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Abstract

The state-of-the-art and current trends in the development of “aroma” analysis with electronic noses are reviewed with special reference to
applications to dairy-products. Some of the reported problems with electronic noses have recently been reduced, e.g. the correction/reduction
of signal drift, the influence of humidity and temperature. New promising and reproducible sensor manufacturing techniques are being
implemented, e.g. electro-spray for QMB sensor production. The development of more selective and sensitive sensors, especially of QMB
and conducting polymer (CP) type, should improve their applicability. Interesting novel sampling techniques, such as SPME or SBSE,
offer more possibilities for the analysis of semi-volatile compounds which are generally more odoriferous. However, standard calibration
procedures and reference materials are not yet available. Although they are normally less powerful than human noses, electronic noses offer
some significant advantages in the analysis of volatiles, for example, in instrumental classifications based on hedonic or sensory analyses
and in potentially automated on-line monitoring of volatiles. Several groups have explored the application of different electronic noses in
the investigation of various aspects of dairy products. The present review includes as examples the evaluation of Swiss and Cheddar cheese
aroma, the assessment of the ripening of Pecorino Toscano cheese (ewe’s), the detection of mould in Parmesan cheese, the classification of
milk by trademark, by fat level and by preservation process, the classification and the quantification of off-flavours in milk, the evaluation
of Maillard reactions during heating processes in block-milk, as well as the identification of single strains of disinfectant–resistant bacteria
in mixed cultures in milk.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the first applications of solid state gas sensors in
arrays, some twenty years ago, “electronic noses” have un-
dergone a great deal of development. Around a thousand
articles on this subject have been published over the last 4
years, mainly in relation to the food and beverage indus-
try [1], but also concerning environmental, agricultural, and
medical topics, in the automotive industry, etc. However, the
number of studies dedicated to dairy products is still very
limited, probably due to the complexity of their matrices.
The aim of the present paper is to review recent exploratory
studies of electronic noses applied to dairy products, in or-
der to perceive the prospects and trends in this field.

Traditionally in the food industry, monitoring of products
in terms of quality and control of production processes (e.g.
mixing, heating, drying, cooking, baking, extruding, fer-
menting, etc.) are performed via physicochemical measure-
ments, i.e. pH-value, colour, concentration of given chemi-
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cals or biomolecules generally determined by spectroscopy
(e.g. FTIR, NIR, UV-Vis, etc.)[2] and this despite the ex-
treme importance of aroma as an indicator of quality and
product conformity. This was mainly due to the lack of
reliable odour assessing instruments and the practical im-
possibility of employing sensory panels to the continuous
monitoring of aroma. Electronic noses have the potential to
fulfil this task. Compared to sensory panels the main advan-
tage of electronic noses is that once calibrated they can per-
form odour assessment on a continuous basis with a minimal
cost. Furthermore, once established this technique does not
require trained personnel like a sensory panel does, is not
subject to individual breakdown or variation of sensitivity
[3], is not overloaded under normal operation and takes com-
paratively very little time.

Before the advent of electronic noses the only possible
instrumental analysis of “aroma” (the mixture of volatiles
present in the headspace of a product) was the identifica-
tion/quantification of individual chemical compounds, af-
ter a separation step (e.g. GC–MS, GC–FID, etc.). How-
ever, the relationship between this sequential analysis and
the perception of the global aroma of a product is not easily
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established since the rules governing the combination of in-
dividual chemical compounds in the generation of odours
are not yet fully understood[4–6].

It should be kept in mind that instrumental analyses,
whether classical such as GC–MS, etc. or by electronic nose
are performed not only on odorous volatiles but also on
non-odorous compounds occurring in the headspace. This
can be interesting when analysing hazardous non-odorous
compounds (e.g. carcinogens, toxins, solvents) but also im-
plies that instrumentally performed classifications/analyses
might not be based on aroma relevant molecules. Further-
more, hedonic assessment can not be performed by any in-
strument. Classification models have to be defined based on
the results of sensory panels prior to performing analyses
with odour significance.

2. The electronic nose concept

The name “electronic nose” comes from a certain parallel
of the measurement concept of the instrument and that of
the mammalian olfactory system. In the latter, upon being
sniffed through the nose, or through the retro-nasal pathway
when a product is tasted, volatile compounds reach the ol-

Table 1
Detection threshold levels of human olfactory systems and electronic noses

Volatile compound Reported human threshold (ppm) Electronic nose threshold (ppm) Type of electronic nose Reference

Ethyl acetatea 7–17b 5–25 Fox 3000 (12 MOS) [27]
Butyric acida 0.4–10b <1 Fox 3000 (12 MOS) [27]
Diacetyla (4–15)× 10−3 b (50–100)× 10−3 Fox 3000 (12 MOS) [27]
n-Hexanala (10–50)× 10−3 (10–50)× 10−3 Fox 3000 (12 MOS) [27]
Methionala (2–50)× 10−3 (10–50)× 10−3 Fox 3000 (12 MOS) [27]
Furanola (20–40)× 10−6 b (50–100)× 10−6 Fox 3000 (12 MOS) [27]
n-Nonanec 0.2–7 <0.2 20 CP composite [13]
n-Octanec 3–9 0.6 20 CP composite [13]
n-Heptanec 7–13 <2 20 CP composite [13]
n-Hexanec 13–30 <10 20 CP composite [13]
n-Pentanec 20–50 40 20 CP composite [13]
1-Pentanolc 0.13–1.3 <0.06 20 CP composite [13]
1-Butanolc 0.2–1.3 0.3 20 CP composite [13]
1-Butanold 0.7 – Aromascan (32 CP) [1]
1-Butanold – Fox 3000 (12 MOS) [1]
1-Butanold + 6 Taguchi (SnO2) [1]
1-Propanolc 0.9–1.9 1.3 20 CP composite [13]
Ethanolc 5–500 2 20 CP composite [13]
Methanolc 13–600 3 20 CP composite [13]
Acetoned 141 – Aromascan (32 CP) [1]
Acetoned + Fox 3000 (12 MOS) [1]
Acetoned + 6 Taguchi (SnO2) [1]
Ethanethiold 0.1 × 10−3 – Aromascan (32 CP) [1]
Ethanethiold – Fox 3000 (12 MOS) [1]
Ethanethiold – 6 Taguchi (SnO2) [1]

+: Detected at the same concentration as submitted to human noses; –: not detected (when response<3× back ground noise) at the same concentration
as submitted to human noses.

a Concentration in water.
b Orthonasal analysis.
c Concentration in air.
d Concentration in vapour in equilibrium with a liquid phase at 22.5–25◦C.

factory epithelium which is an area of approximately 5 cm2

located in the upper nasal cavity. There, the interactions of
odorants with the appropriate chemosensory receptors, ol-
factory neurons (∼107 belonging to∼103 different classes
[6]) produce electrical stimuli which are transmitted to the
brain [3,6–9]. A pattern recognition process assisted by the
memory then takes place using all the data in order to iden-
tify, classify, or perform an hedonic analysis[9]. Evidence
exists showing that a single olfactory neuron responds to
several odorants and that each odorant is sensed by mul-
tiple olfactory neurons[10]. In the same way, electronic
noses base the analysis on the cross-reactivity of an array of
semi-selective sensors. Hence, products with similar aroma
generally result in similar sensor response patterns (sim-
ilar “fingerprints”) whereas products with different aroma
show differences in their patterns (different “fingerprints”).
The sampling step is carried out either by taking an aliquot
of the sample headspace, with a syringe, and injecting it
into the detector, or by carrying the headspace with a gas
stream into the detector. Sometimes the carrier gas is bub-
bled through the sample to strip out compounds. The inter-
action of volatiles with the array of sensors provokes a series
of signals which are then processed by the computer via a
pattern recognition program.



S. Ampuero, J.O. Bosset / Sensors and Actuators B 94 (2003) 1–12 3

A special type of system is slowly appearing in the mar-
ket, the so called portable[4,11,12]. These are small instru-
ments where the sensors array is confined to a chip. The
analysis proceeds by placing the instrument near the sam-
ple. Portables can be useful in simple and well determined
cases, and when interference from the surroundings are mi-
nor or constant.

Just like the human olfactory system, electronic noses
do not need to be specially designed to detect a particular
volatile. In fact, they can learn new patterns and associate
them with new odours via training and data storage func-
tions as humans do. However, training of electronic noses
based on sensory panel classifications is required in order to
obtain odour-meaningful classifications. Often the sensitiv-
ity of electronic noses is similar to that of human noses but
humans are specially gifted in sensing specific compounds
(e.g. thiols, biogenic compounds, pyrazines, thiazoles, some
aldehydes[13]). The biological sensitivity can go down to
ppt levels with a response time in the order of milliseconds
whereas instruments barely go under ppb levels with a re-
sponse time in the order of seconds (Table 1) [2,14].

3. Overview of gas sensors: technology and
characteristics

The non-selectivity of solid state sensors (metal oxide
sensors, MOS) was considered a severe drawback of this
technology intended as analytical tool. Back in the early
1980s the idea of assembling arrays of such sensors with
different sensitivities and selectivities was put into practice.
Thus, although both the qualitative and quantitative infor-
mation obtained from each sensor was highly ambiguous,
their combination resulted in some sort of “fingerprint” of
the sample. And with the help of statistical programs the
classification of samples into groups could be achieved.

Once the concept of assembling arrays of non-selective
sensors had been developed, various detection principles
were tested, some of them almost accidentally as in the
case of MOSFET[15]. A few of them have given consis-
tent results and can be found on the market. Links to pro-
ducers, as well as to university groups performing R&D
in this field, can be found among others at the web ad-
dress:http://www.nose-network.org/review/. Other types of
devices have also been tried-out such as electrochemical sen-
sors, optical fibres coated with dye-impregnated polymers,
biosensors, etc. Several good papers[3,8,10,14,16–21]pro-
vide interested readers with a more extensive insight into dif-
ferent gas sensor technologies. A brief description of some
of the commercially available sensors follows.

3.1. MOS

Metal oxide sensors consist of a metal-oxide semi-
conducting film (e.g. SnO2, TiO2, ZnO, ZrO2) coated onto a
ceramic substrate (e.g. alumina). Most often the device also

contains a heating element. Oxygen from the air is dissolved
in the semiconductors’ lattice, setting its electrical resis-
tance to a background level (stable when at equilibrium).
During the measurement, the volatile molecules (mainly
non-polar) are adsorbed at the surface of the semiconductor
where they react (oxidation/reduction) with the dissolved
oxygen species causing a further modification of the resis-
tance (or conductivity) of the device. This last change is
taken as the response of the system to that particular sample
(Fig. 1) [10].

The sensitivity and selectivity of MOS sensors are deter-
mined by the choice of the semiconductor material. Mod-
ifications are induced by doping the semiconductor with
noble metal catalysts (e.g. Pt, Pd, Al, Au), by modulating
the operational temperature (e.g. 200–500◦C) or by intro-
ducing thermal gradients/cycles. Changing the particle size
and the thickness of the semiconductor film has also been
tried with the same aim, as well as sensor coating with a gas
permeable membrane with varying thickness for enhance-
ment of the selectivity[17]. Doped sensors show greater
sensitivity to oxygenated volatile organic compounds (e.g.
alcohols, ketones, etc) than to aliphatic, aromatic or chlori-
nated compounds[10]. Doping with Pt and Pd increases the
sensitivity of SnO2 sensors to gases such as benzene and
toluene
[10].

Due to the logarithmic dependence of the sensor response
on the concentration of volatiles, loss of sensitivity arises
(towards low-volatile aroma compounds) in the presence of
highly concentrated detectable species such as ethanol[17].
Schaller and co-workers[22–24] have reported large back-
ground drift of CP and MOS sensors and MOS sensor poi-
soning when attempting to analyse cheese samples of Em-
mental type. The poisoning of sensors was probably due to
the volatile fatty acids from the cheese. The recent models in
the market seem to be able to correct for drift and they usu-
ally include a temperature and humidity monitoring/control
device. Higher operating temperatures apparently make it
possible to cope with poisoning as they allow for a better
sensor regeneration after each analysis.

3.2. CP

Conducting organic polymer sensors (also called in-
trinsically conducting polymer (ICP)) are made of semi-
conducting materials, aromatic or heteroaromatic (e.g.
polypyrrole, polyaniline, polythiophene), deposited onto
a substrate and between two gold-plated electrodes[25].
Upon interaction with volatile molecules a reversible change
of the devices’ electrical conductivity is observed.

Although mainly sensitive to polar volatile compounds,
their selectivity and sensitivity can be modified by the use
of different functional groups, polymer structure and doping
ions [26]. Thus, composites of polymer with thermoplastic
binders or glass fibres (e.g. polypyrrole with polyimide,
polypyrrole with SnO2, or with copper and palladium

http://www.nose-network.org/review/
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Fig. 1. Working principle of a MOS sensor.R on they-axis represents the sensor electrical resistance or conductivity. (a) The MOS sensor in presence
of air and at a given temperature. Oxygen dissolves in the sensor lattice setting its electrical resistance/conductivity to a background level. (c) Volatile
compounds, in this case methane, get in contact with the sensor. Upon adsorption/absorption of volatiles on the sensor oxidation/reduction reactions take
place changing the electrical resistance/conductivity of the sensor. The difference between steps (a) and (b) is usually taken as the response of thesensor
to the sample. (c) The sensor is regenerated to the background level under a flux of air and is ready to analyse the next sample.

inclusions) show large responses to non-polar volatiles[17].
In addition, biomaterials such as enzymes, antibodies, and
cells may readily be incorporated into polymer structures
[10].

A variant of this type of sensors is based on electrically
insulating polymers loaded with carbon black as an electri-
cally conducting filler. When exposed to volatile compounds
the volume of the insulating polymer increases, enlarging
the distance between the conducting carbon black particles.
This results in an increase in the electrical resistance[18].

Generally polymers readily absorb water vapour and, as a
result, the concentration of available binding sites for other
volatiles decreases drastically. This is the reason for the re-
duced sensitivity of CP gas sensors at high humidity levels.
Some authors have suggested the implementation of “filters”
to retain undesirable compounds such as ethanol or water
prior to analysis[14,27], or during analysis in the case of
QMB sensors[28]. The other big drawback of this technol-
ogy is the poor reproducibility in manufacturing polymer
sensors which is a continuing problem. However, CP-based
sensors show linear responses and higher selectivities com-
pared to MOS sensors. In contrast with MOS sensors, no poi-
soning effect with sulphur-containing compounds or weak
acids has been observed. They show faster responses and
base-line recoveries, and do not need high operating temper-
atures. A comparative study of sensors done by Harper[29]
showed that an Alpha MOS instrument was the least sen-
sitive to water vapour compared to two CP-based sensors,
one from AromaScan and the second one from Neotronics.
Whereas the system of AromaScan was difficult to oper-
ate due to the complex control of the relative humidity of

samples and carrier gas, the system of Neotronics, although
easier to operate, showed a reduced sensitivity.

3.3. TSM

Thickness-shear mode (or QCM quartz crystal microbal-
ance), BAW bulk acoustic wave, and SAW surface acoustic
wave sensors, consist of a piezoelectric quartz crystal, with
gold electrodes, coated with a membrane which, depend-
ing on its affinity, selectively adsorbs the volatile molecules
present. Adsorption of volatile compounds onto the sensing
membrane increases the mass of the device resulting in a
change in its resonance frequency. Selectivity and sensitiv-
ity of this type of sensor depend on the composition of the
coating membrane (e.g. most frequently polymers but also
biomolecules or metals) and on the operating frequency. The
difference between SAW and QMB is the mode of oscil-
lations, at the surface and in the bulk respectively, deter-
mining the available range of oscillations: SAW operate at
50–1000 MHz while QMB at 5–30 MHz. SAW devices are
more sensitive but also more unstable and require a high-tech
control set-up.

Different functional groups can be used as a coating mem-
brane, offering the possibility of tailoring the sensor for the
detection of specific volatiles. This represents a very inter-
esting issue for TSM as well as for CP sensors. Indeed, com-
bined approaches of computer (molecular) modelling and
combinatorial synthesis are undertaken to obtain affinity se-
lective sensors[30]. Another approach is the production of
molecularly imprinted polymers as very selective traps for
specific volatiles[31], much in the way of a key and lock
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system that would work even in a noisy background. As an
example, classification of enantiomers has been reported by
the use of polymers with chiral functions both with CP and
QCM sensors[9,17].

The reproducibility in sensor manufacture is a recurrent
problem given the fact that the life-time of sensors is rela-
tively short (e.g. 6–12 months for MOS and CP). An example
of the development of new techniques of coating deposition
is electrospray, instead of spin coating, for the deposition
of uniform films with controlled thickness on QMB sensors
[32]. Besides reproducible sensors, there is also a need for
good calibration techniques so as to be able to correlate data
obtained with different sensors[29,33,35].

Finally, in an attempt to broaden the applicability of gas
sensors, some companies offer hybrid sensor arrays combin-
ing MOS and CP, MOS and MOSFET, MOS and MS, etc.

3.4. MS

Mass detection-based electronic noses. Although not pre-
cisely being gas sensors they can be used together with
chemometric programs to obtain a fingerprint of the “aroma”
of a product and to proceed to classifications. Electronic
noses based on mass detection typically use a quadrupole
mass spectrometer as a sensor array. Upon injection an MS
pattern of the unresolved volatiles mixture is created. In
other words, each mass to charge ratio (m/z) acts as a sensor
that detects any molecule or fragment with that particular
m/z. In this way, an MS-based electronic nose has potentially
hundreds of sensors. Particular fragment ions (m/z) can be
excluded from the data analysis to remove the influence of
certain components such as water, ethanol, etc. In the same
way, fragment ions (m/z) aroma-relevant to the case under
study can be selectively chosen to be included in the data
processing; provided that the aroma-relevant compounds are
known. In this context, the creation of a data base of elec-
tronic nose MS spectra as suggested by some authors can
be very useful, these spectra being different from those ob-
tained for individual compounds.

A big advantage of this system over all the others is that it
uses a very well-known technology[35]. The reproducibil-
ity, stability and sensitivity of mass spectrometers have long
been well established. An additional advantage is that dis-
crimination between groups provides with “relevant masses”
[37]. This information may be correlated to corresponding
chemical structures and further studied in combination with
other techniques such as GC–MS. All these features make
this system particularly interesting in the field of R&D. On
the other hand, because of the bench-top type of MS elec-
tronic noses they are not foreseen as portables for in-field
applications in contrast to other types of sensors[17,36].

Among related sensor techniques are electronic tongues
which have recently appeared in the market. They are men-
tioned here because they also work by classifications based
on “fingerprints”. They measure organic and inorganic com-
pounds in liquids (e.g. beverages, foods, etc.) and in some

cases could be complementary to electronic noses. Typi-
cally, electronic tongues measure attributes such as saltiness,
sweetness, bitterness, sourness and metallic taste[37]. So
far, some interest has arisen for such sensors, for instance
in the pharmaceutical field testing the capacity of masking
bitterness in medications which is not readily done with a
sensory panel for obvious reasons.

4. Data treatment

An essential step in the analysis with an electronic nose
of any kind is pattern recognition. In fact, together with the
progress in electronics, which made possible the develop-
ment of sensors, it is the high performance attained by sta-
tistical programs which made possible the introduction of
electronic noses. Although the best performing programs are
sophisticated and, therefore, require the operation of skilled
personnel, most companies have implemented user-friendly
software for data treatment in commercially available elec-
tronic noses.

There exists linear multivariate analysis such as principal
component analysis (PCA), discriminant factor analysis or
discriminant function analysis (DFA), non-linear methods
such as artificial neural networks (ANN)[38,39]. A classifi-
cation can be supervised (e.g. DFA) or non-supervised (e.g.
PCA), in other words based on predetermined groups or not.
A parametric classification is very seldom possible. Usually
the inclusion into a given group is determined by the Euclid-
ian or the Mahalanobis distance. The latter takes into account
the actual shape of the group whereas the former assumes
that the data points belonging to the group are evenly dis-
tributed in a sphere around the centre of the group (Fig. 2).
Only a short description of some of the most frequently used
pattern recognition methods is given here. Readers are re-
ferred to specialised literature for more information.

PCA is a linear combinatorial method which reduces the
complexity of the data-set, from the initialn-dimensional
space (n sensors) to a few dimensions. The inherent struc-
ture of the data-set is preserved while its resulting variance

Fig. 2. Representation of Euclidian (solid line) and Mahalanobis (dotted
line) distances. There are two outlayers according to Euclidian distance
and none according to Mahalanobis distance. A and B are equally far
from the group according to Euclidean distance, whereas A is closer to
the group than B according to Mahalanobis distance.
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is maximised. In other words, data points will be scaled
along new dimensions, linear combinations of the initial di-
mensions. The magnitudes of the coefficients, in the result-
ing linear combinations, give an indication of the relative
importance of the initial dimensions in the data structure.
PCA is performed with no information on the classification
of samples. It is based solely on the variance of the data-set.

On the other hand, DFA is based on a priori data
classification. The linear combinations maximise the con-
tribution of those dimensions that generate the largest dif-
ference between predetermined groups. With this method,
different classifications on the same data-set are possible,
following different properties (e.g. freshness, fruitiness,
etc.). Particular care should be taken however to avoid
over-fitting of errors, i.e. classifications based on noise
rather than on real differences. The resulting DFA classifi-
cation is highly dependant on the data-set used for training,
i.e. it is important to verify the size of the training data-set
in terms of the complexity of the groups.

ANN methods are very powerful and are inspired by the
way the mammalian brain processes information. Super-
vised classifications are common with ANN. The non-linear
character of this method makes it interesting specially for
non-linear technologies such as MOS[1]. Future develop-
ments will probably include adaptive neural networking,
hybrid intelligent models based on Fuzzy-NN or Genetic
algorithms-NN, specially aiming at automated industrial ap-
plications[40].

In all cases, to avoid classification errors, the ratio of data
points (analyses) to variables (sensors), employed in the pat-
tern recognition, should be at least three, but preferably six
[36]. Thus, replication of samples five to eight times is usual
in order to obtain a large number of data points as well as
to ascertain the repeatability of the measurement. Since in-
dividual analyses are performed within a few minutes, or
even seconds with any of the systems currently available,
and also because automatic sampling devices are generally
implemented, the total analysis time remains competitive
compared to other analytical techniques such as GC–MS.
Model validation with data points not used for the genera-
tion of the model is also recommended[36], as well as ran-
domisation of sample analyses to avoid systematic errors.
Some authors have tried data pre-treatment to reduce noise,
and data correction to target a given classification by the use
of reference standards chosen among the key compounds
under study[41,42]. Although so far absolute calibration is
still lacking, calibration with reference compounds allows
for correction of drift as well as for instrument to instrument
matching[29,34,38].

5. Additional factors affecting the analysis

Very often the importance of the sampling step is ignored.
Nevertheless the quality of the analysis can be greatly im-
proved by adopting an appropriate sampling technique.

Aroma compounds are typically small hydrophobic or-
ganic molecules, with a relatively low molecular mass, from
30 to 300 amu, and often with a single polar group. Volatil-
ity is reduced with higher molecular mass or higher molec-
ular polarity. Although little is known about the process
underlying odour sensing, there is some evidence that the
size and the shape of molecules are more relevant with
regard to odour recognition than the chemical function
or the position of the chemical function in the molecule
[24].

The concentration of a given compound,i, in the
headspace of a sample is given by the partition coefficient
Ki:

Ki = Ci(gas)

Ci(matrix)

whereCi(gas) andCi(matrix) are the concentrations of com-
pound i in the gas phase and in the sample, respectively.
By displacing the equilibrium, i.e. by trapping the gaseous
compoundi with a polymer for instance, more of this com-
pound must volatilise to restore the equilibrium. This ex-
traction (dynamic headspace sampling) performed prior to
analysis will potentially help the detection of compounds
with a low volatility. In any case, the concentration of most
of the volatiles will be increased depending on the affin-
ity of the trap for the different volatiles and on the differ-
ent equilibria taking place[5,43–45]. Among commercially
available devices for this purpose are: solid phase microex-
traction (SPME), stir bar sorptive extraction (SBSE), etc.
The SPME is a fibre of fused silica coated with 1–3 poly-
mers. The fibre is carried into a needle and is exposed only
for physical–chemical sorption/desorption of volatiles dur-
ing sampling and during measurement. The twister (SBSE)
is a magnetic bar coated with polymers, which can be held
in the headspace for sampling. Its loading capacity is much
higher than that of SPME. The coatings can be chosen de-
pending on the polar groups or the size of the targeted com-
pounds. Among available polymers used for coatings are:
polydimethylsiloxane (PDMS), polyacrylate (PA), carboxen
(CAR), etc. Other devices use porous traps such as Tenax.
More information is available in the specialised literature
and is not given here as this is beyond the scope of this ar-
ticle.

The effect of the matrix on the release of aroma is well
known. Steinhart and co-workers[5,46] showed that there is
a decrease in the concentration in the headspace of volatile
2,3-ethyl-5-methalpyrazine (roast smell) with an increase
in the fat level in a coffee matrix. In general, most or-
ganic flavour compounds are readily adsorbed and solu-
bilised in lipids, depending on their lipophylic character.
Proteins present in the matrix may influence the volatility
of flavour compounds via weak Van der Waals interactions
or by the formation of amides, esters and salts. Polysaccha-
rides can hinder the volatility of certain compounds whereas
other carbohydrates such as mono and disaccharides may
cause a salting-out effect[5,46].
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Other parameters that influence the volatility of com-
pounds are: temperature (most samples release volatiles bet-
ter at higher temperatures), equilibration time and to a lesser
extent pressure, pH-value (molecules can pass from a polar
state to a non-polar state and vice versa by changing the pH
[47]), ionic concentration (sometimes the addition of a salt
provokes a “salting-out effect”, increasing the volatility of
certain compounds), surface area (grinding of a solid, mix-
ing of a liquid). When analysing with electronic noses, the
aim is very often the classification of samples into differ-
ent groups. In such a case it is important to maximise dif-
ferences even if samples are slightly denatured during the
analysis (by temperature, changes in pH, etc.) as long as the
same treatment is used for all samples.

Finally, changes in atmospheric temperature and humidity
may influence not only the sensors response but also the
concentration of volatiles in the gas phase.

6. Applications to the dairy industry

A list of recently reported applications of electronic noses
to dairy products is given below.

6.1. Ageing of milk and shelf-life prediction

The headspace of milk typically presents a complex
mixture of organic volatiles (e.g. acetone at overwhelm-
ing concentration, hexanal, 2-butanone, toluene, limonene,
heptanal, styrene, chloroform, etc.) at varying concen-
trations and with a high percentage of relative humidity.
Furthermore, the matrix is highly heterogeneous containing
different levels of lipids, proteins and carbohydrates.

Correct classification of groups of different ages was ob-
tained for UHT[48,49] and pasteurised milk[48]. Groups
of UHT milk aged 1–8 days, and 1–3 days of pasteurised
milk were classified by PCA performed on normalised data.
A home-made MOS sensors array was used (five SnO2 thin
film sensors, of which four were doped with Ni, Os, Pt and
Pd). 10 ml of milk were placed in 20 ml vials, four to five
measurements per sample. Samples were incubated 15 min
at 30◦C during analysis, the headspace was carried into the
injector with a flow of N2 (where the total gas flow was
100 sccm N2/100 sccm dry air), sensor temperature was set
at 250◦C. Sensors showed a response and recovery time of
2–3 min.

Shelf-life prediction of 2%-fat pasteurised milk and
whole-fat chocolate milk was obtained with a home-
assembled SPME–MS–MVA system (solid phase micro-
extraction, mass spectrometry, multivariate analysis)
[50,51]. 3 ml of milk sample and 5�l internal standard
(10�g/ml chlorobenzene) were placed in 6 ml vials. A
75�m Carboxen/PDMS SPME fibre was used. Samples
were incubated 20 min at 50◦C during fibre exposure, oth-
erwise they were stored at 7.2◦C. The injector temperature
was set at 275◦C and the transfer line followed a tempera-

ture program between 150 and 180◦C. The measurement of
milk volatiles lasted not more than 7 min. Eighty-four sam-
ples of milk and 73 samples of chocolate milk were used,
taken directly from production lines over a 7-month-period.
Twenty samples of each set were used for model validation
solely. Mass intensities were normalised by the intensity
of chlorobenzene (m/z 112). Partial least-squares modelling
predicted sample shelf-life with respect to sensory results
with an accuracy of±0.62 and±0.88 days and a correla-
tion coefficient of 0.9801 and 0.9832 for milk and chocolate
milk, respectively. A significant increase in concentration
with ageing was detected by GC–MS for certain volatiles
such as: dimethyl sulphide, 2-heptanone, ethyl acetate,
pentanal, pyrrolidine, hexanoic acid, 2-methyl-butanal, fur-
furaldehyde, etc.[51].

6.2. Classification of off-flavours in milk

Oxidation off-flavours in milk originate mostly from bac-
terial metabolism, enzymatic activity, photo-oxidation, heat,
and oxidation catalysed by chemicals such as sanitizers for
production lines or pro-oxidant metals (copper, iron and
nickel) [51]. Exposing milk to light induces two major ef-
fects: The first 2–3 days a burnt oxidised flavour develops
probably due to the degradation of sulphur-containing amino
acids from the whey into methional (relatively unstable),
mercaptans, sulphides and disulphides (e.g. dimethyl disul-
phide from methionine)[52]. After the second day a per-
sistent metallic, cardboard-like off-flavour occurs, attributed
to the autoxidation of unsaturated fatty acids (�-oxidation)
by the formation of free radicals induced by light. On the
other hand, heat provokes a typical boiled off-flavour prob-
ably resulting from the formation of sulphur compounds.
Great efforts have been devoted to the optimisation of UHT
milk processing in order to avoid this effect. In general,
low molecular weight aldehydes, ketones and fatty acids
are responsible for most off-flavours observed in foods and
beverages of which hexanal is the major by-product of the
degradation of linoleic acid (major polyunsaturated fatty
acid in milk) upon exposure to light.

Marsili has published several papers on the discrimina-
tion of off-flavours in milk[42,45,50–52]. The system used
was a prototype SPME–MS–MVA system above described.
PCA correctly classified the set of samples by the origin of
off-flavours: sanitizer-contaminated, copper-contaminated,
spoiled by bacteria and fresh 2%-fat milk samples. Prior
to analysis, samples were conditioned at 19◦C for 16 h
except for fresh milk control samples, and then heated at
45–50◦C during the 12–15 min of fibre exposure (75�m
Carboxen/PDMS SPME fibre). Masses corresponding to
volatiles normally present in non-defective milk were dis-
regarded (e.g. acetone, 2-butanone) and intensity of masses
from target compounds were amplified (e.g.m/z 127, 142
and 94, this last one corresponding to dimethyl disulphide).
The intensities of all masses were normalised by the in-
tensity of the internal standard (4-methyl-2-pentanone,m/z
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100). A fairly steady increase in pentanal and hexanal was
observed with increasing exposure time to 200 ft3 of fluo-
rescent light (typical light exposure of milk in supermarket
dairy cases)[52]. Typically, hexanal and dimethyl disul-
phide were found to be good indicators of light damaged
milk, whereas pentanal, isopentanal, hexanal, heptanal, oc-
tanal, nonanal, and 1-octen-3-one usually indicated copper
induced oxidation in milk[45].

The application of an electronic nose to the study of boiled
off-flavour in UHT milk was performed with an NST 3220
which typically uses MOSFET, MOS, and QMB sensors
(CSP, UK) [53]. Different dilutions of boiled milk in pas-
teurised 0.5%-fat milk were prepared. 40 ml of each mixture
were placed in 100 ml bottles and incubated for 30 min at
20◦C. During incubation a 60 ml/min flow of ambient air
(filtered by active charcoal) carried the headspace into the
injector. Each dilution was prepared four times. PLS anal-
ysis (partial least square) was able to discriminate down to
10% of boiled milk into reference milk, compared to 30%
for a sensory panel.

Di Natale [54] reports a correct discrimination between
UHT and pasteurised milk with a home made electronic
tongue based on metaloporphyrin whereas a QMB sensors
array, based also on metaloporphyrin, failed.

An eNose 4048 with 12 CP sensors (Neotronics, UK), was
used to distinguish between different intermediate products
during process of block-milk (milk and sugar mixture evap-
orated to powder, used in the preparation of milk-chocolate)
[55]. Eight samples were taken at the different drying and

Fig. 3. Parametric analysis of trimethylamine concentration in milk (fishy off-flavour) performed with an electronic nose based on mass spectrometry.
The PCA is based on the ionic masses 58 and 59 amu. Symbol× represent calibration solutions in milk with increasing concentration from left to right
(low concentrations are better visible in an expanded figure, not shown). Symbols other than× represent milk samples. Samples numbered 6, 13, 17
and 21 show an additional off-flavour. Reference[4] shows a similar figure obtained with a smaller number of iterations.

concentrating stages, from the initial raw material (milk
and sugar mixtures with 20 wt.% dry matter) to the final
block-milk product (97.8 wt.% dry matter). 60.0 g of sample
were mixed with an equal amount of MilliQ water just be-
fore analysis. No control of the relative humidity in the elec-
tronic nose was undertaken. The response values were taken
after 3 min of signal recording. The results correlate well
with GC–MS and sensory analysis. PCA analysis showed
some association to descriptors such as caramel, nutty, burnt
and chocolate, typical of volatiles generated by Maillard re-
actions during heating.

An unusual type of off-flavour was detected in milk from
cows bearing a genetic defect. The loss of FMO3 enzyme
activity apparently hinders the oxidation of trimethylamine
(TMA) into a non-odoriferous compound. Thus, TMA con-
centrates in milk to significant levels resulting in a disagree-
able fishy off-flavour. Parametric classification of trimethyl
amine concentration in pasteurised milk was obtained with
an MS-based electronic nose, SMart NoseTM (LDZ,CH)
[47]. 7.5 g of milk and 150�l of 5 mol/l NaOH were placed
in 10 ml vials. After conditioning at 60◦C for 16 min 2.5 ml
of headspace were sampled with a syringe and transferred
into the injector. Three to five vials were prepared from each
sample. Normalised data were processed with a PCA based
on m/z 58 and 59. Modelling with calibration samples (sev-
eral concentrations of synthetic TMA in fresh non-defective
UHT milk) enabled the execution of a parametric classifica-
tion (Fig. 3). The intensity of the ionic mass of TMA,m/z
59, was also used for quantification, the results corresponded
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well to the parametric ones. These results were also vali-
dated by a sensory panel and GC–MS analyses. Actually, the
MS-electronic nose showed a better sensitivity (sub-ppm)
than the other two methods (ppm). Additionally, the system
detected further off-flavours in a few samples, also detected
by the sensory panel but not by the GC–MS method. By the
addition of NaOH the pH-value of the sample was strongly
increased resulting in an increased volatility of the TMA,
which otherwise is in an ionic state at the normally slightly
acidic pH of milk.

6.3. Classification of bacteria cultures in milk

Microbial milk spoilage causes not only undesirable
off-odours but can even develop some toxicity. It has
been shown that some bacterial species such asBacil-
lus cereus, Pseudomonas fragi, Pseudomonas perolens
and Bacillus pumilusproduce volatile compounds such as
3-methyl-1-butanol, ethyl butyrate, ethyl 3-methylbutanoate,
ethyl hexanoate, acetyldehyde, acetic acid, ethanol and
other alcohols, etc.[40].

Magan et al.[40] used an electronic nose composed of
14 CP sensors, BH-114 (Bloodhound Sensors Ltd., UK),
to investigate the early detection of spoilage bacteria and
yeast in milk-based media. Inoculums of 103–104 cells/ml
were mixed with 15 ml of 10% skimmed milk in 50 ml
bottles, with three vials per sample. All samples were al-
lowed to equilibrate for 30 min at ambient temperature, in
some cases a further incubation was performed at 30◦C
prior analysis. The headspace was carried by a flow of
200 ml/min of carbon filtered air into the injector. Re-
sponse values were taken as the difference between the
signal measured 15 s after beginning sample injection and
22 s after beginning sensor regeneration. Sensors showed
<10% background drift. DFA correctly discriminates be-
tween unspoiled milk, control-milk (with butanol addition)
and two different cell concentrations (2 and 5 h incuba-
tion) of Staphylococcus aureusor Kluyveromyces lactis.
Different concentrations ofPseudomonas aureofaciens
were also correctly classified with a DFA analysis: 0, 106,
3.5× 108, 8× 108 cells/ml and butanol control-milk. A cor-
rect classification of individual strains after 5 h incubation
was performed by DFA onC. pseudotropicalis, S. aureus,
K. lactis, B. cereus, Pseudomonasspp., unspoiled skim
milk and butanol control-milk. A model was built with a
three-layer back-propagation NN which was successfully
cross-validated.

Haugen[14] used an NST 3220 instrument consisting of
10 MOSFET, 5 MOS and 1 IR-based CO2 sensor (Nordic
Sensor Technologies, S) for the discrimination of three dif-
ferent disinfection–resistant bacteria (Pseudomonas, Cede-
ceaandSerratia) as well as a mixture of all three strains cul-
tured in milk. Only thePseudomonasculture showed clear
differences from the others. The identification of growth
phases of lactic acid bacteria could be performed with this
system[14].

Marsili [42] also reported the use of an in-house-assembled
system, SPME–MS–MVA, described above, for the classi-
fication of cultures ofPseudomonas fluorescens, P. aureo-
faciensandP. putrefaciensin milk. They all had a Cheddar
cheese-like odour.

6.4. Classification by the cheese variety

A Fox 2000 with six MOS sensors (Alpha MOS, F) was
used for the discrimination of four different Swiss cheese
samples (0%-fat, 33%-fat, sharp and bland) together with a
Jarlsburg cheese[29,56]. 5 g of grated cheese were placed
in glass vials, with four replications per sample. Samples
were incubated at 40◦C for 30 min. The carrier gas was
compressed air flowing at 250 ml/min. Data were recorded
for 1 min. Sensor recovery time was 7 min. Discriminatory
analysis produced a correct classification in agreement with
sensory and SPME-GC–FID analyses. The latter was based
on the intensity of acetic, propionic, butyric, isovaleric and
hexanoic acids, known as key compounds in Swiss type
cheese flavour. The use of two additional compounds (ace-
toin and octanoic acid) resulted in a similar classification
whereas the increase in the number of volatiles used in the
discrimination to 30 resulted in failure.

6.5. Detection of “rind-taste” in Swiss Emmental cheese

Schaller et al.[57] unsuccessfully tried to detect defec-
tive (rind taste) Swiss Emmental cheese samples with an
NST 3320 instrument (Nordic Sensor Technologies AB,
Linköping, S). This electronic nose was equipped with 10
MOSFET and 12 MOS sensors. However, a GC–MS anal-
ysis did not show any compound that would be responsible
for off-flavours. Also, a sensory panel was unable to detect
any off-flavour. The rind taste in defective cheese samples
was evident only by tasting probably due to a negligible
volatility of the compounds responsible for the taint.

6.6. Classification by the geographical origin of a dairy
product

The objective is to classify samples of a given product by
their place of production. In this case differences in the com-
position of volatiles are expected to originate from “minor”
variations in the production technology, raw materials or
produce conditioning.

Five samples of caseinate from three different suppliers
were classified with a FOX 4000 based on MOS sensors
(Alpha MOS, F)[58]. 0.2 g of sample were placed in 10 ml
vials. Samples were incubated at 70◦C for 15 min. There-
after, 2 ml of headspace were injected with a 150 ml/min
flow of dry air. The acquisition time was 120 s. PCA and
DFA analyses correctly classified samples from the different
suppliers. Results were validated with unknown samples. A
sensory analysis found differences in quality between the
different suppliers.
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Fig. 4. Classification of Emmental cheese by the geographic origin performed with an electronic nose based on mass spectrometry. The graph shows
DFA 1 vs. DFA 2 with 100% group classification based on five variables. No validation set was considered due to the limited number of samples. A:
Austria, D: Germany, F: France, Fi: Finland.

A good classification was also performed by another Fox
system on two different brands of whole UHT, skimmed
UHT and half-creamed UHT milk[59]. In addition, a whole
and a half-cream pasteurised milk were identified as a sep-
arate group from the set of UHT samples.

The classification of Emmental cheese based on geograph-
ical origin was explored with an MS-based electronic nose,
SMart NoseTM (LDZ, CH) [60]. Twenty samples (2.5–4
months old) from different European countries were anal-
ysed: Austria, France, Finland, Germany and Switzerland).
4 g of grated cheese were placed in 10 ml vials, with 3–5
replicates per sample. Samples were incubated at 90◦C for
30 min but the rate of analysis was only 3.5 min thanks to
automated sampling and a multiple-vial incubating device.
PCA and DFA analyses gave 90–100% classification rates
for different sets of groups (Fig. 4) whereas a sensory panel
analysis failed in the classification probably due to too short
a ripening time for full aroma development.

6.7. Classification of cheese by the ripening stage

An AromaScan electronic nose (Electra House, UK)
with 32 PC sensors was used to discriminate two different
Pecorino Toscano cheeses (ewe’s cheese), which differed
mainly in their maturation time[61]. 10 g of the ewe’s
cheese were placed in 500 ml Duran bottles (12 and 15
samples, 20 days and 4 months old, respectively), with
three replicates per sample. Samples were allowed to equi-
librate at room temperature for 30 min prior to analysis.
The headspace was directed to the sensors by a constant
air flow kept at 50% humidity. Sammong mapping gives a

fairly good discrimination between 20 days and 4 months
old samples. These results are comparable to those obtained
with a purge & trap GC–MS–PCA whereas Curie-point
pyrolysis mass spectrometry failed. The GC–MS–PCA
analysis was based on hexanal, acetic acid, 2-butanone and
tetrahydrofuran peaks.

Several instruments were tested for the classification of
Swiss Emmental cheese by ripening stage[23]. A QMB6
with six QMB sensors (HKR Sensorsysteme, D) and the
12 CP sensors of an eNose 5000 (Neotronics, UK) gave
unsatisfactory results, probably due to a low sensitivity and
a large drift of CP sensors. A SMart NoseTM based on mass
spectrometry (LDZ, CH) showed only partial classification,
whereas the eight MOS sensors of the eNose 5000 and the 10
MOSFET+ 5 MOS sensors of a NST 3220 (Nordic Sensor
Technologies, S) showed correct classifications of samples
ripened for 1, 21 and 98 days.

Capone et al.[62] explored the response of a thin film
MOS sensor (SnO2) to Parmesan cheese. They found a sig-
nificant response difference when analysing fresh and 30
days old (with mould) cheese samples.

7. Concluding remarks

Although still under development, electronic noses can
potentially be applied to process control and monitoring, ac-
ceptance or rejection of raw material, intermediate and final
products, assistance in the development of new products, as
well as to the assessment of synergistic effects of individual
odorants.
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Most of the reported applicability studies of electronic
noses to different aspects of quality assessment in dairy
products show satisfactory results. Published literature re-
ports the classification of dairy products by sample type with
MOS sensors; by ageing with MOS, CP and MS-based in-
struments; by geographic origin with an MS-electronic nose;
by processing stage with CP sensors. A successful model for
milk shelf-life prediction was implemented with a MOS sys-
tem. The identification and classification of different types
of quality-deterioration have also been published: different
off-odours in milk with an MS-based tool, lower quality of
casein samples with MOS sensors, identification of micro-
bial contamination in milk with CP, MS, etc. Nevertheless,
in most cases the results will have to be confirmed on a
larger scale to make sure that the classifications obtained
are still valid with a larger intra-group variability, which is
generally found in the case of natural products.

It is interesting to note that classifications performed by
gas sensors are not directly based on chemical features, in
practice only MS-based electronic noses can provide some
chemical information related to the differentiation of groups
of samples. Adequate sampling techniques can improve the
signal to noise ratio by improving the volatility or by increas-
ing the concentration of discriminating compounds with
odour relevance, e.g. use of SPME, a given pH, etc. The
development of standard calibration techniques should im-
prove the universal applicability of this type of instruments.
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