% Vol/Vol) | | | | | in He ¹ | in Ar ² | | | CO ₂ | 0.05 | 0.5 | | | NH ₃ | 0.1 | 1.0 | | | H ₂ | n.d.3 | 0,1 | | | N ₂ | 0,1 | 0,5 | | | 02 | 0,1 | 0,5 | | - 1) Détermined using a sampling loop AS of 0.1 ml - 2) Détermined using a sampling loop AS of 0.5 ml - 3) not determined Table 6: Composition of the headspace of the natural yoghourts during storage at 7°C, without shaking, or after vigorous shaking just before sampling | Time of | pre | Composition of the headspace of the yoghourt | | | | | | | |-----------------------------------|-----------------------------------|--|--|--|---|--|----------|--| | storage sampling (days) treatment | Conc. CO ₂
%vol/vol | Conc. O ₂
% vol/vol | Conc. N ₂
% vol/vol | Conc.tot* % vol/vol | Ratio
O ₂ /N ₂ | Ratio
CO ₂ /N ₂ | | | | 7 | not
shaken | $\overline{x} = 15,3$
s = 0,67
cv = 4,36 | $\overline{x} = 15,3$
s = 0,15
cv = 1,00 | $\bar{x} = 68.2$
s = 0.25
cv = 0.37 | \overline{x} = 98,8
s = 0,71
cv= 0,72 | ₹= 0,224 | x= 0,224 | | | 7 | shaken | $\overline{x} = 21.0$
s = 0.92
cv = 4.36 | $\overline{x} = 13,7$
s = 0,55
cv = 4,02 | $\overline{x} = 63.9$
s = 0.26
cv = 0.41 | x = 98,6
s = 0,25
cv= 0,25 | x= 0,214 | x= 0,329 | | | 14 | not
shaken | $\bar{x} = 16,1$
s = 0,20
cv = 1,24 | $\overline{x} = 13,6$
s = 0,25
cv = 1,86 | x = 70,1
s = 0,87
cv= 1,24 | x = 99,8
s = 0,93
cv= 0,93 | x= 0,194 | x= 0,230 | | | 14 | shaken | $\bar{x} = 21,2$
s = 1,15
$cv = \xi,44$ | x = 12,2
s = 0,55
cv= 4,53 | $\bar{x} = 66.8$
s = 0.67
cv = 1.00 | $\bar{x} = 100,2$
s = 0,10
cv = 0,10 | x= 0,183 | x= 0,317 | | | 21 | not
shaken | $\bar{x} = 16,4$
s = 0,83
cv = 5,08 | $\bar{x} = 12,2$
s = 0,31
cv = 2,50 | $\overline{x} = 70,7$
s = 0,44
cv = 0,62 | x = 99,3
s = 0,67
cv= 0,67 | x= 0,173 | x= 0,232 | | | 21 | shaken | $\bar{x} = 21,4$
s = 0,65
cv = 3,04 | $\vec{x} = 10.8$
s = 0.40
cv = 3.74 | x = 66,8
s = 0,35
cv= 0,53 | x = 98,9
s = 0,25
cv= 0,25 | x= 0,162 | x= 0,320 | | ^{*)} Total conc. = Conc. CO_2 + Conc. O_2 + Conc. N_2 (calculated, not measured) $[\]overline{x}$ = average, s = deviation and cv = coefficient of variation (as %) for triple determinations #### **BIBLIOGRAPHIE** - 1) Anon.: Growth predicted for modified atmosphere packaging, Technol. Ireland, 20 (4), 47-48 (1988) - 2) Sacks, B. and Gore, A.: Gas packaging techniques and trends, Fd-Review, 14 (3) 26, 28, 31, 35, 37, 39 (1987) - Goris, B. J. F.: Gas mixtures for long shelf-life packaging of foods, Voedingsmiddelentechnologie, 20 (20) 18-20 (1987). Cité d'après: Fd Sci. Technol. Abstr. 1988-06-F0005 - 4) Guise, B.: Exchanging gases to extend life, Fd-Processing-UK, 55 (9) 35-37 (1986) - 5) Corinth, H.G.: Haltbarkeitsverlängerung durch Anwendung von Schutzgas, Lebensmitteltechnik, 17, 680, 682-684 (1985) - 6) Dinglinger, G.: Schutzgasverpacken verbessert die Haltbarkeit von Lebensmitteln, Intern. Z. Lebensmittel-Technol. Verfahrenstechnik 35, 49-50, 52, 54-55 (1984) - Eklund, T.: Packaging of raw foods in a vacuum or controlled atmosphere - an updated review, NINF-Informasjon no 4 248-272 (1983). Cité d'après: Fd Sci. Technol. Abstr. 1983-11-F0523 - 8) Kramer, A., Solomos, T., Wheaton, F., Puri, A., Sirivichaya, S., Lotem, Y., Fowke, M. and Ehrman, L.: A gas-exchange process for extending the shelf life of raw foods, Fd Technol. 34 (7), 65-74 (1980) - 9) Wolfseder, H.: Bestimmung des Gasstoffwechsels von Camembert mit Hilfe von physikalisch arbeitenden Gasanalysatoren, Milchwissenschaft 28, 418-423 (1973) - 10) Dürichen, K., Heiss, R. und Becker, K.: Der zeitliche Verlauf der Gaskonzentrationen in Emmentaler-Weichverpackungen und seine Bedeutung für die Qualitätserhaltung des verpackten Käses, Dtsche Molkereiztg 91, 385-391 (1970) - 11) le Floch, m E., Acker, m. P., le Clerc, Melle, Mernier M., Lebert, m. F., Monoury, Melle: La composition de l'atmosphère des conserves et ses variations en fonction de différents facteurs, Revue de la conserve, 24, 141-146 (1968) - 12) Bosset, J.O. et Gauch, R.: Effet protecteur de l'emballage contre la photo-oxydation :I) Etude par GC-MS de quelques composés carbonylés - et du méthional dans divers yoghourts en cours de stockage, Trav. chim. aliment. hyg. 79, 165-174 (1988) - 13) Dieffenbacher, A. et Trisconi, M.-J.: Effet protecteur de l'emballage contre la photo-oxydation :II) Etude de l'indicede peroxydes et de la période d'induction de l'oxydation de la graisse libre dans divers yoghourts en cours de stockage.Trav. chim. aliment.hyg.79, 371-377 (1988) - 14) Desarzens, C.: Effet protecteur de l'emballage contre la photo-oxydation : III) Etude du pH et de la couleur de divers yoghourts en cours de stockage, Trav. chim. aliment. hyg. 79, 378-391 (1988) - 15) Tagliaferri, E.: Effet protecteur de l'emballage contre la photo-oxydation : IV) Etude de la stabilité des vitamines A et B2 dans divers yoghourts en cours de stockage, Trav. chim. aliment. hyg 80, 77-86 (1989) - 16) Daget, N.: Effet protecteur de l'emballage contre la photo- oxydation : V) Etude sensorielle de divers yoghourts en cours de stockage, Trav. chim. aliment. hyg. 80, 87-99 (1989) - 17) Bosset, J.O., Daget, N., Desarzens, C., Dieffenbacher, A., Flückiger, E., Lavanchy, P., Nick, B., Pauchard, J.-P. et Tagliaferri, E.: Influence de la translucidité et de la perméabilité aux gaz de différents matériaux d'emballage sur la qualité du yoghourt nature en cours de stockage, Lebensm.-Wiss. u. -Technol. 19, 104-116 (1986) - 18) Allen, J. C. and Joseph G.: Chemical causes of flavour deterioration in pasteurized milk, J. Soc. Dairy Technol. 36, 21-26 (1983) - 19) Schröder, M. J. A.: Effect of oxygen on keeping quality of milk.I: Oxidized flavour development and oxygen uptake in milk in relation to oxygen availability, J. Dairy Res. 49, 407-424 (1982) - Schröder, M. J. A.: Effect of oxygen on keeping quality of milk. II. Effect of available oxygen on bacterial spoilage and oxygen uptake, J. Dairy Res. 49, 425-437 (1982) - 21) Badings, H.T.,Radema,L.and Langeveld,L.P.M.:The effect of oxygen content on quality and keeping properties of packaged, pasteurised or sterilised milk and milk products, Nordeuropaeisk Mejeri-Tidsskrift46,101-113 (1980) - 22 Becker, K., Cerny, G., Radtke, R., Reinelt, G. und Robinson, L.:Die Veränderung von pasteurisierter Konsummilch in Abhängigkeit vom Sauerstoffanbot, Molkereiztg, Hildesh. 31,1073-1081 (1977) - 23) Desarzens, C.: Influence de la lumière et de l'oxygène sur la conservation des produits alimentaires, Forum Rhône-Poulenc Films 1987, 143-210, Rhône-Poulenc Films, Lyon 1987 - 24) Anon.: Verpacken von Lebensmitteln mit CO2, Lebensmitteltechnik, 19, 177-179 (1987) - 25) Bester, B.H.: Some aspects of gas production by coliform bacteria in cheese, South Afr. J. Dairy Technol. 8, 51-55 (1976). Cité d'après: Fd Sci. Technol. Abstr. 1977-01-P0109 - 26) Hostettler, H.: Die Anwendung der Gasanalyse zur Abklärung der Gärung im Hartkäse , Landwirschaftliches Jahrbuch der Schweiz, 609-618, Bern 1932 - 27) Panova, V. and Ivanov, I.G.: Changes in the quality of infant dried milk products during storage in an N2 atmosphere, Khranitelnopro mishlena Nauka, 1 (3), 28-33 (1985). Cité d'après: Fd Sci. Technol. Abstr. 1986-05-P0122 - 28) Kocache, R.: The measurement of oxygen in gas mixtures, J. Phys. E: Sci. Instrum. 19, 401-412 (1986) - 29) Oehme, F. und Schuler, P.: Gelöst-Sauerstoff-Messung: Physikalische Grundlagen, Mess- und Analysentechnik, Anwendungen, Dr. A. Hüthig Verlag, Heidelberg 1983 - 30) Hitchman, M.L.: Measurement of dissolved oxygen, J. Wiley & Sons, Inc. and Orbisphere Laboratories, div. Orbisphere Corp., Geneva and York 1978 - 31) Joyner R.: Portable magnetic susceptibility balance rivals Gouy method, Internat. Labmate, vol. XI (issue 1), 47-49 (1986) - 32) Spiehler, V.: A newly developed system for measuring headspace oxygen in gas-flushed flexible packages, Fd Prod. Development, 4, 58-62 (1971) - 33) Anon.: "Near line" oxygen analyzer helps extend product shelf life, Fd-Engineering, 56, 111 (1984) - 34) Pochon, M.: Praktische Erfahrungen beim Einsatz von IR-Geräten als on-stream Analysatoren, Chimia 34, 385-396 (1980) - 35) Thompson, B.: Fundamentals of gas analysis by gas chromatography, Varian Associates, Inc., Palo Alto, Ca. 94303 1977 - 36) Elser, M. and Kern, H.: Trace gas analysis by a new high sensitivity thermal conductivity detector, Application notes no 11, Application Research Laboratory, Varian AG, CH-6300 Zug 1977 - 37) Eckert, W.R.:Headspace-Gaschromatographie, eine moderne analytische Methode, Gordian, 73, 10-11 (1973) - 38) Cook, J. M., Karelitz, R.L. and Dalsis, D.E.: Measurement of oxygen, nitrogen and carbon dioxide in beverage headspace, J. Chromatogr. Sci., 23 (2) 57-63 (1985) - 39) Andrawes, F., Holzer, G., Roedder, E. Gibson, E. K. Jr. and Oro, J.: Gas chromatographic analysis of volatiles in fluid and gas inclusions, J. Chromatogr. 302, 181-193 (1984) - 40) Rose, D. J. and Jewell, K.: How to measure gas in food, Fd Manufacture 58 (10) 59, 61 (1983) - 41) Rettenberger, G.: Deponiegasmessfahrzeug der Universität Stuttgart, GIT Fachz. Lab. 24, 129-132 (1980) - 42) Kubat, J., Macak, J., Mizera, J. and Zachoval, J.: Analysis of natural gas by gas chromatography, J. Chromatogr. 148, 189-193 (1978) - 43) Baiker, A., Geisser, H. and Richarz, W.: Analysis of CO, CO₂,COCl₂, HCl and Cl₂ gas mixtures, J. Chromatogr. 147, 453-455 (1978) - 44) Massini, R.: Quantitative determination of permanent gases in the headspace of rigid and flexible preserved foods packages, Industria Conserve, 46, 175-181 (1971). Cité d'après: Fd Sci Technol. Abstr. 1972-05- 7200 - 45) Leibrand, R. J.: Atlas of gas analyses by gas chromatography, Applications lab report no 1006, Hewlett-Packard Analytical Instruments, Avondale, Pennsylvania 1966 - 46) Wilhite, W. F.: The use of porous-polymer beads for analysis of the martian atmosphere, J. Gas Chromatogr. 6, 84-88 (1968) - 47) Morton C. E., Roberts, D. J. and Cooke, M.: Simple gas-loop injection system for use capillary columns, J. Chromatogr. 280, 119-123 (1983) - 48) Pauschmann, H.: Gas-chromatographische Bestimmung von Wasserstoff bei Verwendung von Helium als Trägergas, Z. anal. Chemie, 203, 16-20 (1964) - 49) Madison, J.J.: Analysis of fixed and condensable gases by two-stage gas chromatography, Anal. Chem. 30, 1859-1862 (1958) - 50) Barratt,R.S.:The preparation of standard gas mixtures a review, Analyst 106, 817-849 (1981) - 51) Torres, J., Borrull, F., Torres, J., González, J. et Cerdá, V.:Construction et calibrage d'un système de préparation d'étalons gazeux, Analusis, 7, 426-431 (1979) - 52) Bosset, J. O., Gauch, R. et Bucher, R.: Application d'une électrode sensible à la pression partielle de l'oxygène au dosage in situ de ce composant dans quelques produits laitiers fermentés. Le Lait, 67, 487-506 (1987) - 53) Bertoli, C., Margadant, P., Güdel, F., Escher, F. und Solms, J.: Apparatur zur Charakterisierung des Kopfraumes von Dosenkonserven, Mitt. Gebiete Lebensm. Hyg. 80, 42-57 (1989)